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Gassy sediments are an important cause of engineering disasters such as large-area
coastal submarine landslides, excessive tilting of marine foundations, and excessive
deformation of tunnels. Under different stress paths, the gassy soil exhibits different
microstructure changes and mechanical responses. This paper introduces the current
research status regarding the mechanical responses, numerical simulation and the in-situ
test methods of gassy sediment. In terms of mechanical responses, it summarized the
strength and deformation characteristics of gassy soil under different stress paths, tracking
the study on constitutive model. The disaster simulation work using constitutive model of
gassy sediment is introduced. It also analyzes the advantages and limitations of various
methods in the in-situ test. It can provide theoretical support for further study on disaster
prevention and geological risk assessment of gassy sediments.
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INTRODUCTION

Gassy sediments are widely distributed in the coastal areas of all the world’s continents (Figure 1) (P
et al., 2001). The gases are usually formed by microbial degradation of organic matter under
anaerobic conditions, thermogenic methanogenesis, or volcanic eruptions. Their main components
include methane, carbon dioxide, and nitrogen (Figure 2). The gases mostly exist in the pores as
dissolved or discrete bubbles (Wheeler, 1986; Grozic et al., 2000; Sánchez et al., 2017).

Unlike unsaturated soil, the saturation of gassy soil is usually in the range of 85–90%, and the gas phase
usually exists in the form of discrete bubbles while the water phase is in a connected state. The size of the
soil particles determines the microstructure of gassy soils, and gassy soils are mainly divided into two
categories according to the size of the air bubbles (Wheeler, 1988b; Sills and Wheeler, 1992). In one
category, the air bubbles are smaller than the soil particles and pore size. The air bubbles are discrete in the
soil pores, which only changes the compressibility of the pore fluid and does not affect the soil structure
(Wang et al., 2018; Hong et al., 2021b; Xu et al., 2022). In the other category, the air bubbles are much
larger than the soil particles and pore size. The bubbles rearrange the soil particles and thus affect the soil
structure (Hong et al., 2020a; Gao et al., 2020). This microstructure often exists in fine-grained air-bearing
soils, as shown in Figure 3. Hong et al. (2017) andGuo et al. (2021) observed themicrostructure of typical
fine-grained gassy soil by scanning electron microscopy and computed tomography. The results are
shown in Figure 4. The undissolved gas exists as large discrete bubbles in the saturated matrix, and the
bubbles are much larger than the soil particles and pores.

Due to the structural characteristics of gassy soil, the mechanical properties are considerably
different from those of saturated soils and unsaturated soils. Kaminski et al. (2020) summarized the
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undrained shear strength of gassy soils under different
conditions. The mechanical properties of gassy soils under
different conditions change the engineering characteristics of
the corresponding soil layers. During construction engineering,
geological disasters have often been induced by the presence of
shallow gas, and some major engineering accidents have
occurred, causing serious economic losses (Sobkowicz and
Morgenstern, 1984; Rad et al., 1994; Rowe et al., 2002;

Kortekaas and Peuchen, 2008; Sultan et al., 2012; Xu et al.,
2017; Rowe and Mabrouk, 2018; Jommi et al., 2019).

EXPERIMENTAL TESTING

In the gas-bearing soil test, due to the release of pressure caused
by deep-water sampling, the gas in the soil is dissolved and

FIGURE 1 | Distribution of marine gassy sediments in the five continents (Fleischer et al., 2001).

FIGURE 2 | Gassy source and geological disasters.
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expanded, which causes changes in the soil structure and even
cracks (Zhang and Lunne, 2003; Sultan et al., 2012). It is therefore
difficult to obtain undisturbed gassy soil samples under in-situ
conditions. Previous experiments have mainly used remolded
gassy soil samples. There are three main preparationmethods: the
zeolite molecular sieve technique (Sills et al., 1991; Hong et al.,

2017; Hong et al., 2020b) the axis-translation technique (Sultan
et al., 2012; Wang et al., 2018; Blouin et al., 2019), and the
biological anaerobic fermentation technique (Sills and Gonzalez,
2001; Hu, 2010).

The zeolite molecular sieve technique replaces the adsorbed
gas by adding the zeolite-absorbing gas into the slurry. This

FIGURE 3 | Types of soil containing air bubbles (Wheeler, 1988b).

FIGURE 4 | Microscopic scan of a typical gassy soil (Hong et al., 2017; Guo et al., 2021).

FIGURE 5 | Gassy specimen preparation methods: (A) the zeolite molecular sieve technique; (B) the axis-translation technique; (C) the biological anaerobic
fermentation method.
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method is simple and effective while the stress history is known.
In this method, the samples can be prepared in batches with
similar physical properties under in-situ conditions. The main
principle is shown in Figure 5A. The gas content of the prepared
samples cannot be accurately controlled, but the bubble
distribution is relatively uniform.

The axis-translation technique involves replacing the internal
pore water by circulating the dissolved gas water through the
saturated sample and releasing the gas by unloading to form the
gassy soil sample. The test system is shown in Figure 5B. This
method is mainly applicable to coarse-grained soil, and the gas-
charging effect of fine-grained soil is poor.

The principle of the biological anaerobic fermentation
technique is that organic matter is decomposed by anaerobic
bacteria to release methane and carbon dioxide, as shown in
Figure 5C. Its mechanism is closest to the formation process of
bubbles in the marine environment. The preparation process,
however, requires certain values for temperature, pH, redox
potential, and other parameters. Only by satisfying these
biological requirements will the fermentation cycle be short
and the gas production suitable.

Both zeolite molecular sieve technique and axis-translation
technique can prepare uniform samples for triaxial test. zeolite
molecular sieve technique is used for fine-grained gassy soil,
which can mimic the natural formation process of free bubbles in
soil. Axis-translation technique is used to prepare coarse-grained
gassy soil, which can mimic the process of gas exsolution due to
stress release. Although the bubble formation process of the
biological anaerobic fermentation technique is the closest in
the marine environment, its sample preparation method is
complex and immature, so it cannot be used for triaxial test to
determine the mechanical properties. It can be used for model
box test, and it needs further research. The zeolite molecular sieve
technique and axis-translation technique can produce specimens
containing a uniform distribution of gas bubbles, but the gas
saturation of gassy soil cannot be measured specifically.

Therefore, the double-cell system can be installed in triaxial
apparatus to measure the change of gas saturation. The
accuracy of the volumetric system can reach 31.4 mm3

(equivalent to 0.04% volumetric strain of the soil sample with
a diameter of 38 mm and a height of 76 mm) (Ng et al., 2002).
Figure 6 shows the structural diagram.

MECHANICAL BEHAVIOR OF GASSY SOIL

On the basis of the soil microstructure, many researchers have
analyzed the mechanical properties and discussed the
relationship between those properties and the microscopic
mechanism (Nageswaran, 1983; Thomas, 1987; Wheeler,
1988a; Gardner and Goringe, 1988; Sills et al., 1991; Sham,
1992; Hong et al., 2017; Bai, 2018). The bubble-water-soil
skeleton microstructure interaction in fine-grained gassy soil
includes two mechanisms: bubble flooding and gas intrusion
into the saturated matrix (Wheeler, 1988b). The existence of
bubbles make the effective stress and void ratio in the saturated
matrix unevenly distributed (Sham, 1992). The bubble-water-soil
skeleton interaction is affected by the initial pore water pressure
(Hong et al., 2017). When the initial pore water pressure is low,
the bubbles in the soil are large and the radius of the meniscus at
the water–gas interface is large, which means that the water
inflow value of the bubble cavity is relatively small. During the
undrained shear process, with the increase of the pore water
pressure, bubble flooding may occur (the water in the saturated
matrix enters the bubble cavity, and partial drainage occurs),
resulting in a reduction of the excess pore pressure and an
increase in strength, as shown in Figure 7A. When the initial
pore water pressure is high, the gas pressure in the soil is also
relatively high, which produces micro-cracks in the surrounding
saturated matrix. In the process of undrained shear, the micro-
cracks may collapse, resulting in reduced strength and increased
excess pore pressure, as shown in Figure 7B.

Bubbles in gassy soil change the compression characteristics of
the pore fluid and the structure of the soil, which affects the
mechanical properties, such as compression, and the static and
dynamic characteristics. A large number of compression,
monotonic, and cyclic shear tests of gassy fine-grained soil
and gassy sand have been carried out, and the key influencing
factors of the modulus, monotonic, and cyclic shear strength of
gassy soil have been determined. The results show a clear
influence of air content on the elastic shear modulus and
shear strength of gassy soil (Duffy et al., 1994; Pietruszczak
and Pande, 1996; Mathiroban, 2004; Vega-Posada et al., 2014;
Hong et al., 2017). The drainage shear test of sand shows strain
hardening, and the strain law of undrained shear is related to the
initial state of gassy sand (Amaratunga and Grozic, 2009; Vega-
Posada et al., 2014). Under dynamic load, the cyclic stress of gassy
sand is linearly related to liquefied vibration times and the
increase of the gas content delays the liquefaction of gassy
sand (Guan, 2017). The greater the gas content, the slower the
pore pressure dissipation and the smaller the amplitude of excess
pore water pressure (Han, 2020). The change in the cyclic
stiffness of gassy fine-grained soil is related to the initial pore

FIGURE 6 | Double-cell system.
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pressure. The high pressure enhances show the stiffness
enhancement and the low pressure weakens the stiffness
(Hong et al., 2021a). Research into various stress-path
problems in actual projects has shown that the deformation of
the soil can be reduced by gradual deflation (Wang, 2009). The
change direction of the confining pressure is closely related to the
stress–strain characteristics of the sample. The increase of the
confining pressure induces strain hardening of the sample, and
the decrease induces strain softening (Zhong, 2007). The gas
evolution and bubble expansion caused by pressure unloading
enhances the compressibility of gassy soil, reduces the pre-
consolidation pressure and the undrained shear strength. The
structural change caused by gas evolution influences the effective
stress path (Sultan et al., 2012). The rapid accumulation of gas
leads to a rapid increase of the pore water pressure and a
reduction of the effective stress of the soil, triggering the
liquefaction of gassy soil (Liu, 2018; Kong et al., 2019). The
change of temperature and pressure of gassy soil also affects the
compressibility and permeability. After the dissipation of excess
pore pressure, the consolidation time is prolonged, resulting in
long-term settlement and showing a complex consolidation creep
process. The lower the saturation is, the more obvious the
phenomenon is (Wang, 2021; Zhu et al., 2021).

Researchers have proposed mechanical models for
engineering calculations. The fine-grained gassy soil
mechanical model is an improvement on the Cambridge
model, while the coarse-grained gassy soil mechanical model is
used to construct the mechanical analysis model by describing the
compressibility of the “bubble-water” mixture. Wheeler and
Gardner (1989) regarded soil containing large bubbles as a
composite material containing spherical filler. They derived
the calculation formulas of the shear modulus and bulk
modulus of soil containing large bubbles under drainage and
undrained conditions. Grozic J. L. H. et al. (2005) quantitatively
simulated the enhancement effect of bubbles on the undrained
shear strength of fine-grained gassy soil, but their model cannot
describe the strength attenuation caused by bubbles. Hong et al.
(2021b) proposed a critical-state model that takes into account
both hardening and softening by defining the ratio of the

deviatoric stress increment to the plastic shear strain
increment. Pietruszczak and Pande (1996) introduced
“gas–water interfacial tension” into the pore pressure
expression and established the rotational hardening model of
gassy sand. The change of pressure in gassy sand causes gas
dissolution, and so Grozic J. L. et al. (2005) considered the
compressibility and solubility of gas at the same time using
Henry’s law and Boyle’s law. By introducing a volume
dissolution coefficient h, they deduced the expression of pore
pressure:

△�ug � { △n

[(1 − S0)no + hS0n0 −△n]}△�ug0 (1)

This model can accurately predict the strain softening but not
the strain hardening.

Gao et al. (2020) established a critical-state model that takes
into account the influence of the initial pore water pressure and
initial air content on the yield and dilatancy characteristics of
gassy soil. However, it is unable to predict the undrained
unloading response. Sultan et al. (2012) explored the influence
of gas evolution on soil in undrained unloading stress paths
through triaxial tests. They also introduced the gas-phase damage
parameter d (related to gas content) and proposed the following
relationship between gassing volume and soil pre-consolidation
pressure:

p′c
p′0

� exp(−δd) (2)

Smith et al. (2022) proposed a model that takes into account
the bubble damage effect. The anisotropic yield surface function
is defined as

q � 2
3
p′ q0
p′0

±

�����������������������
M2(p′p′0 − p′2 + 1

9
p′
p′c

q20)√
(3)

Using the non-associated flow rule, this model can simulate
the strength reduction of gassy soil caused by gas evolution.

FIGURE 7 | Schematic diagrams showing fine-grained gassy soil under different back pressures (Hong et al., 2017): (A) Relatively low initial back pressure; (B)
Relatively high initial back pressure.
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At present, however, the mechanical models of gassy soil
mainly focus on the description of static loading
characteristics; the gas-phase damage under static unloading
conditions has only been partially considered.

The theory of granular solid hydrodynamics are combined
with the temperature motion equation of soil particles (Yang and
Bai, 2020):

dt(Tgg) � c2c5
dteijdteij

ρS
+ c3c5

dtεvdtεv
ρS

+

c4
ΓdtT

ρS
− c5

Tgg

ρS

(4)

Yang and Bai (2020) established a thermodynamic model
describing the mechanical properties and temperature effect of
fine-grained soil containing gas. The results show that the
increase of temperature under drainage conditions increases
the compression coefficient and the thermal shrinkage
coefficient, and the pore water pressure under undrained
conditions also increases. The influence of temperature on the
undrained shear characteristics depends on the initial conditions.

Vanoudheusden et al. (2003) established a numerical model to
describe the mechanical properties of unsaturated expansive soil
based on the elastic-plastic model. Under undrained conditions,
its characteristics are controlled by the drainage curve of gassy
soil (the relationship between saturation and capillary pressure)
and the solubility of the gas.

Dilatancy is an important property of the mechanical
responses of gassy soil. For coarse-grained gassy soil, bubbles
only change the compressibility of the pore fluid, and so the
effective stress principle is still applicable to this type of soil
(Pietruszczak and Pande, 1996; Grozic J. L. et al., 2005). The study
of dilatancy function, plastic modulus, and related material
parameters of saturated sand is still relevant for gassy sand
(Yin and Chang, 2013; Xiao et al., 2015; Kong et al., 2016;
Xiao et al., 2019).

However, there are few studies on the dilatancy of fine-grained
gassy soil. The dilatancy function used in the existing constitutive
model of gassy soil is mostly the same as that of saturated soil
(Pietruszczak and Pande, 1996) and they cannot consider the
potential effect of gas bubbles on dilatancy. While the dilatancy
function proposed by Hong et al. (2019) introduces the initial
pore water pressure and gas volume fraction on the basis of

Grozic J. L. et al. (2005). To characterize the influence of gas
content on the dilatancy, the relevant material parameters need to
be calibrated. The Stress−dilatancy relations assumed in the
existing models for fine-grained gassy soil is shown in Table 1.

NUMERICAL SIMULATION

The existence of gas in the soil layer affects the mechanical
properties of the stratum. Thus, in the design of offshore
foundations, offshore drilling, and slope stability analysis, a
constitutive model that can uniformly describe the response of
the gassy soil under different conditions is needed. Current
research on fine-grained gassy soil mainly focuses on the unit
response in the triaxial test. Few studies have been conducted on
practical engineering issues and the constitutive model needs
further development (Grozic J. L. H. et al., 2005; Sultan et al.,
2012; Hong et al., 2017; Sánchez et al., 2017; Goao and Hong,
2019; Hong et al., 2019; Hong et al., 2020a; Gao et al., 2020). The
constitutive model of coarse-grained soil is relatively mature, but
the analysis is mostly base on liquefaction and landslide (Grozic,
2003; Atigh and Byrne, 2004; Mabrouk and Rowe, 2011; Hong
and Xu, 2020; Thomas, 2021a; Hong et al., 2021b; Thomas,
2021b).

Grozic (2003) introduced the concept of flow potential and
proposed a method to evaluate the liquefaction potential of loose
sand, which can judge the potential liquefaction area according to
the flow potential. The zone of potential liquefaction is shown in
Figure 8.

Atigh and Byrne (2004) proposed a liquefied sand flow model
to analyze the liquefaction-sliding flow of loose gassy sand caused
by tidal changes. Dense sand slopes are more common in real
environments, however. Hong et al. (2021b) established a model
of coarse-grained gassy soil, quantified the influence of such soil
under different initial conditions, and used the model to analyze
the stability of submarine slopes under undrained conditions. For
loose gassy sand, gas has an enhancing effect on the stability of
submarine slopes; for dense gassy sand, it has a weakening effect,
as shown in Figure 9.

Hong and Xu (2020) simulated the undrained shear of gassy
sand using the discrete element method. They analyzed the
influence of different gas solubilities, and this method can be
used to effectively simulate the gas dissolution in the process of
undrained unloading (Figure 10).

For fine-grained gassy soil, Thomas (2021a, 2021b) proposed
the governing equation of porous elastic gas-bearing soil based on
the modified Biot theory to simulate the changes of stress,
displacement, and pore water pressure of a gassy seabed with
buried pipelines under wave pressure loading. In the buried
pipelines, the stress and pore pressure are concentrated, which
may lead to local liquefaction.

IN-SITU INVESTIGATION

In-situ sampling of gassy sediments inevitably causes
disturbances. Although temperature-preserving and pressure-

TABLE 1 | Stress–dilatancy relations assumed in the existing models for fine-
grained gassy soil.

References Dilatancy

Pietruszczak and Pande (1996) D � dεpv
dεpq

� M ln( p′
p′c) +M

Grozic et al. (2005b) D � dεpv
dεpq

� M2−η2
2η

Sultan et al. (2012) D � dεpv
dεpq

� μ(M − η)(αMη + 1)
Hong et al. (2019) D � dεpv

dεpq
� [1 + ξ uw0−uw0 ref

p′0 exp(− χ
ψ0
)] M2−η2

2η

Note: dεpv denotes increments of plastic volumetric strain; dεpq denotes increments of
plastic deviatoric strain; M denotes the stress ratio at the critical state; η denotes the
stress ratio (i.e., η � q/p); and ξ and χ are two material constants.
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holding sampling technology can be used to obtain in-situ gassy
sediment samples, the sampling cost is high (Bai and Li, 2010;
Zhu et al., 2011; Wu et al., 2022; Zhu et al., 2022). Experiments
have therefore mainly been carried out using laboratory gassy soil
samples. Moreover, the current sample preparation method for
gassy soil cannot effectively reproduce the gas-production process
of microbial bacteria in the coastal soft soil layer under in-situ
conditions. It is also difficult to realize the batch of gassy soil
sample preparation and the quantitative introduction of gas. It is
therefore essential to study the in-situ test equipment that can

quantitatively detect the gas content in the soil. Accidents
involving uncontrolled gas leaks caused by drilling in marine
engineering can be avoided by researching the in-situ testing
technology of gassy soil. The simulation parameters can be
accurately established for numerical calculation.

Rad and Lunne (1994) developed a new type of offshore in-situ
testing device, the BAT probe, which is pushed to the required
depth to obtain water-air samples in the gassy soil layer. Its
structure is shown in Figure 11. After the recovery of the device,
the samples are analyzed using a gas chromatograph for gas

FIGURE 8 | The zone of potential liquefaction (Grozic, 2003).

FIGURE 9 | Contours of the shear strain and displacement vectors for gassy sand (Hong et al., 2021b): (A) Saturated dense sand; (B) Gassy dense sand; (C)
Saturated loose sand; (D) Gassy loose sand.
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composition and gas saturation in pore water to assess the
possibility of a shallow air bladder in the soil. Hong et al.
(2018) also developed a new type of device. After penetration,
the device takes horizontal samples, performs in-situ sonic
testing, and determines the gas content by in-situ compression
to minimize the influence of sampling disturbance.

Since the BAT probe can only be used for in-situ water-gas
sample testing and has a single function, recent research has
mainly used the geophysical prospecting measurements to
detect the source layer, reservoir and burial depth of gassy
soil (Figure 12A). The gassy soil can be identified as shown in
Figure 12B. The shear wave seismic section can delineate the
boundary of the gassy sand layer (Wood et al., 2000;
Pruessmann et al., 2004; Reeves, 2005; Lin et al., 2006;
Zheng et al., 2006; Li et al., 2009). In addition, the change
of resistivity can be used to judge the gassy layer by the
electromagnetic exploration method, allowing the
distribution range to be delineated (Lee and Collett, 2006;
Li et al., 2007; Pezard et al., 2015). The irregular and robust
reflection interface of the gassy formation can be formed by the
shallow stratum cross-section method using sound-wave

propagation and scattering (Mustafa et al., 2002; Wang
et al., 2013; Tóth et al., 2014; Janiewicz et al., 2019).

The cone penetration test (CPT) can be used to carry out a
variety of test methods, and as the scope of the investigation is
extensive, CPT can be used to identify the gassy layer (Wang et al.,
2019). Guo et al. (2007) found that CPT can also preliminarily
determine whether biogas is present in sand. When the tip
resistance increases, the friction–resistance ratio decreases, the
fluctuation amplitude of the pore water pressure remains small,
and there is no negative excess pore water pressure during the
penetration process. It can thus be determined preliminarily that
there may be shallow biogas in the sand layer.

Li et al. (2009) improved the CPT and separated the probe
and probe rod to realize gas sampling and pressure
measurement. Lai et al. (2016) invented a Membrane
Interface Probe and Cone Penetration Technology that
decomposes and passes organic matter by adding a MIP
film. It uses gas chromatography to determine the organic
matter’s phase state and content.

CPT with different probes can be used to detect different
physical properties of sediments, such as gas occurrence,

FIGURE 10 | Submarine slope of gassy soil (Hong and Xu, 2020): (A) grid used in analysis; (B) deformed mesh during low tide; (C) displacement vectors; (D)
horizontal displacement contours (in m).

FIGURE 11 | BAT probe (Rad and Lunne, 1994).
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temperature gradient, acoustic characteristics, and chemical
anomalies. Detecting these characteristics can improve the
current conventional in-situ measurements in terms of the
identification accuracy of gassy soils. Thus, CPT has a wide
application prospect in gassy soil exploration.

RESEARCH PROSPECTS

Due to its mechanical properties, gassy sedments are an
important cause of engineering disasters. The researches
mainly focus on the mechanical response and development of
constitutive model. From this summary of the current research,
the author believes that future research on gassy soils should
explore the following aspects:

1) Mechanical responses of gassy soils with different stress paths.
Combined with the actual engineering or disaster, based on
the soil stress path under the actual conditions of gassy soil
shield, waves, landslides etc., research could be conducted into
mechanics and deformation mechanism to achieve accurate
prediction;

2) The constitutive model of fine-grained gassy soil. The
numerical simulation of coarse-grained gassy soil is
relatively mature, whereas the simulation of fine-grained
gassy soil has mainly focused on the unit scale, and there is
no mature constitutive model for practical engineering
problems;

3) The bubble-migration mechanism in gassy soil. Under real
conditions, due to soil faults and cracks, discrete bubbles may
migrate, accumulate, and be released. The relationship

between the triggering conditions of bubble migration and
gassy soil mechanical behaviour needs to be furthur research.

4) Effect of microstructure of bubbles in gassy soil. The change of
bubbles in the mechanical test can be observed by means of
microscopic scanning device to clarify microcosmic mechanism.

5) Risk assessment of geological disasters such as liquefaction,
landslides, and the settlement of gassy soil. Based on the
research into the deformation mechanism of gassy soil under
different conditions, engineers should carry out site risk
assessments and implement disaster-prevention and
mitigation measures;

6) In-situ measurements of gassy soil. At present, the in-situ
measurements for gassy soils are mainly the gassy soil
distribution range detection. It is necessary to improve the
accuracy of the in-situ parameters of gassy soils to improve the
accuracy of research into constitutive models.
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FIGURE 12 | Geophysical prospecting: (A) methods; (B) Sub-bottom profile of gassy sediment (Xing et al., 2017).
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