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Based on research on the response mechanism of formation and reservoir response to
logging curves, 12 logging curves were selected in combination with formation depth
characteristics, and 4 algorithms were used to identify the formation and reservoir: logistic
regression (LR), support vector machine (SVM), random forest (RF), and XGBoost. In the
study block, 57 wells out of 60 wells were selected for training and learning, and the
remaining three wells were used as prediction samples. The recognition of formation
thickness and reservoirs is performed by each of these four machine learning algorithms,
and predictive knowledge is obtained separately. It was found that the accuracy of the four
algorithms for formation thickness and reservoir layer identification reached over 90%, but
the XGBoost algorithm was found to be the best in terms of the four scoring criteria of F1-
score, precision, recall, and accuracy. The accuracy of formation thickness identification
could reach over 95%, and the correlation analysis between the logging curve and
formation thickness could be performed on this basis. The results show that RMN,
RLLD, and RLLS have the most obvious response to the sandstone layer, off-surface
reservoir, and effective thickness layer, while CAL has the least effect on formation and
reservoir identification, which can provide an effective reference for the selection and
downscaling of subsequent logging curves.

Keywords: formation identification, reservoir identification, logging curves, XGBoost algorithm, machine learning,
class imbalance learning

INTRODUCTION

At present, methods of logging lithology identification mainly include conventional logging
identification methods, conventional logging rendezvous map identification methods, imaging
logging identification methods, principal component analysis methods, neural network
methods, and transverse wave information rendezvous identification methods. In recent
years, the use of machine learning algorithms to predict formation thickness and reservoir
layer methods has also gradually diversified, among which He and Guo-Feng, (2002) proposed
using the fuzzy ISODATA algorithm to optimize the prediction of formation thickness. Song
et al. (2016) used the nonlinear prediction feature of the random forest algorithm to predict
reservoir layers. Wang et al. (2010) used a support vector machine to eliminate multiple
correlations between variables to study rock layer identification. Liu K. et al. (2020) used a mixed
density network to establish a theoretical model to achieve effective prediction of sand thickness.
Shan et al. (2015) used a BP neural network to identify gas reservoir layers with complex rock
layers. Lei Huang et al. (Du, 2018) used a deep learning approach for formation thickness
identification and correlation analysis.

Edited by:
Qinzhuo Liao,

King Fahd University of Petroleum and
Minerals, Saudi Arabia

Reviewed by:
Z. Z,

Hefei University of Technology, China
Zhaopeng Zhu,

China University of Petroleum, China

*Correspondence:
Weikai Liu

lwkzdd@163.com
Ziming Feng

xueyuanfzm@aliyun.com

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Earth Science

Received: 12 April 2022
Accepted: 23 May 2022
Published: 07 July 2022

Citation:
Liu W, Zhao Y, Yang M, Xu Y, Li G and

Feng Z (2022) XGBoost Formation
Thickness Identification Based on

Logging Data.
Front. Earth Sci. 10:918384.

doi: 10.3389/feart.2022.918384

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9183841

ORIGINAL RESEARCH
published: 07 July 2022

doi: 10.3389/feart.2022.918384

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.918384&domain=pdf&date_stamp=2022-07-07
https://www.frontiersin.org/articles/10.3389/feart.2022.918384/full
https://www.frontiersin.org/articles/10.3389/feart.2022.918384/full
http://creativecommons.org/licenses/by/4.0/
mailto:lwkzdd@163.com
mailto:xueyuanfzm@aliyun.com
https://doi.org/10.3389/feart.2022.918384
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.918384


In addition to the use of machine learning algorithms to
establish a mathematical model, the reasonable choice of
logging curves and features will also have a large impact on
the accuracy of rock layer identification (Zhang et al., 2020). For
example, Mou et al. (2015) used five logging curves of deep lateral,
acoustic time difference, compensated neutron, density, and
natural gamma to identify basal rocks in the Liaohe Basin.
Wang et al. (2015) used five curves of resistivity, acoustic time
difference, natural gamma, density, and acoustic impedance to
identify basal rocks in the Liaohe Basin. Logging curves were used
to identify the four major rock phases in the Jungar Basin; Zhu
and Shi, (2013) used 15 logging curves, such as acoustic time
difference, bulk density, photoelectric absorption cross-sectional
index, natural gamma, compensated neutron, deep lateral, and
shallow lateral, as multidimensional geological characterization
parameters to identify the coal seams; Guo (2020) used five
logging curves, such as lateral resistivity, density, natural
gamma, sound speed, and natural potential, to identify the
coal seams. The positioning was interpreted qualitatively; Yu
et al. (2005) used four logging curves of acoustic time difference,
density, natural potential, and natural gamma to select
appropriate nuclear functions to predict the three major types
of formation thickness of siltstone, mudstone, and conglomerate
in an oil field.

However, all of the aforementioned articles have some
problems, such as the high model complexity, inability to
obtain the trained and mature model quickly, formation
identification results are easily affected by the noise of the raw
data, and the clarity of the formation data obtained from the
logging curve is not high enough to support higher formation
identification efficiency (Han et al., 2018). Based on the
aforementioned problems, this article classifies the formation
into sandstone layer, off-surface reservoir, and effective
thickness layer from the perspective of reservoir evaluation
and tries to identify the rock layer in this block by XGBoost,
random forest, support vector machine, and logistic regression.
By comparing the four algorithms, the XGBoost algorithm can
effectively solve the problem of accurate identification of rock
layers and reservoirs, which proves the generality of the method.

DESCRIPTION OF THE STUDY BLOCK

According to the field logging data and actual conditions, the
working wells in this study block are basically shallow wells with
depths ranging from 1,260 to 1,314 m. The logging data obtained
from the field have well depths ranging from 1,035 to 1,300 m.
The well section in this study block passes through the Sa Zero, Sa
One, Sa Two, and Sa Three formations, which contain three to
four large interbedded distribution formations, all of which are at
depths below 1,200 m.

Geological Characteristics of the Study
Block
According to the logging data of 60 wells in an oil field block in
Daqing and related literature, the development area has poor oil

content, physical properties, and reservoir lithology, the
stratigraphic sensitivity is serious, and the mobilization of
crude oil reserves is low. From the perspective of the
geological structure, the Songliao Basin is divided into three
developmental stages: early, middle, and late stages. The study
area experienced tectonic movement in the Songliao Basin in the
early stage, which was mainly fault subsidence. The middle stage
experienced subsidence of the land mass, and the late stage lifted
the land mass again (Deng et al., 2020). The average content of
clay minerals is 27.3%; kaolinite, montmorillonite, and illite
constitute the majority of clay minerals, and the cementation
type of rock is mainly pore cementation, with contact
cementation accounting for a smaller proportion (Zhao,
2018). The reservoir physical characteristics of the study
block can be obtained from an analysis of the field logging
curves (Table 1). From the porosity distribution characteristics
in Table 1, the block can be classified into medium- and low-
porosity reservoirs.

There are certain relationships between the reservoir physical
properties of the study block. For example, there is a clear
correlation between porosity and permeability (Figure 1). It
can be seen from the figure that with increasing permeability,
the porosity of a rock layer also increases. At the same time, it can
be seen that the porosity of the vast majority of the stratigraphy
measured is greater than 18%, which proves that the block
belongs to medium- and low-porosity reservoirs.

Selection of Logging Curves for the Slock
When identifying formations and reservoirs, it is important to
select the correct and reasonable parameters. It is not the case that
a larger number of input features are better; when too many
logging curves are selected, a certain degree of negative feedback
can occur, leading to a decrease in identification accuracy. In
order to select more suitable logging curves, the response
characteristics of sandstone formations and reservoirs are
studied in this article.

Mudstone and sandstone, which are electrically distinct and
easily identified, dominated the sandstone layers of this
formation. For the mudstone, the corresponding characteristic
curves are RLLD and RLLS below 5Ωm, GR and DEN high, and
SP at the baseline position. For sandstone, the corresponding
characteristic curves are SP negative anomaly amplitudes greater
than 2 mV and RLLD greater than 5.5Ωm. The sandstone layer
also contains some nonmudstone units, and the large set of sand
bodies contains a small amount of mud interlayer constituting
nonmudstone units. The corresponding characteristic curves are
high resistance, high return rate, low GR and DEN, and large SP
negative anomaly amplitude.

Off-surface reservoirs are reservoirs that still have oil-
bearing characteristics under the physical criteria of
effective thickness reservoirs, and thus far, there are no
unified physical criteria for off-surface reservoirs. The off-
surface reservoir is the transition zone and variation zone of
the effective thickness reservoir, which interacts with the
effective thickness layer in the longitudinal direction and
bridges with the effective thickness layer in the lateral
direction. The physical, electrical, oil-bearing, and
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lithological properties of off-surface reservoirs are consistent
with each other. Performance is regarded as the reservoir with
good sorting, and coarse lithology has greater porosity and
permeability and higher oil-bearing grade, which is expressed
in the logging curve as a higher apparent resistivity value,
smaller DEN, larger BHC, and larger SP anomaly.

R25, RXO, RMN, and RMG belong to microelectrode logging;
for microelectrode logging to identify the sandstone layer, the
main observation is the amplitude difference between the
micropotential curve and microgradient curve. When the
microelectrode amplitude difference is greater than 0.1Ωm, it
can be used as a secondary discriminatory auxiliary standard to
divide the sandstone layer. According to the different standards of
sandstone layer division in each region, the degree of
micropotential return in different depth strata ranges from
greater than 14% to greater than 18%.

For sandstone formation identification, the commonly used
sonic logging curve is the high-resolution sonic curve HAC.
Generally, the sandstone profile shows low time difference and
high sound velocity characteristics; the sound velocity is generally
55.5 μs/ft (182 μs/m). Some abnormal changes in sonic time
difference will occur at the demarcation of sand mudstone;
when in some formations with weaker mechanical strength,
due to the possible abrupt change in the well diameter, it will
cause some pseudo-abnormal changes in the sonic time

difference curve, which requires the field staff to combine their
professional knowledge to make the corresponding
determination. CAL can usually reflect the influence of the
formation on the well diameter and has an auxiliary judgment
role for formation identification.

Based on the aforementioned analysis, combined with the
petrophysical logging response mechanism (Tong, 2018), this
article selected the logging depth and 12 logging curves with
sensitive response to the rock layer, namely, micronormal
curve RMN, microinverse RMG, high-resolution deep
lateral resistivity devices curve RLLD, high-resolution
shallow sensor curve RLLS, the resistivity of the flushed
zone RXO, high-resolution acoustic curve HAC, 2.5 m
resistivity R25, caliper curve CAL, gamma-ray curve GR,
density curve DEN, borehole-compensated curve BHC, and
self-potential curve SP, as multidimensional geological and
characterization parameters for intelligent identification of
sandstone layers, off-surface reservoir layers, and effective
thickness layers (Table 2).

In order to investigate the implied relationships between the
12 logging curves in Table 2, relationship curves can be obtained
by correlating the potential, gradient, and resistivity data
(Figure 2) to understand that there is a certain trend in the
relationship between the logging curves in this test area. It can be
seen from the figure that there is an obvious linear and regular

TABLE 1 | Reservoir physical properties in the study area.

Reservoir physical
characteristic

Porosity % Bound water
saturation %

Water saturation % Mud content % Permeability 10−3

μm2

Average 23.73 42.11 61.14 14.96 85.37
Maximum 31.6 75.69 97.8 35.0 3932.8
Minimum 15.4 8.6 1.7 3.0 4

FIGURE 1 | Relationship between porosity and permeability in the study area.
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relationship between RMN, RMG, RLLD, and RLLS, indicating
that these four parameters are closely related to each other.
According to the principle of machine learning algorithm, it is
known that when multiple kinds of highly correlated data appear

in the dataset features, machine learning can be enhanced to
increase the weight of this part of logging data, so that a model
can be trained that is closer to the actual working environment in
the field. Machine learning can be used to accurately identify the

TABLE 2 | Statistical summary of 12 logging curves.

Curve
name

RMN/
Ω ·m

RMG/
Ω ·m

RLLD/
Ω ·m

RLLS/
Ω ·m

RXO/
Ω ·m

HAC/
us ·m−1

R25/
cm

CAL/
cm

GR/
API

DEN/
g · cm−3

BHC/
us ·m−1

SP/
mV

Mean 4.33 3.86 6.02 5.15 9.35 339.38 5.61 22.17 95.85 2.30 339.38 −2.71
Std 3.10 2.49 4.46 3.03 13.51 53.52 4.39 1.90 22.42 0.15 52.61 27.17
25% 2.19 2.19 3.44 3.40 4.47 305.14 2.90 21.78 89.11 2.26 305.10 -2.89
50% 3.72 3.50 4.85 4.29 6.22 326.96 4.60 22.20 95.98 2.31 327.17 3.86
75% 5.55 4.92 6.75 5.71 9.05 384.60 6.80 22.65 102.19 2.36 383.55 7.22
Maximum 90.46 81.30 144.76 50.03 893.39 550.00 84.04 50.00 561.44 2.63 474.37 144.17

FIGURE 2 | Scatter plot of the correlation among RMN, RMG, RLLD, and RLLS.
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implied relationships between the log curve data and establish the
corresponding algorithmic parameter equations.

BRIEF DESCRIPTION OF THE FOUR
ALGORITHMS

This article attempts to use the following four algorithms: logistic
regression (LR), support vector machine (SVM), random forest
(RF), and XGBoost. XGBoost is selected when the parameters
overlap and the input values are the same.

Logistic regression is a simple classification algorithm
commonly used in machine learning to find the optimal
partition boundaries by iterating over the data (Hobza T
2020), completing the classification of the data with the
following assumption functions:

hθ(x) � g(θTx) � 1

1 + e−θTx
, (1)

where hθ(x) is the hypothetical function and θ is the weight
corresponding to the attribute.

The support vector machine is a linear classifier defined to
have the largest spacing in the feature space (Hobza et al., 2008).
The SVM also contains different kernel functions, which makes
the SVM both a linear and a nonlinear classifier. The maximum
feature space spacing is solved by the pairwise optimization
equation. The optimization function for solving the maximum
feature space interval is as follows:

max
α

⎧⎨
⎩∑

n

i�1
αi − 1

2
∑
n

i,j�1
[αiαjyiyj exp( − γ

∣∣∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣∣∣2))⎫⎬⎭, (2)

where α is the Lagrange multiplier vector, x is the current data, y
is the linear function of the data, and γ is the adjustment function.

Random forest is an ensemble learning algorithm based on
decision trees. Random forest uses CART decision trees as a weak
learner, using a method that randomly selects a small number of
features, and the number of selected features defaults to the
square root of the total number of features (Burges, 1998).
Assuming that the given dataset is
D � {Xi, Yi}, Xi ∈ Rk, Yi ∈ {1, 2,/, C}, the random forest uses
M decision trees D � {Xi, Yi}, Xi ∈ Rk, Yi ∈ {1, 2,/, C} as base
classifiers on this dataset, and the combinatorial classifier is
obtained after ensemble learning.

XGBoost is an optimally distributed decision gradient
boosting model with low computational complexity, flexibility,
high accuracy, and portability, which is 10 times faster than the
existing popular solutions on a single machine (Liu X. et al.,
2020). To reduce the complexity of the model and prevent
overfitting, a regularization term is added. The overall function
of the model is:

ŷi � ϕ(Xi) � ∑
K

k�1
fk(Xi), (3)

where ensemble learning yi is the predicted value of the output, k
denotes the number of trees in the tree model, and fk denotes the

model of the kth tree, which is trained to combine each tree in an
additive manner.

APPLICATIONOF THE FOUR ALGORITHMS

Data Preprocessing
Data from a total of 60 wells were obtained from the study block, and
as much data as possible were used in the model learning process.
Therefore, 57 of them were randomly selected for training and
learning, and three of them (N1-10, N1-20, and N1-31) were used as
a validation set to verify the actual effect of each algorithm.
Observing the distribution of the training data by aggregating all
the training data, it can be seen that the sandstone layer, off-surface
reservoir, and effective thickness layers account for a tiny percentage
of the total formation data; that is, there is a certain class of samples
in the dataset that is much more or much less than the other classes.
Thus, at this point, the problem is transformed into an imbalance
problem (Figure 3). In this case, depending on the characteristics of
each algorithm, traditional machine learning methods would not be
able to solve this problem, leading to a reduction in the accuracy of
formation thickness identification. Therefore, the SMOTETomek
algorithm is used for sampling to produce new data sufficient to
ensure the rationality of the decision space in a few classes, balancing
the data classes on the premise of ensuring the original distribution
(Figure 4).

Usually, instead of simply copying the samples during
oversampling, some methods are used to generate new
samples. For example, the SMOTETomek algorithm selects a
random sample y from its K nearest neighbors for each sample x
of a small number of classes of samples and then selects a random
point on the x, y line as the newly synthesized sample. This
oversampling method of synthesizing new samples can reduce the
risk of overfitting. Then, the samples are divided into noise
samples, hazard samples, and safety samples according to
certain rules, and then the noise samples are directly deleted,
the hazard samples are processed by the approximate division
method, and the safety samples are oversampled by
SMOTETomek. Based on this sampling principle, it can be
inferred that the method maximally conforms to the
distribution trend of the original data, and although the data
are resampled, the benefits brought by this algorithm are greater
than the distress caused by the imbalance problem.

The equilibrium dataset obtained after sampling by the
SMOTETomek algorithm was standardized to obtain training
data with a normal data distribution, and the test well section data
were fitted according to the distribution of the training well
section to obtain test well section data conforming to the
training sample. The final valid input data consisted of
246,051 training data and 13,972 test data with a normal
distribution of well depth and 12 logging curves.

Formation Thickness Identification Results
of the Four Algorithms
In this article, the functions used to measure the effect of rock
layer and reservoir identification are F1-score, precision, recall,
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and accuracy (Li et al., 2020). The F1-score is a measure of the
classification problem; it is the harmonic average of precision and
recall; the maximum is 1, and the minimum is 0. Precision refers

to the proportion of positive samples among the positive cases
judged by the classifier (Tharwat et al., 2017); recall refers to the
proportion of positive cases among the total positive cases

FIGURE 3 | Distribution ratio of the sandstone and reservoir in original data.

FIGURE 4 | Distribution ratio of the sandstone and reservoir after SMOTETomek sampling.

FIGURE 5 | Identification process of strata and reservoirs.
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predicted by the classifier; accuracy represents the proportion of
the correct judgment of the whole sample by the classifier; the
formulas are as follows:

F1 � 2 · precision · recall
precision + recall

; (4)

precision � TP

TP + FP
; (5)

recall � TP

TP + FN
; (6)

accuracy � TP + TN

TP + TN + FP + FN
, (7)

where TP is the correctly predicted answer, FP is the incorrect
prediction of other classes as this class, FN is the prediction of this
class label as another class label, and TN is the incorrectly
predicted answer.

Four algorithms were used to perform the formation and
reservoir identification processes based on the study block
logging data (Figure 5). The RMN, RMG, RLLD, RLLS, RXO,
HAC, R25, CAL, GR, DEN, BHC, and SP data obtained in the
field were randomly divided into the formation recognition
training set and the test set in a ratio of 7:3. The formation
recognition dataset first underwent SMOTE resampling, and the
processed formation data were input into the LR algorithm, SVM
algorithm, RF algorithm, and XGBoost algorithm, respectively,
after the standardization process again. The test set data are input
into the pre-training model again, the output is the result of
formation identification, and Then the optimal formation
recognition model is selected by screening the results.

Valid data after data preprocessing were entered into the LR,
SVM, RF, and XGBoost algorithms. Due to the unbalanced
logging data in this classification, there are limited valid data
for the rock and reservoir layers, so recall and accuracy should be
considered in the results.

The configuration used by the article in training the model is
as follows: AMD Ryzen 5 CPU, NVIDIA GeForce GTX 1660
GPU, and 16G running memory (Tang, J. et al., 2019). For the
sandstone layer, XGBoost has 86% recall with 96% accuracy; for
the off-surface reservoir layer, XGBoost has 85% recall with 94%
accuracy; for the effective thickness reservoir layer, XGBoost has
81% recall with accuracy remaining above 95%, while the LR,
SVM, and RF algorithms also have an accuracy of over 90%. It can
be seen in the overall F1-score that these three algorithms are not

as effective as XGBoost for integrated rock layer identification; in
the process of effective thickness layer identification, due to the
distribution ratio of the three types of interlayers in the stratum
and the characteristics of the algorithms of LR and SVM (Gong
et al., 2019), the two algorithms cannot converge, so they are not
discussed here.

From the time point of view, the training time of the XGBoost
algorithm for logging curve data is also the least among the four
algorithms, which takes only 3 s, indicating that the XGBoost
algorithm is more popular in the field of formation thickness and
reservoir identification. (Table 3). On this basis (Figure 6),
correlation analysis of logging curve characteristics, the logging
curve with the highest sensitivity to the effect of formation
thickness and reservoir identification was calculated by the
analysis (Ryu et al., 2021). Since XGBoost is a class of tree-
integrated algorithms, the algorithm itself is configured to analyze
the influence of features on the relevance of the results, and
deriving this influence factor yields importance ratios of 0.42,
0.28, and 0.17 for RMN, RLLD, and RLLS, respectively. The
results showed that the response of the RMN, RLLD, and RLLS is
the most obvious for the sandstone layer, off-surface reservoir
layer, and effective thickness layer, and the well diameter curve
has the least effect on the rock and reservoir layer identification.
These results can provide an effective reference for the selection
and dimensionality reduction of subsequent logging curves.

TABLE 3 | Comparison of LR, SVM, RF, and XGBoost algorithms.

Algorithm Well no. Operating time

N1-10 N1-20 N1-31

LR Recall 0.84 0.87 0.78 5s
Accuracy 0.90 0.92 0.91

SVM Recall 0.81 0.85 0.78 13s
Accuracy 0.90 0.92 0.91

RF Recall 0.83 0.88 0.82 9s
Accuracy 0.90 0.90 0.91

XGBoost Recall 0.88 0.92 0.92 3s
Accuracy 0.95 0.94 0.97

FIGURE 6 | Comparison of average scores of four models.
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Analysis of the Applicability of the Method
The sandstones in the study block of this article mostly develop
trough-like interlacing laminations but also block formations,
deformation formations, drainage formations, oblique

laminations, and horizontal laminations (Candefjord et al.,
2021). The mudstone is a rock dominated by clay minerals.
According to the silt content, there are two types: siltstone
and mudstone. Siltstone is a type of mudstone with 10–50%

FIGURE 7 | Interpretation results of three wells. (A) N1-10. (B) N1-20. (C) N1-31.
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silt content, and mudstone is a type of mudstone with <10% silt
content. Therefore, the research method proposed in this article
can be well applied to strata with the aforementioned
characteristics (Li et al., 2021).

The innovation of this article lies in proposing four of the most
popular and effective machine learning models, which are
compared with the same logging data to select the optimal
solution for downhole rock stratification identification,
especially for the downhole rock stratification identification
problem, where few people have used the XGBoost model for
rock stratification through logging curves, and also confirming at
the theoretical level and data level that the XGBoost model’s
operation is a good fit to the logging curve.

The intelligent method proposed in this article is a pioneering
experiment in this field because few researchers have studied the
problem of rock stratification and others have performed so on
the basis of experiments.

Another innovation of this article is that the SMOTETomek
algorithm is proposed and used to resample the logging curve
data, transform the imbalance problem into a balance problem,
which largely solves the problem of too large a gap in the data
ratio between positive and negative samples, and improve the
accuracy of downhole rock stratification identification.

The specific interpretation results for the three wells are shown
in Figure 7.

CONCLUSION

1) In the identification of formation thickness and reservoirs,
a total of 12 response features selected from field logging
data, RMN, RMG, RLLD, RLLS, RXO, HAC, R25, CAL, GR,
DEN, BHC, and SP, can effectively identify reactive rock
and reservoir layers intelligently by their location in the
ground.

2) The study selected four machine learning algorithms, LR,
SVM, RF, and XGBoost, and compared the F1-scores,
precision, recall, accuracy, and computation time of the
four algorithms. Through a comprehensive comparison of
the five discriminatory methods, the study shows that the
XGBoost algorithm is the most effective for rock and reservoir
layer identification, with an average accuracy of more
than 95%.

3) When faced with an uneven distribution of logging data, such
as the three types of interlayer interference and nonreservoir
interference, the SMOTETomek algorithm is selected to
interpolate the interlayer and reservoir layers, which can
effectively balance the data and improve the accuracy of
formation and reservoir identification.
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