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The global climate models (GCMs) are indispensable for accurately simulating the
climate variability and change, and numerous studies have assessed climatic extreme
events globally and regionally. However, the shape properties of GCM precipitation
extreme simulations, such as measures of asymmetry (e.g., skewness coefficient) and
measures of tail heaviness (e.g., kurtosis coefficient), have received far less attention.
Here, we address this issue by comparing the performance of 22 GCMs from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing the statistical
properties of ground observations for the period 2001–2014 over typical arid and
semiarid Central Asia. We evaluated the performance of the CMIP6 models using novel
methodologies to assess biases not only in mean and variation but also in higher order
L-moments which involved less bias and variance than the conventional moment
approach, including 1) summary statistics as expressed by univariate analysis of
L-moments and 2) the bivariate kernel densities of (mean, L-variation) and
(L-skewness, L-kurtosis) using the application of the highest probability region
(HPR) and applying the Hellinger distance as a measure of agreement. The results
show that CMIP6 simulations can reproduce the shape properties of precipitation
extremes with the observational datasets and that biases are observed when the mean
and variation are examined bivariate. An ensemble mean of the CMIP6models does not
improve the performance of the variation and skewness of the simulated precipitation
extremes, while it only slightly constrains the mean and kurtosis error of most metrics.
Our results could provide guidance for climate research and improve the statistical
properties of CMIP6 models in relation to ground observations.
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1 INTRODUCTION

Evidence reveals that the global climate has experienced significant changes characterized by
warming over the past century (IPCC 2014). It is widely accepted that extreme precipitation will
intensify as our climate warms (Allen and Ingram, 2002; Utsumi et al., 2011), given the truth that the
moisture absorption capacity of the atmosphere increases exponentially with rising temperature
(−7% °C−1) (Trenberth et al., 2003). Extreme events have such severe impact on human health,
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ecology, biodiversity, and the economy. For example, floods
caused more than 500,000 deaths worldwide and affected
more than 2.8 billion people globally from 1980 to 2009
(Doocy et al., 2013). Therefore, it is of great importance to
analyze and predict the behavior of extreme events.

Global climate models (GCMs) are widely used to simulate the
dynamics and state of the present-day climate before predicting
future climate (You et al., 2010; Eyring et al., 2016), as knowledge
of the ability of GCMs to simulate historical extreme precipitation
events is essential for constraining climate model predictions
(Allen and Ingram, 2002). Recently, state-of-the-art global
climate models involved in the Coupled Model
Intercomparison Project Phase 6 (CMIP6) have undergone
remarkable improvements compared to previous generations,
including higher resolutions and improved parameterization
schemes for microphysical cloud processes and climate system
biogeochemical processes compared to CMIP5 models (Eyring
et al., 2016; Eyring et al., 2019), and thus better simulation
capabilities are expected in the CMIP6 model to reproduce
historical climate. Indeed, recent studies reported generally
improved climate model performance in capturing the
spatiotemporal patterns of extreme precipitation in
northeastern Iran (Zamani et al., 2020), the Indian
subcontinent (Gusain et al., 2020), southwestern South
America (Rivera and Arnould, 2020), and East Africa (Ayugi
et al., 2021). In addition, some results suggest that CMIP6models,
which generally reflect observed patterns of global and regional
extreme events, show limited improvement over the CMIP5

model (Kim et al., 2020). However, most model evaluation
studies focused on global or monsoon regions (e.g., You et al.,
2008; Akinsanola et al., 2020; Dong and Dong, 2021; Tang et al.,
2021; Vicente-Serrano et al., 2021), while efforts addressing
precipitation extremes in arid and semi-arid regions are
limited (Qin et al., 2021), especially in the Central Asia
(hereafter CA) region (Figure 1). Guo et al. (2021) addressed
the ability of CMIP6 models to simulate annual precipitation
patterns and suggested that the simple ensemble mean based on
all models may not be a wise choice for climate change studies in
the CA region. Therefore, it is important to quantify how well
each CMIP6 model simulates the variability of extreme
precipitation in the CA region and to determine which CMIP6
models can be considered the most skillful models in simulating
the extreme precipitation indices over the CA region based on a
set of model performance metrics.

The magnitude, frequency, and duration of precipitation
extremes are typically investigated by using the extreme
precipitation indices defined by the Expert Team on Climate
Change Detection and Indices (ETCCDI) (Zhang et al., 2011). In
previous studies, the comparison of observed and modeled
extreme precipitation indices was mainly conducted by using
measures such as correlation coefficients, root means square
errors, percentage biases, or trend slopes of precipitation
magnitude (Hu et al., 2015; Hu et al., 2019; Ayugi et al., 2021;
Tang et al., 2021). However, much less attention has been paid to
shape properties (related to the frequency and magnitude of
extremes), such as measures of asymmetry (e.g., the skewness

FIGURE 1 | Topographic map illustrating the geographical location and overview of Central Asia.
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coefficient) and measures of tail heaviness (e.g., the kurtosis
coefficient). Here, we employ a novel approach to evaluate the
performance of individual models in reproducing extreme
precipitation and indices, based on robust statistical measures
(e.g., L-moments) and probability similarity measures (e.g., the
Hellinger distance). Comparisons based on L-moments go
beyond commonly used methods and help evaluate the
characteristics of extreme precipitation events. Abdelmoaty
et al. (2021) proposed the aforementioned approach and used
it to evaluate the performance of CMIP6 models in reproducing
the statistical properties of the observed annual maxima of daily
precipitation worldwide and revealed that the statistical shape
properties of the CMIP6 simulations agree well with the observed
data. However, there is a lack of further research to support the
application of this method at the regional scale, and in particular
research on the mean and shape properties of extreme
precipitation in arid regions, such as the region CA.

The main objective of this study was to quantitatively
evaluate the performance of CMIP6 models in simulating
the variance and sharp properties of present-day extreme
precipitation over CA using a novel approach and various
skill score metrics. The CMIP6 simulations are evaluated
using three approaches: 1) one-dimensional analysis
focusing on the comparison of individual L-moments of
extreme precipitation over time series, 2) two-dimensional
analysis focusing on the combined behavior of L-moments,
and 3) probabilistic evaluation by comparing the simulated
and observed distributions of extreme precipitation and
indices.

2 DATA AND METHODS

2.1 Data
Gridded observational precipitation datasets have been widely
used in recent research to evaluate and assess CMIP models
(Mehran et al., 2014; Booth et al., 2018). Here, we select three
state-of-the-art gridded precipitation datasets from different
sources as observations. The Global Precipitation Climatology
Project (GPCP) blends data from rain gauge stations, satellites,
and sounding observations to provide complete global
precipitation estimates with 1° spatial resolution from 1996
to the present (Huffman et al., 2001). Global Precipitation
Measurement Version 6 (GPM V6) is an advanced
international satellite mission that provides global
precipitation estimates at 0.1° resolution from June 2000 to
the present (Hou et al., 2014). Bias-adjusted ERA5 reanalysis
data from WATCH Forcing Data (WFDE5) provide bias-
corrected precipitation derived from the European Centre
for Medium-Range Weather Forecasts (ECMWF) fifth-
generation atmospheric reanalysis (ERA5) at 0.5° spatial
resolution and is available from 1979 to 2018 (Cucchi et al.,
2020). These three gridded products were well qualified and
made as homogeneous as possible (Sun et al., 2018). To
maintain consistency in the assessment process, this study
focused on the 2001–2014 period, which is common between
CMIP6 historical simulations and observations.

We collected the most commonly used r1i1p1f1 ensemble
members from 22 CMIP6 models to evaluate their performance
in simulating extreme precipitation and indices. Basic
information about each model is briefly presented in Table 1,
including the model name, modeling center, atmospheric
resolution, and references. To facilitate the grid-to-grid
comparisons between the CMIP6 model simulations and
gridded observations at different resolutions (from 0.1° to 2°),
we re-gridded all these data to a uniform spatial resolution (2° ×
2°) using the bilinear remapping technique.

2.2 Methods
2.2.1 Extreme Precipitation Indices
This article aims to robustly analyze the performance of CMIP6
models in characterizing historical extreme precipitation events
using the indices defined in Table 2, which can detect, attribute,
and project changes in extreme precipitation in multiple ways
(Donat et al., 2016; Ou et al., 2013). Details on each index can be
found at ETCCDI (http://etccdi.pacificclimate.org/indices_def.
shtml). In early spring and late winter, heavy rains could fall
on the snowpack, causing flash flooding as temperatures rise
(Vionnet et al., 2020). Melting snowpack can exacerbate flooding
in rivers fed by snowmelt over CA (e.g., the Syr Darya and the
Amu Darya rivers) (Kure et al., 2013). In summer, increased
precipitation combined with massive glacier melt at high
elevations can lead to massive flooding in mountainous
regions (Olsson et al., 2010). Therefore, to gain insight into
the performance of the model on a seasonal scale, the analyses
and calculations presented here are based on three seasons: spring
(March-May, MAM), summer (June-August, JJA), and winter
(December-February, DJF).

2.2.2 L-Moments
We adopted new approaches following Abdelmoaty et al. (2021)
to provide a comparative assessment of the ability of CMIP6
models to reproduce the spatial distribution of observed total
precipitation and extreme precipitation indices. In this study, we
described the difference between the observations and CMIP6
simulations with four-ordered statistics based on L-moments,
including 1) mean (μ), 2) L-variation (τ2), 3) L-skewness (τ3), and
4) L-kurtosis (τ4). L-moments are a set of statistics used to
summarize the shape of a probability distribution, which offer
numerous advantages over product moments in describing a
sample or distributional characteristics (Sankarasubramanian
and Srinivasan, 1999). The main advantage of L-moments
over conventional moments is that L-moments are less
sensitive to the effects of sampling variation and outliers in
the data, allowing one to draw more reliable conclusions about
the underlying probability distribution from small samples.
Because of these properties, L-moments are better suited to
characterize the distributional properties of highly skewed
data, such as extreme precipitation events which generally
exhibit moderate to strong skewness (Hosking, 1990; Hosking
and Wallis, 1997).

L-moment is based on the linear combinations of probability-
weighted moments (PWMs), and L signifies the linearity. PWMs
defined by Greenwood et al. (1979) are given in the following:
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br � 1
n
∑
n

j�r+1

(j − 1)(j − 2) . . . (j − r)
(n − 1)(n − 1) . . . (n − r)xj, (1)

where n = sample size and xj = jth element in ascending order.
Univariate analysis reveals the differences in L-moments

between observations and simulations (Abdelmoaty et al.,
2021). The first L-moment refers to the location and is known
as L-mean (l1). The second L-moment is a measure of scale and
dispersion and termed L-scale (l2). The third and fourth
L-moments are measures of symmetry and peakedness,
respectively. The first four L-moments have the following
relevancy with PWMs:

l1 � b0, (2)

l2 � 2b1 − b0, (3)
l3 � 6b2 − 6b1 + b0, (4)

l4 � 20b3 − 30b2 + 12b1 − b0. (5)
The L-moment is a linear combination of the PWMs in Eqs.

2–5. L-moment ratios can be obtained by dividing the higher-
order L-moments by the dispersion measure as follows:

L − variation: t2 � l2/l1,where 0≤ t2 < 1, (6)
L − skewness: t3 � l3/l2, where − 1≤ t3 ≤ 1, (7)
L − kurtosis: t4 � l4/l2, where − 1≤ t4 ≤ 1. (8)

The ratio l2/l1 is termed the L-coefficient of variation (τ2) and the
ratio l3/l2 is referred to as L-skewness (τ3), while the ratio l4/l2 is

TABLE 1 | Information on the 22 CMIP6 global climate models used in this study.

Model name Institution, country Resolution
(°lat × °lon)

Reference

1 ACCESS-CM2 CSIRO, Australia 1.25 × 1.88 Dix et al. (2019)
2 ACCESS-ESM1-5 CSIRO, Australia 1.25 × 1.88 Ziehn et al. (2019)
3 BCC-CSM2-MR BCC-CSM, China 1.13 × 1.23 Wu et al. (2018)
4 CMCC-CM2-SR5 CMCC, Italy 0.94 × 1.25 Lovato and Peano, (2020)
5 CMCC-ESM2 CMCC, Italy 1.25 × 0.94 Lovato et al. (2021)
6 EC-Earth3 EC-Earth-Consortium 0.70 × 0.70 EC-Earth (2019b)
7 EC-Earth3-Veg EC-Earth-Consortium 0.70 × 0.70 EC-Earth (2019a)
8 EC-Earth3-Veg-LR EC-Earth-Consortium 1.13 × 1.13 EC-Earth (2020)
9 FGOALS-g3 IAP-CAS, China 2.25 × 2 Li (2019)
10 GFDL-ESM4 NOAA-GFDL, United States 1.25 × 1.00 Krasting et al. (2018)
11 IITM-ESM CCCR-IITM, India 1.9 × 1.9 Panickal et al. (2019)
12 INM-CM4-8 INM-RAS, Russia 1.5 × 2 Volodin et al. (2019a)
13 INM-CM5-0 INM-RAS, Russia 1.5 × 2 Volodin et al. (2019b)
14 KACE-1-0-G NIMS-KMA, Korea 1.25 × 1.88 Byun et al. (2019)
15 KIOST-ESM KIOST, Korea 1.9 × 1.9 Kim et al. (2019)
16 MIROC6 JAMSTEC, Japan 1.41 × 1.41 Takemura (2019)
17 MPI-ESM1-2-HR MPI-M, Germany 0.94 × 0.94 Jungclaus et al. (2019)
18 MPI-ESM1-2-LR MPI-M, Germany 1.86 × 2.5 Brovkin et al. (2019)
19 MRI-ESM2-0 MRI, Japan 1.13 × 1.13 Yukimoto et al. (2019)
20 NESM3 NUIST, China 1.88 × 1.88 Cao and Wang, (2019)
21 NorESM2-MM NORCE, Norway 0.94 × 1.25 Bentsen et al. (2019)
22 TaiESM1 RCEC, China 0.94 × 1.25 Tsai et al. (2020)

TABLE 2 | Definitions of the extreme precipitation indices used in the study.

Index Index Definition Unit

PRCPTOT Total wet-day precipitation Let RRij be the daily precipitation amount on day i in period j. If N represents the number of days in j,
then: PRCPTOTj � ∑N

n�1RRj

mm

SDII Simple daily intensity index Let RRwj be the daily precipitation amount on a wet day w (RR ≥1.0 mm) of period j. If W represents the
number of wet days in j, then: SDIIj � (∑W

w�1RRwj)/W
mm
day−1

CDD Consecutive dry days Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days
where RRij ≤1 mm

day

CWD Consecutive wet days Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days
where RRij ≥1 mm

day

Rx5day Maximum consecutive 5-day
precipitation

Let RRkj be the precipitation amount for the five-day interval ending k for period j. Then, maximum 5-day
values for period j are: Rx5dayj = max (RRkj)

mm

R95Ptot Very wet-day precipitation Let RRwj be the daily precipitation amount on a wet day w (RR ≥1.0 mm) in period j and let RRwn95 be the
95th percentile of precipitation onwet days in the 2001–2014 period. If W represents the number of wet days
in the period, then: R95Ptotj � 100p (∑W

w�1RRwj)/RRj , RRwj > RRwn95

%

R10mm Heavy precipitation days Let RRij be the daily precipitation amount for day i of period j. Count the number of days where PRij ≥10 mm days
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referred to as L-kurtosis (τ4). Note that the relative error (%) was
used to describe the difference between μ and τ2. In contrast, the
absolute error was used to describe the difference between τ3 and
τ4 to avoid misleading large or small errors when these two values
are particularly close. L-moment methods have less estimation
bias than the conventional method and its asymptote are closer to
a normal distribution in finite samples. However, it does not
reveal whether the L-moments coincide. Therefore, we treated (u,
τ2) and (τ2, τ3) as bivariate variables and compared the bivariate
kernel density estimation (KDE) between observations and CMIP
simulations (Terrell and Scott, 1992). Finally, we estimated the
Hellinger (H) distance between the observed and CMIP6
simulated bivariate L-moment densities as an overall similarity
measure between densities. The H-distance is a robust technique
for quantifying the similarity between two probability
distributions (Hellinger, 1909). When the H-distance is 0, the
two distributions are identical, and when it is 1, they are the
farthest apart.

3 RESULTS

3.1 Seasonal Precipitation and Indices
In this section, we assess the similarities and differences among
the gridded observations (i.e., GPCP, GPM, and WFDE5) for
precipitation spatial and frequency distributions over the CA. In
spring (Figure 2) and winter (Supplementary Figure S3), all
three observations show that PRCPTOT is mainly concentrated
on wind-facing slopes (e.g., Tajikistan and surrounding
mountains, Figure 2), as the westerlies prevail in most areas
of CA (Schiemann et al., 2008), and is accompanied by the highest
values of SDII, CWD, Rx5day, and R10mm and the lowest values

of CDD (defined in Table 2), whereas the regions with the lowest
total precipitation are mainly found in northern Xinjiang, with
the highest CDD and the lowest Rx5days and R10mm.
Differently, the total precipitation in summer (Supplementary
Figure S2) is quite abundant on the leeward slopes of the CA
mountains (e.g., eastern Tien Shan), mainly due to Tien Shan’s
blocking effects which enhances subsidence over this region and
essentially increases east summer precipitation (Baldwin &
Vecchi, 2016). The extreme precipitation indices SDII, Rx5day,
and R10mm generally follow the spatial pattern of the total
precipitation while this is not the case for the CWD,
indicating that the total precipitation is affected more by the
intensity of precipitation events rather than the length. The ability
of the CMIP6 ensemble mean to represent the spatial
characteristics of total precipitation and extreme precipitation
indices of observations over CA is also evaluated here. The
CMIP6 ensemble means share similar spatial distributions of
extreme events with all three observations on regional scales for
the most part, except for CWD and R95pTOT. Although the
three observations do not show significant differences in spatial
distributions of the total precipitation and extreme precipitation
indices at the regional scale, biases may be evident in the
frequency distributions. Then, our assessment focused on
comparing the area-averaged precipitation frequency
distributions of the three gridded observations (GPCP, GPM,
and WFDE5) and CMIP6 ensemble mean to evaluate the
simulated precipitation intensity over CA from a different
perspective (Supplementary Figure S1). The three
observations generally agree on the distribution of
precipitation frequency in spring and summer, while
differences are evident in winter. The GPCP and WFDE5
exhibit higher frequency in light (<2 mm) and heavy

FIGURE 2 | Spatial distribution of spring (MAM) total precipitation and extreme precipitation indices from three observations (GPCP, GPM, and WFDE5) and the
CMIP6 multi-model ensemble mean over Central Asia for 2001–2014.

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9183375

Liu et al. Evaluation of Extreme Precipitation Simulations

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


(>10 mm) precipitation events while showing a much lower
frequency in medium (2–10 mm) precipitation events
compared with the GPM in winter. Furthermore, the ability of
the CMIP6 ensemble means to reproduce precipitation frequency
varies among the three seasons. In spring, the ensemble mean
substantially underestimates (>60%) the light and middle
precipitation (<10 mm), while it produces too frequently heavy
precipitation (>10 mm). In winter, the ensemble mean generally
matches well with the GPM, exhibiting similar bias with the other
observations as in the spring, but to a lesser extent. In summer,
the ensemble mean generally agrees well with the three
observations, with a slight overestimation (<20%) of the light
and heavy precipitation events and a slight underestimation
(<23%) of the moderate precipitation events. Therefore, the
differences in the precipitation frequency among the three
observations are relatively small, mainly reflected in the light
frequency during winter. However, this is acceptable since light
rates do not generate a substantial precipitation amount over CA
(Lai et al., 2020). Moreover, the pattern of the frequency
distribution of GPM on the seasonal scale with the ensemble
mean is much narrower compared to other observations.

Overall, the three observations generally are consistent
regarding the spatial and frequency distribution patterns of the
total precipitation and extreme precipitation indices. Here, we
choose GPM as the reference to evaluate the bias of the CMIP6
models. The good performance of the GPM was also reported in
other studies (Sun et al., 2018; Zhang et al., 2018). For example,
Zhang et al. (2018) concluded that the GPM can reproduce
precipitation events incredibly well, especially light and
moderate precipitation events, possibly due to the newly added
Ka-band and high-frequency microwave channels.

3.2 L-Moments One-Dimensional Analysis
3.2.1 Means (μ) and Variations (τ2)
We presented the differences in extreme precipitation indices
means (μ) of CMIP6 models and GPM; none of the models can
sufficiently reproduce the means of all the metrics
simultaneously, with a high variability of 90% empirical
confidence (Supplementary Figure S4). Fluctuations in the
simulation of the mean of the total precipitation and extreme
precipitation indices of CMIP6 models indicate a trade-off effect
that partly explains the generally good agreement between the
regional precipitation frequency from the ensemble mean and the
observations (Supplementary Figure S1). In particular, these
models performed relatively better at the CDD median of all
extreme indices, with nearly 30%–50% of the models having a
relative error within 10% over the entire period. However, the
performance of the other indices is relatively poor. Most CMIP6
simulations (>65%) tend to underestimate the medians of SDII,
Rx5day, and R10mm by 10%–109% for all three seasons, while
they tend to overestimate CWD by 4%–109%. Seasonal
differences are also observed for the same indicator. For
example, an opposite trend is observed for R95PTOT in
different seasons, with almost half of the models tending to
overestimate R95PTOT medians in spring and winter (>15%)
while tending to underestimate them in summer (>20%).
Notably, an ensemble mean of the CMIP6 models only slightly

constrains the mean error of most metrics and does not reduce
the empirical confidence interval by 90%. This suggests that most
models have consistency errors in most regions of CA.

Furthermore, the biases in the variation of the total
precipitation and extreme indices as quantified by the
L-moment coefficient of variation (τ2) are investigated
(Supplementary Figure S5). In general, variation (τ2) and
mean (μ) behaved mostly similar in terms of changes in
extreme precipitation metrics but showed some discrepancies
in seasons and indices. Fluctuations in individual CMIP6 models
in simulating extreme precipitation metrics are still noticeable
across the seasons. Nevertheless, the CMIP6 models also perform
relatively well at the CDD median among all extreme indices
variations (τ2), but uncertainty increases relative to the mean (μ).
SDII has more reasonable ranges of values with a general
underestimate that more than 50% of the models have a
relative error greater than 20% over the entire period.
However, the performance of the other indices is relatively
poor. Most CMIP6 simulations (>70%) tend to underestimate
the variation (τ2) medians of Rx5day, R95pTOT, and R10mm by
20%–100%, while they tend to always overestimate CWD all
alone. There is a substantial difference in the ability of individual
models to simulate extreme precipitation events that EC-Earth3-
based models seriously overestimate the R95pTOT for both mean
(μ) and variation (τ2) while other models tend to underestimate
them. Seasonal patterns were also observed. For example,
variation (τ2) of SDII, Rx5day, and R10mm median in winter
are underestimated by all CMIP6 models, and 13.6% of selected
models overestimate winter R95pTOT variation. The %diff of
PRCPTOT in summer and CDD in spring by most models are
close to zero, indicating that these models simulate the variation
of summer PRCPTOT and spring CDD better than variation in
another two seasons. However, an ensemble mean of the CMIP6
models performs poorly on the variation error of most metrics,
with all being severely underestimated. This suggests that an
ensemble mean has a problem characterizing the individual mode
variations of CMIP6 over CA.

3.2.2 Skewness (τ3) and Kurtosis (τ4)
To investigate the shape properties of CMIP6 models in
simulating extreme precipitation, we used the simple
difference in analyzing skewness coefficient (τ3) and kurtosis
coefficient (τ4). Good agreement with GPM is observed for the
L-Skewness (τ3) and L-Kurtosis (τ4) of extreme precipitation
indices (Figures 3, 4), indicating that the CMIP6 simulations
reproduce the shape properties of extreme precipitation well. The
median of the differences is within 10% for τ3 and τ4 in the vast
majority of scenarios among models. In terms of τ3 reflecting
skewness, most simulations show a more skewed distribution of
the PRCPTOT in summer than in spring and winter. Meanwhile,
the %diff of more than half of the models is closer to zero in
spring and winter, that is, these models are more accurate in
simulating skewness (τ3) in spring and winter (Figure 3). For
SDII, CWD, and R95pTOT, most models simulate their skewness
well in all three seasons. The %diff between the CMIP6 and GPM
over the seasons is slight. Also, models simulate skewness for SDII
and CWD best in spring, while models simulate skewness for
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R95pTOT best in summer and winter. Most models overestimate
the skewness of CDD and R10mm in spring while
underestimating Rx5day in the same season. In addition, most
models also overestimate the skewness of CDD and R10mm in
winter. However, an ensemble mean of the CMIP6 models does
not improve the skewed distribution of extreme precipitation,
and all metrics are slightly underestimated. This is similar to the
percentage difference in extreme precipitation indices variation
and suggests that an ensemble mean is difficult in characterizing
the individual mode variations of CMIP6 over CA.

In all seasons, the shape feature kurtosis (τ4) of the
simulations for total precipitation and extreme precipitation
indices is close to the observations (Figure 4), and the medians

of PRCPTOT, SDII, CWD, R95pTOT, and R10mm perform
well. The kurtosis for the Rx5day median of most model
simulations is slightly underestimated in each season. The
kurtosis of the simulation of CDD in summer is closest to
the observation, while the kurtosis of the simulation in spring
and winter overestimates and underestimates the observation,
respectively. From the comparison of the two shape features
(τ3 and τ4), the simulations of all indices of kurtosis of the
CMIP6 model are generally better than those of skewness, e.g.,
%diff is closer to zero for τ4 (Figures 3, 4). Meanwhile, an
ensemble mean of the CMIP6 models only slightly constrains
the kurtosis error of most metrics and does not reduce the %
diff of the median.

FIGURE 3 | Percentage difference in L-skewness (τ3) of total precipitation and extreme precipitation indices between the GPM and CMIP6 models (including the
multi-model ensemble mean) in spring (MAM), summer (JJA), and winter (DJF). The total precipitation and SDII, CDD, CWD, Rx5day, R95pTOT, and R10mm are shown
from top to bottom. The point represents the median, and the error bar indicates the 90% empirical confidence interval. The triangle in the graph indicates a bias greater
than 150%.
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3.3 L-Moment Two-Dimensional Analysis
Comparing the separate behavior of each L-moment can be
helpful, yet it is more robust and comprehensive to compare a
wider scale of the total precipitation and extreme indices
behaviors. First, we used non-parametric kernel bivariate
densities to describe the simultaneous behaviors of the total
precipitation and extreme indices L-moments to assess CMIP6
simulations. EC-EARTH3 is the best-performed model,
according to the kernel bivariate density analysis, and then we
choose EC-EARTH3 for the detailed description, others see
supplementary (Supplementary Figures S6–47). The density
distributions (the blue area in Figures 5, 6) for GPM and EC-
Earth3 were calculated and compared with the simulations.
Bivariate densities show high variability between models for

the mean (μ) and variation (τ2) pairs, and in most cases do
not match observations from GPM (examples are shown in
Figure 5), including SDII, CWD, and Rx5day, especially for
the intensity of extreme precipitation indices R95pTOT and
R10mm. In contrast, total precipitation performed relatively
well in the density distributions between simulations and
GPM observations. Seasonality, SDII, and CWD in summer
and CWD and Rx5day in spring also show high mismatching
for μ and τ2 pair between simulation and observation, indicating
high variability among CMIP6 simulations. Then, the highest
probability region (HPR, red cross in Figures 5, 6) for GPM was
calculated and compared with simulations. In summer, the (μ, τ2)
peaks generated from CMIP6 simulations match with
observations (Figure 5B). In contrast, the peak points of

FIGURE 4 | Percentage difference in L-kurtosis (τ4) of total precipitation and extreme precipitation indices between the GPM and CMIP6 models (including the
multi-model ensemble mean) in spring (MAM), summer (JJA), and winter (DJF). The total precipitation and SDII, CDD, CWD, Rx5day, R95pTOT, and R10mm are shown
from top to bottom. The point represents the median, and the error bar indicates the 90% empirical confidence interval. The triangle in the graph indicates a bias greater
than 150%.
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simulations differ from the observational peaks in spring and
winter (Figures 5A,C). For example, there are some differences
between the observations and simulations of R95pTOT, SDII, and
Rx5day for highest probability regions (HPR), which means that
the model has a poor simulation effect on these indices on the
bivariate distribution of (μ, τ2). Although there exists the good
matching in μ and τ2 for total precipitation individually (Figures
3, 4), simultaneous behavior mismatches.

Second, unlike the striped distribution of the (μ, τ2) kernel
bivariate density, the distribution of the higher order L-moments
(τ3, τ4) in Figure 6 tends to be round. Bivariate densities for (τ3,
τ4) generated from the CMIP6 simulations agree with
observations for most indices in all seasons, especially for total
precipitation. However, the bivariate densities of R95pTOT show

high variability between simulations and GPM observations. For
(τ3, τ4), Figure 6 exhibits a good agreement of the peak points of
HPR between simulations and GPM observations for most cases,
including PRCPTOT in winter, CDD in spring and summer, and
CWD in spring. Among all extreme precipitation indices,
R95pTOT shows more different shape features between
simulations and observations in all seasons. Therefore, the
results reveal a matching in the shape properties of total
precipitation and extreme precipitation indices, with
simultaneous behavior of the higher order L-moments (τ3, τ4)
matches.

Third, the Hellinger distance (H) is used to calculate the
overall difference between bivariate densities of CMIP6 models
simulations and GPM (Figures 7, 8). H distances for the mean (μ)

FIGURE 5 |Kernel bivariate densities for a simulation of EC-Earth3 and GPMwith the highest probable region of mean and L-variation densities in (A) spring (MAM),
(B) summer (JJA), and (C) winter (DJF). The red cross represents the highest probability region.
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and L-variation (τ2) are calculated for each model (Figure 7). For
mean (μ) and L-variation (τ2) densities of total precipitation, all
CMIP6 models have H >0.3, with EC-Earth3 having the smallest
H (0.35). For most models, H distances of R95pTOT and R10mm
are higher than other indices which can reach up to 0.6–0.8,
showing that the simulating performance in winter is poor for the
two indices. The H distance of R95pTOT is quite special which
obtained by each model varies greatly, and CMCC-ESM2 and
TaiESMI perform best in all three seasons for R95pTOT. For
CDD and R95pTOT, the H distance of most results shows that H
distance in summer is lower than in spring and winter. H distance
in summer for Rx5day of more than half models is higher than in
spring and winter. For CWD and Rx5day, the higher summer H
distance indicates that the IITM-ESMmodel is poor at simulating

observations in summer. In terms of H distance in spring, EC-
Earth-based models show the lowest value among CMIP6 models
on PRCPTOT, CDD, and CWD.

For L-skewness (τ3) and L-kurtosis (τ4) densities of total
precipitation and indices, most CMIP6 models have H < 0.35
(Figure 8). The H distances of τ3 and τ4 bivariate densities for
PRCPTOT and Rx5day are the lowest (H < 0.3) among indices,
while H distances for R95pTOT and R10mm are the highest.
CMIP6 models can simulate well the shape characteristics of
PRCPTOT, CWD, and R10mm in summer but have difficulty in
simulating the shape characteristics well of CDD in winter and
R95pTOT in spring.

On the whole, there are significant differences between the
performance between H distance of τ3 and τ4 bivariate densities

FIGURE 6 | Kernel bivariate densities for a simulation of EC-Earth3 and GPMwith the highest probable region of L-skewness and L-kurtosis densities in (A) spring
(MAM), (B) summer (JJA), and (C) winter (DJF).The red cross represents the highest probability region.
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(shape characteristics) and μ and τ2 densities (mean and variation
characteristics). The result shows that a good representation of
higher-order L-moments’ joint behavior can be found in
L-skewness (τ3) and L-kurtosis (τ4) densities rather than mean
(μ) and L-variation (τ2).

4 DISCUSSION

Although global climate models have improved in the recent
decade (Kim et al., 2020; Ayugi et al., 2021), it seems not to
appear to be the case for arid and semi-arid regions such as CA
(Mehran et al., 2014; Guo et al., 2021; Qin et al., 2021). The
uncertainties for CMIP6 in assessing precipitation extremes arise
from our limited knowledge of the key physical processes for

circulation changes. For example, the increase in precipitation
would be accompanied by the increase in water vapor but offset
by the weakened circulation (Chen et al., 2020). CMIP models
generally overestimate total precipitation in regions with steep
topography (Mehran et al., 2014; Ji et al., 2015). The topographic
correction could improve the performance of gridded
precipitation. However, the effect of topography has not been
fully considered in CMIP6 models due to their coarse resolution
(Eyring et al., 2016). Meanwhile, even when a higher resolution
model is used, the difference between observed and simulated
precipitation can be large and strongly dependent on the
methods (Freychet et al., 2016). A group of CMIP model
simulations typically have large differences that can vary
widely (Dong and Dong, 2021; Tang et al., 2021). It is the
case for our study that most of the evaluations show good

FIGURE 7 | Hellinger distance in mean and L-variation between the bivariate empirical densities of CMIP6 models and the GPM.
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performance, but the results of individual models vary. Although
an ensemble mean of 22 models is used in our study to evaluate
the extreme precipitation results to reduce uncertainty, it
appears that significant information is lost for some indices
and features (Supplementary Figure S5). This study supported
the view of Abdelmoaty et al. (2021) and concluded that CMIP6
simulations reproduce shape properties of the extreme
precipitation index distributions better than the mean and the
variability. Interestingly, the simultaneous behavior of higher
order L-moments (τ3 and τ4) generated from the model
simulations performed better on a global scale than in the CA
region. Moreover, the scatter due to seasonal variability is
comparable to the scatter among the 22 CMIP6 models,
indicating the remarkable influence of seasonal variability on
the simulations. Further efforts should be devoted to seasonal

climate simulations, which can improve the simulation of
precipitation extremes.

Previous analysis of CMIP models evaluated the mean and
variance but not the shape properties of the climate variables.
Since skewness is suitable for assessing asymmetry and kurtosis is
suitable for assessing volatility and uncertainty, higher moment
assumptions associated with higher-order central moments
should be explored more than univariate L-moments to play a
more central role in the assessment (Serfling and Xiao, 2007). The
popularity of the L-moments method is due to its robustness to
outliers in the data (El-Magd, 2010), but the L-moments method
is not very efficient for predicting events with large return periods
(Zakaria et al., 2012). Zakaria et al. (2012) believe that direct
visual inspection of the L-moment diagram (skewness and
kurtosis) is subjective, which may also be an aspect of the

FIGURE 8 | Hellinger distance in L-skewness and L-kurtosis between bivariate empirical densities of CMIP6 models and the GPM.
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uncertainty of the L-moment method. However, in our study, we
introduce %diff to make the comparison quite objective. To
improve the evaluation ability and applicability, researchers
improved trimmed L-moment methods and partial L-moment
methods based on L-moment (Elamir and Seheult, 2003). In the
future, TL-moment and PL-moment methods could be used in
our follow-up work for comparison with current methods or
other aspects of assessment.

5 CONCLUSION

In this work, we quantitatively evaluated the performance of 22
CMIP6 models in simulating total precipitation and extreme
precipitation indices over CA on a seasonal scale for the period
2001–2014 using quality-controlled gridded observations (GPCP,
GPM, and WFDE5), and the benchmark set is GPM. The study
evaluated the performance of CMIP6 models using novel
methodologies to assess biases not only in mean and variation
but also in higher-order L-moments and bivariate properties,
including 1) summary statistics as expressed by univariate
analysis of L-moments and 2) the bivariate kernel densities of
(mean, L-variation) and (L-skewness, L-kurtosis) by applying
HPR and using Hellinger distance as a measure of agreement.
We have highlighted the mean and sharp properties of the
distributions of CMIP6 models that perform well or poorly.
Fluctuations in the simulation of extreme precipitation indicators
across CMIP6 models are also evident among seasons. The main
findings of this study can be summarized as follows:

1) CMIP6 simulations reproduce the shape properties skewness
(τ3) and kurtosis (τ4) of the distributions of precipitation
extremes better than the mean (μ) and variability (τ2) over
CA. An ensemble mean of the CMIP6 models does not
improve the performance of the variation and skewness of
the simulated precipitation extremes, while it only slightly
constrains the mean and kurtosis error of most metrics.

2) There are simultaneous behavior mismatches in L-moments
(μ and τ2) of the bivariate densities, while the higher order
L-moments (τ3 and τ4) generated from the model simulations
match with observations, suggesting that the CMIP6

simulations can better reproduce the shape properties of
the precipitation extremes than their mean and variance.

3) Among all assessment models, EC-Earth3 appears to perform
very well in all systematic assessment methods, with a small
percentage difference in total precipitation means (~15%) and
low Hellinger distance (H = 0.38) for mean and bivariate
density.

This study lays the foundation for improving the performance
of sharp properties of extreme precipitation events over CA.
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