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Obtaining accurate and deterministic predictions of the risks associated with the presence
of contaminants in aquifers is an illusive goal given the presence of heterogeneity in
hydrological properties and limited site characterization data. For such reasons, a
probabilistic framework is needed to quantify the risks in groundwater systems. In this
work, we present a computational toolbox VisU-HydRA that aims to statistically
characterize and visualize metrics that are relevant in risk analysis with the ultimate
goal of supporting decision making. The VisU-HydRA computational toolbox is an
open-source Python package that can be linked to a series of existing codes such as
MODFLOW and PAR2, a GPU-accelerated transport simulator. To illustrate the capabilities
of the computational toolbox, we simulate flow and transport in a heterogeneous aquifer
within a Monte Carlo framework. The computational toolbox allows to compute the
probability of a contaminant’s concentration exceeding a safe threshold value as well
as the uncertainty associated with the loss of resilience of the aquifer. To ensure
consistency and a reproducible workflow, a step-by-step tutorial is provided and
available on a GitHub repository.

Keywords: uncertainty quantification (UQ), stochastic hydrogeology, reproducible, decision making, probabilistic
risk analysis

1 INTRODUCTION

Assessing the risks associated with the presence of pollutants in groundwater often times relies on the
use of mathematical models. The key challenge is that model predictions in the subsurface
environment are subject to significant amount of uncertainty. These uncertainties arise due to
insufficient site characterization and our inability to fully resolve the spatial fluctuations of
hydrological properties at multiple scales. The combined effect of these factors leads to
uncertainty in model input parameters which render model outputs to be uncertain (Rubin,
2003). Quantifying this uncertainty and understanding how it propagates to quantities of
interest, such as environmental performance metrics (de Barros et al., 2012), are critical in risk
analysis as well as for decision makers to better allocate resources toward uncertainty reduction (de
Barros and Rubin, 2008) and define optimal aquifer remediation strategies (Cardiff et al., 2010).

A number of computational approaches have been proposed to quantify the effects of aquifer
heterogeneity on the spatiotemporal dynamics of a solute plume (see the following review articles,
Dentz et al., 2011; Neuman and Tartakovsky, 2009; Fiori et al., 2015) and the associated uncertainty
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(e.g., Kapoor and Kitanidis, 1998; Fiori and Dagan, 2000; Dentz
and Tartakovsky, 2010; Meyer et al., 2013; de Barros and Fiori,
2014; Boso and Tartakovsky, 2016; Ciriello and de Barros, 2020).
The computational stochastic frameworks provided in most of
the above-mentioned works are of analytical or semi-analytical
nature (i.e. based on perturbation theory). Many of these
analytical approaches have been applied to human health
probabilistic risk analysis (Andričević and Cvetković, 1996; de
Barros and Rubin, 2008) and successfully compared with
concentration field data (i.e., de Barros and Fiori, 2021). Fully
numerical approaches allow to relax on simplifying assumptions,
and uncertainty is typically quantified through the Monte Carlo
framework (e.g., Maxwell et al., 2008; Siirila et al., 2012; Henri
et al., 2016; Im et al., 2020). An in-depth analysis of the reliability
assessment of the computed statistical moments obtained from
Monte Carlo simulations within the context of subsurface
hydrology is provided in Ballio and Guadagnini (2004). In
addition to Monte Carlo methods, other approaches for
uncertainty quantification are reported in the literature (see
Oladyshkin and Nowak, 2012; Ciriello et al., 2017, and
references therein). A review comparing the advantages of
different numerical stochastic methodologies used for
uncertainty quantification can be found in Zhang et al. (2010).

Despite significant contributions in computational methods
in the field of stochastic hydrogeology (see Rubin, 2003), many
of the developed computational tools are not easily accessible
to the hydrological community. With the exception of few
tools (e.g. Li and Liu, 2006; Maxwell et al., 2015; Hammond
et al., 2014, amongst others), most existing computational
tools are difficult to access and are not open source. There
is an ever-increasing need within the hydrological community
for models’ transparency and reproducibility. Being able to
reproduce numerical results is, nowadays, an essential feature
that needs to be present in tools used for environmental
modeling, risk analysis and data management (e.g., Fienen
and Bakker, 2016; Fienen et al., 2022). The usage of
collaborative coding environments (such as GitHub,
Dabbish et al., 2012), where scripts are written in open-
source languages (e.g., Python, vanRossum, 1995), has the
potential of creating clear, shareable and reproducible
knowledge. As stated by White et al. (2020), the absence of
those characteristics can reduce the credibility of the model as
a decision support tool and hamper resource management
efforts.

In this work, we present a computational toolbox that links the
various components relevant for the estimation of the pollutant
concentration at an environmentally sensitive target and its
associated uncertainty. The computational framework builds
upon existing computational tools such as HYDRO_GEN
(Bellin and Rubin, 1996), FloPy (Bakker et al., 2016), and a
GPU-based random walk particle tracking code (Rizzo et al.,
2019). The key features of this computational toolbox are as
follows:

• The proposed computational toolbox is fully open source,
including coding language and utilized software, to enhance
accessibility of the modeling workflow.

• All the utilized software are run through Python scripts, to
provide a complete, transparent and repeatable record of the
modeling process following the ideas put forth in Bakker
et al. (2016).

• All the steps necessary to construct the model, compute
risks and uncertainty, are smoothly connected in a unified
script, to ensure efficiency in computing the Monte Carlo
iterations, for uncertainty quantification.

• All the software have been selected for their precision,
robustness, compatibility among each other, user-
friendliness and transparency.

• All files are shared on a GitHub repository, to be constantly
accessible, editable and expandable as a communal effort in
creating a consistent and efficient modeling framework.

As mentioned in Bakker et al. (2016), models are commonly
constructed with a graphical user interface (GUI), due to their
interactive environment and guided structure in populating the
model and post processing the results. However, when GUIs are
utilized for constructing and post processing numerical
groundwater flow and transport models, no records of the
modeling process are available, limiting repeatability and
accessibility of the employed modeling framework. On the other
hand, Python scripts can be seen as a complete, clear, easy and
readable structure of the modeling approach. It serves as a
documentation of the model input data and provides the
hydrological community a cooperative script-based workflow
that is easy to access (Peñuela et al., 2021). The visual and
interactive nature of our workflow and software package
enhance the accessibility and understanding of model
predictions, overcoming the communication limits of static
documentation, with the final goal of assisting decision makers
(Woodruff et al., 2013). For such reasons, we provide a step-by-step
tutorial on how to utilize the proposed computational toolbox and
illustrate how this toolbox can be employed to 1) perform risk
assessment and 2) improve our fundamental understanding of the
role of aquifer heterogeneity in the physics of contaminant
transport.

2 PROBLEM STATEMENT

We start by considering a scenario where an hazardous substance
is released into an aquifer with ambient base flow rate Qb. The
contaminant plume originating from the source zone will
undergo a series of physical and (bio)chemical processes until
it reaches a receptor, e.g. a compliance plane or pumping wells.
Due to limited site characterization of the subsurface
environment, the spatiotemporal dynamics of the solute plume
is subject to uncertainty. In this work, the main source of
uncertainty stems from the randomness of the hydraulic
conductivity field, denoted by K. Under these conditions,
decision makers are interested in determining the probability
that the contaminant concentration C at an environmentally
sensitive location will exceed a threshold value C* established
by a regulatory agency, namely Prob[C > C*]. The concentration
estimate C at a given location x = [x1, . . . , xd], with d denoting the
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dimensionality of the flow domain, and time t is typically
obtained by solving the partial differential equations governing
the physics of transport.

The concept of reliability, traditionally defined as the
probability of non-failure, can be employed to formulate this
problem. Let ξ(t) denote the aquifer reliability [-] evaluated at an
environmentally sensitive target exposed to contamination for a
given realization of the hydraulic conductivity field. In this work,
we define that aquifer reliability function at the environmentally
sensitive target as follows:

ξ t;VT( ) � 1, C x ∈ VT, t( )≤Cp,
0, otherwise,

{ (1)

where t is time and VT is the geometric configuration (i.e. volume,
area, line or point) that characterizes the dimensions of the
environmentally sensitive location. In order to measure the
capability of the aquifer to recover its reliability as a potable
water source, we will rely on the concept of loss of resilience. The
aquifer resilience loss, denoted here by RL, over a given time
period t0 ≤ t ≤ t0 + tf is computed at the target location VT as
follows:

RL t;VT( ) � ∫
t0+tf

t0

Ψ t;VT( )dt, (2)

where

Ψ t;VT( ) � 1 − ξ t;VT( ). (3)
Due to the inherent uncertainty in the parameters

characterizing the aquifer system, such as the K-field, the
functions C, ξ and RL are regarded as random functions. As
a consequence, both Ψ and RL are characterized in terms of
their statistical moments and their probability density
functions (or cumulative density functions). For this work,
we will compute uncertainty in Ψ and RL through Monte
Carlo framework. With the goal of ensuring transparency
and reproducibility of the results presented in this work, we
provide all the codes necessary to compute Eqs 2, 3 for a
fully worked illustration. We include a detailed description of
the files and scripts for the illustrations, following the
mindset presented in some works within the
hydrological community (e.g., Fienen and Bakker, 2016;
White et al., 2020).

3 METHODS AND IMPLEMENTATION

Our approach for modeling the resilience loss of an aquifer
consists of following four components: the generation of the
hydraulic conductivity fields, a groundwater flow and
contaminant transport model accompanied by an initially
known contaminant injection zone, the computation of Eq. 2
and a Monte Carlo framework to evaluate the uncertainty
associated with the resilience loss. For our computational
illustrations, we will assume that groundwater flow and
contaminant transport take place in a hypothetical two-

dimensional (2D) aquifer. The computational domain has
dimensions ℓi along the ith direction where i = 1, 2. Below we
provide details regarding each step.

1. Geology and Geostatistics: First, a description of the site
geology is needed. This description is based on a grid of
hydraulic conductivity values that will serve as input for the
groundwater flow model. The log-conductivity field is
assumed to be isotropic and spatially heterogeneous Y(x)
= log K(x). As previously mentioned, Y is uncertain given
the incomplete information of the hydrogeological system.
Therefore, Y is regarded as a random space function (RSF)
(Kitanidis, 1997; Rubin, 2003) and considered here as
statistically stationary and multi-variate Gaussian. The
RSF model for Y is therefore characterized by the mean
(μY), variance (σ2Y) and spatial covariance CY(r) of Y with r
denoting the lag-distance. We adopt an exponential model
for CY with isotropic correlation length λ. The ensemble of
random Y fields used in the simulations is generated
using the robust HYDRO_GEN tool (Bellin and Rubin,
1996).

2. Groundwater Flow Field: Groundwater flow is assumed to be
at steady-state and far from the presence of sinks and sources.
The governing equation for the flow field is provided in
Appendix A, see Eq. A1. Permeameter-like boundary
conditions are assumed, i.e. prescribed hydraulic heads at
the inlet (hin) and outlet (hout) along the longitudinal
direction of the computational domain and no-flux
conditions at the remaining boundaries. The groundwater
balance equations are solved numerically and the solution
of hydraulic head in the computational domain is obtained.
Groundwater fluxes are computed using MODFLOW
(Harbaugh, 2005) together with the Python library FloPy
(Bakker et al., 2016). The dimensions of the numerical grid
block are Δxi, with i = 1, 2. The velocity field can be calculated
through Darcy’s law by combining the computed hydraulic
head with the hydraulic conductivity and with the knowledge
of the porosity.

3. Solute Transport: A contaminant is instantaneously released
along a source zone with area Ao � Δs1 × Δs2. The initial
concentration of the contaminant is given by C0. We
assume that transport is non-reactive and governed by
the advection-dispersion equation (see Appendix A, Eq.
A2). Transport is solved through the use of a Lagrangian-
based simulator, i.e., Random Walk Particle Tracking
(RWPT). The transport simulator is a parallelized GPU-
based RWPT dubbed PAR2 (Rizzo et al., 2019). The
transport simulations will allow to compute the
concentration breakthrough curve at a given target
location (i.e. a protection zone or an observation well).
The concentration values at the target location are then
compared to a given regulatory threshold value, C*, for the
pollutant of interest. Based on the solute breakthrough
curves and C*, we can then calculate the resilience
loss, Eq. 2.

4. Uncertainty Quantification: To estimate the uncertainty
associated with the quantities of interest, we employ a
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Monte Carlo (MC) framework. In this approach, a series of
hydraulic conductivity field realizations are generated,
based upon some geostatistical representation of the
subsurface environment (see step 1). Then, the
groundwater flow and contaminant transport equations
are solved for each realization of the K field. This results

in a statistical description of the concentration
breakthrough curves at a given location and
consequently, the resilience loss, Eq. 2. In our fully
worked out example, we evaluate an ensemble consisting
of five hundred realizations of the conductivity field
(NMC = 500).

FIGURE 1 | A schematic representation of VisU-HydRA. As a computational toolbox for groundwater contaminant transport and its uncertainty, VisU-HydRA
integrates all necessary numerical software and post-processing codes in a single Jupyter Notebook. Each component (1-6) is executed by each code cell in the Jupyter
Notebook in order. Colored are the names of the employed software, and NMC stands for the number of Monte Carlo realizations.

FIGURE 2 | Examples of Jupyter Notebook code cells corresponding to the numbered processes (see Figure 1). Detailed descriptions are included in each cell so
that users can easily reproduce the results of the tutorial presented in this study.
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4 TUTORIAL

Here, we describe the structure and the contents of the
computational code adopted in our study and a tutorial. For
our case study, we provide an open-source code to ensure the
reproducibility and re-usability of its model outputs (Peñuela
et al., 2021). We will make use of the appealing features of Jupyter
Notebooks (i.e., web-based applications) to write a simple and
transparent code. The proposed package is aimed at Visualizing
Uncertainty for Hydrological Risk Analysis and it is called
VisU-HydRA.

The VisU-HydRA package is available on GitHub repository
(https://github.com/mariamorvillo/VisU-HydRA). A Jupyter
Notebook, named “Tutorial_MC_F&T.ipynb”, contains all the
scripts necessary to produce the results and analysis associated
with the case study presented in this work (see further details in
Section 3). All other functions and files are also made available to
support the user in better understanding the features of the
tutorial and to eventually apply all (or some) of the available
tools to scenarios of their interest. As shown in Figure 1, the
tutorial consist of six components. These components are
subdivided into code cells (see Figure 2) in the Jupyter
Notebook as follow:

1. Import Libraries: The first tutorial code cell imports libraries
which are needed in order to run some of the tools offered by
Python. A Python library is simply a collection of codes, or
modules of codes, that can be used in a program for specific
operations. Among the most commonly used libraries, NumPy
supports large matrices, multi-dimensional data and consists
of in-built mathematical functions to facilitate the

computations (Oliphant, 2006). Further libraries are needed
in order to generate spatially random K fields, to assist in the
execution of flow and contaminant transport simulations and
in post-processing the output data to compute relevant
quantities such as the reliability and resilience loss of the
aquifer.

2. Model domain & Grid Definition: In the second code cell, the
dimensions of the computational domain and related
contaminant source and target zone areas as well as the
characteristics of the numerical mesh (i.e. the discretization
scheme) are declared. The hydraulic properties of the aquifer,
such as the hydraulic conductivity, are specified for each cell
which will serve as input for the flow simulator (such as
MODFLOW). In any finite-difference based flow simulation,
such as the one employed in this analysis through
MODFLOW, the hydraulic heads are calculated at discrete
points in space; those points are termed the nodes of the
Finite Difference or Finite Volume grid with dimensions ncol
× nrow × nlay (e.g., Zheng and Bennett, 2002).

3. Hydraulic Conductivity Fields Generation: This code cell
contains the first step of the MC loop (see Figure 1). As
stated in Section 3, this analysis considers 500 realizations of
the hydraulic conductivity field, namely NMC = 500. To start,
spatially heterogeneous log-conductivity fields Y ≡ ln[K] are
generated, with the characteristics indicated in Table 1. To
produce the ensemble of spatially correlated Y field
realizations, we use HYDRO_GEN (Bellin and Rubin,
1996). The HYDRO_GEN executable is available for Linux
and Mac platforms, meaning that if a Windows platform is
used, the user needs to generate a file containing the K fields
realizations (“Kfileds_Hydrogen.npy”) on a different
platform. The output of the code cell is a “.npy” file
containing the K values related to all the generated fields.
Each of these K fields are distributed along the file columns.
The user has to declare only the number of MC realizations
and the used operating system in the code cell. All the
information, such as the geostatistical parameters used to
generate the random K fields, have to be indicated on the
“hydrogen_info.txt” file. This “.txt” file can be easily
compiled following the instructions included in the
“manual_hydrogen.pdf” file made available by the software
creators (Bellin and Rubin, 1996) and included in the GitHub
repository, as all the documents discussed in this work (see
Table 2).

4. Flow Simulations: The fourth code cell computes the
second step of the MC framework, by processing the
flow simulations using the randomly generated
heterogeneous K fields. The flow field is computed using
numerical simulator MODFLOW (Harbaugh, 2005). To
create, run, and post-process MODFLOW-based models,
the Python package FloPy (Bakker et al., 2016) is employed.
The FloPy library is imported in the first step on this
tutorial. The MODFLOW executable, “mf2005dbl.exe,” is
needed in order to run this code cell (in the GitHub
repository, the one for Windows platform), while all the
variables related to the flow simulation (see Harbaugh,
2005, for details regarding MODFLOW and its packages),

TABLE 1 | Input parameters used in the proposed tutorial for hydraulic
conductivity field generation and flow and transport simulations.

Random space function model for Y = log K

Symbol Value Units

ℓ1 × ℓ2 170 × 150 [m]
μY 1.6 [m/day]
KG � exp[μY ] 5 [m/day]
σ2Y 3 [-]

λ1, λ2 8, 8 [m]

Flow Simulations

hin, hout 1, 0 [m]
Δx1 ×Δx2 1 × 1 [m]
tTOT 1,000 [days]
Δt 4 [days]

Transport Simulations

α1, α2 0.01, 0.001 [m]
Dm 8.6 × 10–5 [m2/day]
s01 , s

0
2 25, 65 [m]

Δs1, Δs2 12, 20 [m]
]01 , ]

0
2 117, 55 [m]

Δ]1, Δ]2 12, 40 [m]
C0 1 [mg/L]
C* 0.001 [mg/L]
Np 105 [-]
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have to be specified in this cell’s code. Documentation on
how to install the FloPy package is available on https://
github.com/modflowpy/flopy, in addition to the full

description of all the functions available in the just
mentioned package, needed to run different
MODFLOW’s features. The cell gives as output, in the

TABLE 2 | A list of software, Python libraries, configuration files for each step and the corresponding output data. Users need to install and prepare them to run the tutorial
that reproduces the data and the analysis shown in this work.

What you need What to install Output

K Fields Generation • hydrogen_linux or hydrogen_mac • numpy library • Kfield_Hydrogen.npy
• hydrogen_input.txt
• hydrogen.py

Flow Simulations • mf2005dbl.exe • flopy library • NMC model-*.ftl files in the folder tmp
Contaminant Transport Simulations • NVIDIA GPU • yaml library • NMC result-*.csv files in the output folder

• config.yaml • os library
• config-tmp.yaml • subprocess library • snap-{}-*.cvs files for each chosen simulation time step ({})
• par2.exe

Uncertainty Quantification & Risk Analysis • RAUQ_function.py • matplotlib library • data_output folder

FIGURE 3 | Schematic representation of the contaminant transport simulations code cell output. The image schematizes a possible output (depending on the
declared parameters in the YAML file) of a randomly selected hydraulic conductivity field from the Monte Carlo ensemble (realization number 47). The model output for
this specific hydraulic conductivity realization is given by “result-47.csv”. This file contains the data related to the contaminant’s cumulative breakthrough curve at the
control plane (represented by the vertical red line). In addition, snapshot files are generated for 400 simulation time steps. For example, “snap-0-47.csv”, “snap-
400-47.csv”, “snap-800-47.csv” and “snap-1200-47.csv” contain the position of each particle at time steps 0, 400, 800 and 1200. For visualization purposes, the
position (x = [x, y, z]) of the 1st, 2nd and 6478th particles are highlighted by red circles.
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folder named “tmp”, NMC “.ftl” files (“model-*.ftl”), each of
them containing respectively the flow simulation output
related to the “p” MC iteration.

5. Contaminant Transport Simulations: PAR2 (Rizzo et al., 2019)
is used to run the contaminant transport simulations. It
requires, as input, the groundwater flow velocities
originating from the previous code cell output. PAR2 is a
GPU-accelerated solute transport simulator, as explained in
Section 3, and consequently needs to be run on a platform
equipped with an NVIDIA GPU. Simulation parameters can
be easily defined through a YAML configuration file. Thus, to
run this code cell, the user needs the PAR2 executable,
“par2.exe”(in the GitHub repository, the one for Windows
platform) and two YAML files. Note that “config-tmp.yaml” is
a temporary file that is modified at each MC iteration,
following the structure of “config.yaml,” by substituting the
“*” symbol with the number of the current MC iteration and
the “{}” symbol with the evaluated simulation time step. The
user needs to provide the input simulation parameters in both
the YAML files. Further information on how to compile these
files can be found at “PAR2Info.” The output of this code cell,
in the folder “output”, areNMC.csv files (“result-*.csv”), each of
them containing respectively the data related to the
contaminant’s cumulative breakthrough curves at the
selected control planes for the “*” MC iteration. Snap files
(i.e., “snap-{}-*.csv”), for each MC iteration, can be an output
of the simulation as well. Those files contain respectively the
positions of the particles in which the contaminant has been

discretized into, at the “{}” time step selected by the user
through the YAML file. A schematic representation of the
potential output of a contaminant transport simulation with
PAR2 is shown in Figure 3. Asmentioned above, snapshot files
are created for each simulation of the MC ensemble. The time
required for a simulation is, among other variables,
proportional to the number of generated snapshot files. As
a consequence, the user should choose this variable wisely, to
avoid too prolonged simulations.

6. Uncertainties Quantification & Risk Analysis: This
component of the tutorial consists of post-processing
the previous data and generating the graphical output
that can support the decision-making process. In order
to run this last part of the Jupyter Notebook, the “.py” file
containing the scripts of the implemented functions is
necessary to elaborate the data coming from the
previous sections. The file is called
“RAUQ_function.py”, written following a basic and
intuitive structure to allow the user to access and easily
modify it accordingly. This section of the package allows
the user to visualize the geometry of the model, the location
of the source of contaminant and target zone (AT �
Δ]1 × Δ]2) and the positions of observation wells. The
user can also visualize the spatiotemporal evolution of
the solute plume (including the positions of the leading
edge of the plume and the maximum concentration) and
the hydraulic conductivity field (see Figure 4). For this
plume visualization step, the user can choose a specific MC
realization and the specific snapshot in time ([days]). The
user can also visualize the ensemble statistics of the
concentration field in both space and time as well as
other risk-related metrics (e.g., probability of
contaminant concentration exceedance and the statistics
of the maximum concentration, resilience loss, reliability,
etc.). Further detail on the generated files and other
information can be found in the text included in the
Jupyter Notebook.

5 APPLICATION TO RISK AND RESILIENCE

5.1 Probability of Concentration
Exceedance and Resilience Loss Maps
We will now use VisU-HydRA to investigate the risks associated
with an accidental benzene spill. For this hypothetical case study,
we will consider a 2D simulation as previously described
(therefore, x1 = x and x2 = y). All parameter values employed
in the upcoming results are reported in Table 1. Benzene is a
wildly used chemical for industrial solvents and for constituents
of fossil fuels and is considered to be a major threat to
groundwater resources and human health (Sivasankar et al.,
2017). Benzene spills are typically associated with
transportation and storage tank leakages. Due to its potential
health risk (e.g., Logue and Fox, 1986), the State of California
(United States) set the Maximum Contaminant Level, i.e. the
highest level of a contaminant that is allowed in drinking water, to
C* = 10–3 [mg/L] (Proctor et al., 2020). Note that benzene’s

FIGURE 4 | Schematic representation of the contaminant plume, in
green, for a given random realization of the hydraulic conductivity field. The
figure shows where observations wells (circles) are positioned over the target
area (rectangle) and how the locations of the leading edge of the plume
(blue cross) and of the maximum contaminant concentration (red cross),
experienced at each time steps of the simulation, evolve in time. The trajectory
of the leading edge of the plume follows the trajectory given by the dotted blue
line. The location of the maximum concentration of the plume bounces from
one location to another (see red crosses).
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degradation in water is extremely slow (i.e., Sivasankar et al.,
2017), and consequently, for the purpose of our illustration, we
will assume transport to be non-reactive (see Eq. A2).

Figure 5 depicts the spatial map of the expected value of Ψ
(Figure 5, top row), namely 〈Ψ〉, as well as its variance σ2Ψ
(Figure 5, bottom row) at different time snapshots. The statistics
of Ψ are computed over all NMC realizations of the hydraulic
conductivity field. Given that ξ (Eq. 1) is a Bernoulli distribution,
Ψ (Eq. 3) also follows a Bernoulli distribution (see Chapter 2.2. of
Mood et al., 1974). Therefore, the expected value of Ψ is equal to
the probability of concentration exceedance at the position x and
instant of time t. In other words, 〈Ψ(x, t)〉≡ Pr[C(x, t) ≤ Cp]. The
results shown in Figure 5 (top row) show that the probability of
being at risk decreases with time as an outcome of the enhanced
plume dilution due to macroscale spreading (e.g., Dentz et al.,
2011; de Barros et al., 2015; Ye et al., 2015; Henri et al., 2016). The
maps depicted in Figure 5 can be used by decision makers for
evaluating the risks associated with contamination, identifying
sampling locations and allocating resources towards uncertainty
reduction.

Next, we analyze the loss of resilience of the aquifer system.
Figure 6 shows the spatial map of first two statistical moments of RL,
see Eq. 2. The results illustrated provide information regarding the
locations where the expected resilience loss will be the largest
(Figure 6A) and its corresponding uncertainty (Figure 6B). RL
represents a measure of the amount of days necessary for the
aquifer to recover up to a state where the risks associated with the
contamination can be considered negligible.

As expected, the values of 〈RL〉 increase with travel distance
from the source location. This is explained by the increase of the
macroscale dispersion as the plume moves downstream from the
source. An increase in plume dispersion leads to the presence of
long tails in the solute breakthrough curve. Therefore, the
residence time for the plume while crossing a given location
increases thus leading to an increase in the averaged resilience
loss. As observed in Figure 6A, the maximum number of days
necessary for the right boundary of the flow domain to recover is

FIGURE 5 |Maps of the probability of concentration exceedance (top), and its uncertainty (bottom) at different instant of time in the simulation (columns). Plots of
the top row shows how 〈Ψ〉 [-] evolves in space respectively after 0, 10 and 30 days from the beginning of the contamination process. 〈Ψ〉 is expressed as a probability,
as indicated by its values on the color bar on the right. The bottom row shows σ2Ψ, as a measure of the uncertainty related to the information given by the plots in the
row above.

FIGURE 6 | Maps of the average loss of resilience (A) in the model
domain, and its variance values (B) throughout the whole simulation time. The
plot on the top shows how 〈RL〉 [d] evolves in space, expressing the amount
of days necessary for each point in the domain to recover up to a reliable
status. The amount of days associated with the different shades of blue are
indicated by the values on the color bar on the right of the top plot. The plot at
the bottom shows the values of the variance of RL, σ2RL

, as a measure of the
uncertainty related to the information given by the plot above.
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approximately 80. The results at the bottom of Figure 6 quantify
the uncertainties related to the estimated resilience loss values. As
shown in Figure 6B, larger uncertainty in RL is observed at large
distances from the source. One possible explanation for this
phenomenon may be due to the fact the contaminant plume
has sampled more fluctuations of the velocity field (i.e. the plume
travels through many correlation scales) thus leading to
increased uncertainty in the solute breakthrough curves at
those locations.

5.2 Impact of Contaminant Source
Efficiency on Aquifer Reliability
The computational package VisU-HydRA can also be employed
to improve our understanding on the impact of groundwater flow
physics and decision making metrics such as RL. Here we
illustrate how the hydraulics conditions within the
contaminant source zone could be used as an indicator of RL.
de Barros and Nowak (2010) introduced the source zone
efficiency η

η � Qsz

Qb
, (4)

where Qsz is the volumetric flow rate [m3/days] crossing the
contaminant source zone while Qb indicates the total background
volumetric flow rate passing through the entire aquifer’s cross
section. de Barros and Nowak (2010) showed that Eq. 4 controls
the overall plume dispersion downstream from the source.
Similar results are reported in Henri et al. (2016) in the
context of risk analysis, where the authors showed that high
water flux crossing the source zone leads to decrease in the

magnitude of human health risk due to the presence of
chlorinated solvents. Gueting and Englert (2013) also report
experimental evidence regarding the importance of source
zone hydraulics on transport behavior. Through the use of a
Bayesian framework, Nowak et al. (2010) showed that
characterizing the flow field surrounding the source zone
could significantly reduce the uncertainty of transport
observables.

Figure 7 shows the scatter plot of the maximum value of
resilience loss RL experienced within the target area
(AT � Δ]1 × Δ]2, see Table 1) and η. Each point in Figure 7
represents the RL obtained for each realization of hydraulic
conductivity ensemble. The data are fitted by a logarithmic
curve, the blue line, that has been found through genetic
programming (see Im et al., 2021). The data suggest that
scenarios characterized by high η values correspond to lower
estimates of RL. For completeness, we include the three plot insets
of the plume. These insets belong to the red dots in Figure 7
which correspond to 33rd, 34th and 102nd Monte Carlo
realizations. The results depicted in the plot insets suggest that
η has a clear impact in controlling the overall longitudinal
macrodispersion of the plume, which in turn will impact the
value of RL. Close inspection of Figure 7 reveals that a realization
characterized by a high value of η, such as realization number 102,
is characterized by a compact (along the longitudinal direction)
plume and therefore a lower RL value when compared to
realization number 33. When the strength of the contaminant
source area decreases (η < 1), the plume is more dispersed.
Increased plume spreading leads to larger plume residence
times at an environmentally sensitive target and therefore
higher RL values. Note that the aforementioned conclusions
are limited to the groundwater flow and transport scenario
adopted, the initial concentration of the contaminant and the
threshold concentration C*. Nevertheless, the analysis carried out
in this section re-emphasize the importance of 1) η in decision
making and 2) the characterization of the source zone in risk
analysis.

6 SUMMARY

In this work we provide VisU-HydRA, an open source,
documented, computationally efficient toolbox to characterize
specific features of the contaminant plume transport. The
proposed package serves as a user-ready toolbox and allows to
compute the uncertainty associated with metrics typically used in
risk analysis. VisU-HydRA consists of a collection of rapid and
open source software which have been assembled to deliver a
rapid, reproducible and transparent modeling framework.
Computational efficiency and rapidity are ensured by the
usage of a GPU-accelerated solute transport simulator (Rizzo
et al., 2019) and the automatized and solid structure of the
iterative processes. Reproducibility and transparency are
guaranteed by the open source coding language, the user-
friendly interface of the Python code and the availability of a
well documented and easy to follow tutorial made available on a
web-based application.

FIGURE 7 |Maximum value of resilience loss (RL [d]) experienced within
the target area versus contaminant source efficiency (η [-]) for all the Monte
Carlo realizations. Data (gray dots) are fitted by a logarithmic curve, the blue
line in the plot. The red dots highlight three Monte Carlo realizations, the
33rd, 34th and 102nd, in which the spatial configuration of the contaminant
plume is investigated at a given time snapshot. The insets are connected, by a
black arrow, to the simulated scenario. The black rectangles in the insets
represent the environmentally sensitive target location.
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In order to support the decision making process, the
computational toolbox includes a visualization component
that allows users to generate probability maps of aquifer
resilience loss and risk hot spots. Furthermore, a GitHub
repository was created and contains all the material reported
to this work. The results reported are limited to a two
dimensional application and the hydraulic conductivity
field is the only source of uncertainty. As a consequence,
the computational toolbox can be expanded to account for
other sources of uncertainty as well as three dimensional
models. In our work we opted to employ a two-dimensional
“reference model” typically encountered in the stochastic
hydrogeological community to study dispersion and
mixing of solutes in heterogeneous aquifers. However,
more realistic scenarios can be incorporated, such as the
one reported in Fiori et al. (2019). We point out that the
computational efficiency of the proposed toolbox could be
improved by making use of other uncertainty quantification
methodologies (as opposed to the classic Monte Carlo
framework). For example, Olivier et al. (2020) presents an
open-source, user-ready, Python package that includes
several of the latest approaches for uncertainty estimation
that are computationally efficient. The current contribution
represents one step towards an integrated framework for
analyzing groundwater contamination in risk assessment
under uncertainty.
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APPENDIX A FLOW AND TRANSPORT
EQUATIONS

For computational illustrations, we simulated a steady-state fully
saturated incompressible flow in a spatially heterogeneous aquifer
in absence of sink or sources. Flow is 2D, and in our computational
2D domain, x1 denotes the longitudinal dimension and x2 the
transverse one. The steady flow field is governed by:

∇ · K x( )∇h x( )[ ] � 0, (A1)
with h denoting the hydraulic head and K the hydraulic
conductivity.

For all our simulations, we considered permeameter-like
boundary conditions for the flow field. That is, no-flux
boundary conditions in the transverse boundaries and
constant heads, respectively hin and hout, are adopted in the
inflow and outflow boundaries of the computational domain.

For the transport simulation we consider that instantaneous
release of Benzene within a rectangular source zone of area
Ao � Δs1 × Δs2. The spatiotemporal evolution of the
concentration field is assumed to be governed by the
advection-dispersion equation:

zC x, t( )
zt

+ u x( ) · ∇C x, t( ) � ∇ · D x( )∇C x, t( )[ ]. (A2)

where C is the resident concentration, u is the velocity field, D is
the local-scale dispersion tensor assumed to be anisotropic and
defined as:

D x( ) � αT|u x( )| +Dm( )I + αL − αT
|u x( )| u x( )u x( )T (A3)

where Dm is the molecular diffusion, αL is the longitudinal (along
x1) dispersivity and αT is the transverse (along x2) dispersivity.
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