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China has undergone rapid urbanization over the past few decades, and accordingly,
changes have occurred in the extreme precipitation events. However, few studies have focused
on the relationships between rapid urbanization and extreme precipitation events in southwest
China, particularly in the Sichuan–Chongqing area, which has a complex topography and has
experienced rapid urbanization over the past few decades. This is the first study to analyze the
impact of urbanization on the amount, frequency, and intensity of extreme summer
(June–August) precipitation events over the past 30 years. Our results indicate that extreme
precipitation events primarily occurred in the urban-dominated Sichuan basin, particularly during
the fast urbanization development stage (FUDS) of 1994–2015. Extreme precipitation amounts
and intensities increased during the FUDS, implying the greater probability of individual
precipitation events developing into heavy or extreme events in a particular area. In addition,
the probability distribution functions of the occurrence and volume of strong convective events
significantly increased during the FUDS. Finally, the annual increase in urban-scale land surface
air temperature, increase in wet convection, and changes in wind speed are identified as
essential factors leading to extreme precipitation events in this region.
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1 INTRODUCTION

Increasing evidence reveals that the urbanization can remarkably affect the composition of the
Earth’s surface as well as the thermal properties of the overlying atmosphere, thereby changing the
local climate (Huff and Changnon, 1972; Changnon, 1979; Changnon et al., 1991; Zhang, 2020).
Numerous observations and numerical simulations reveal that extreme precipitation events have
become increasingly frequent with global warming (Madsen et al., 2014) to which the urban heat
island (UHI) effect is a contributor (Baik et al., 2006). In urban areas, the feedback effect of local
surface processes on precipitation is crucial. Regional land use and land cover changes can alter
mesoscale convection, thereby affecting the occurrence and development of precipitation (Pielke
et al., 2007; Niyogi et al., 2017). Previous studies have revealed that the UHI effect can result in the
instability of atmospheric stratification (Baik, 2006; Su et al., 2019), thereby triggering thunderstorms
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under favorable thermodynamic conditions (Schroeder et al.,
2016) and leading to significantly higher downwind
precipitation amounts and frequencies than in surrounding
areas (Ackerman et al., 1978; Zahrani, 2018). Simultaneously,
urbanization changes the ground roughness, which triggers
turbulence and uplift, enhances wind convergence, and,
consequently, increases the amount and frequency of
precipitation in urban areas (Su et al., 2019; Yan et al., 2020;
Xiao et al., 2021). Moreover, abundant condensation nuclei in
urban areas can promote water vapor condensation and
precipitation formation (Zhong et al., 2015).

Relationships between urbanization and precipitation in
megacity agglomerations have been recently studied in China,

such as Beijing (Zhang et al., 2013; Li et al., 2015), Shanghai
(Liang and Ding, 2017), and Guangzhou (Yin et al., 2020). Most
of these studies have revealed that urbanization increases
precipitation in urban areas; however, variations may occur
among urban agglomerations due to variable local circulation
feedback effects, topography, and underlying surface conditions.
As the leading economic development area in western China, the
Sichuan–Chongqing area (97–110°E, 26–34°N) is a critical
geographical link between the east and the west, as well as the
driver for the north and the south of China (Figure 1). In the past
30 years, the Sichuan–Chongqing area has experienced rapid
urbanization, with rapid increases in the developed land area
since the beginning of the fast urbanization development stage
(FUDS) in 1994 (Figure 2); this area is now considered the fourth
megacity agglomeration in China.

Urban agglomerations in the Sichuan–Chongqing area are
primarily concentrated in the Sichuan basin (Figure 3). This area

FIGURE 1 | Geographical location of the Sichuan–Chongqing area in China and its elevation (m). The area surrounded by the blue border is the Sichuan basin.

FIGURE 2 | Changes in the developed land area of the
Sichuan–Chongqing area (1989–2018). The data are from the statistical
yearbooks of Sichuan Province and Chongqing Municipality. The yellow
column (1994) indicates the beginning of the fast urbanization
development stage (FUDS).

FIGURE 3 | Spatial expansion of Sichuan–Chongqing urban areas at
four representative stages in 1993, 2000, 2008, and 2015.
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has a humid subtropical monsoon climate, which experiences an
annual precipitation of ≥1,000 mm, with more than 50% of the
precipitation occurring in summer. Because this region is located in
the transition zone between the eastern Chinamonsoon region and
the Qinghai–Tibet Plateau alpine region, the climate is affected by
both the plateau climate and the humid subtropical monsoon
climate. Consequently, extreme precipitation events have a high
likelihood of occurring in this area (Huang et al., 2012; Wang et al.,
2013; Wang and He, 2017). Recent records show that heavy
precipitation events have occurred more frequently, particularly
in urban areas, where the cumulative precipitation amount and
intensity have typically exceeded historical extremes. For example,
during August 10–18, 2020, a continuous regional rainstorm
occurred in the Sichuan basin during which the hourly
precipitation intensity (HPI) recorded at most stations reached
or exceeded the historical extreme, with the maximum HPI
exceeding 150 mm/h, resulting in severe urban waterlogging.

Many recent studies have been conducted on extreme heavy
precipitation in eastern and southern China; however, studies on the
western region, particularly the Sichuan–Chongqing area, with its
complex topography and climatic conditions, are relatively rare.
Moreover, studies in this area are more typically focused on
analyzing the sources of perceptible water vapor (Wang et al.,
2013, 2020) and the evolutionary trends (Hu et al., 2009),
formation mechanisms (Luo et al., 2019; Liu. et al., 2020), and
other aspects of individual events. In comparison, the distribution of
extreme precipitation events, their evolutionary characteristics, and
the influences of rapid urbanization have rarely been discussed.
Thus, to the best of our knowledge, this is the first study to
quantitatively explore the development and evolutionary trends of
extreme precipitation events in urban and non-urban areas in this
region during slow and fast stages of urbanization and at various
spatiotemporal scales. In addition, we comprehensively analyzed the
correlation between extreme summer precipitation and rapid
urbanization based on a range of meteorological factors. The
remainder of this article is organized as follows: Section 2 (Data
and Methods) introduces the research datasets, evaluation indices,
and research methods; Section 3 (Results and Discussion) discusses
the spatial distribution, temporal evolution, probability, and causal
analysis of extreme summer precipitation events in the
Sichuan–Chongqing area; finally, the last section (Conclusions
and Future Research) summarizes the study and provides our
research outlook.

2 DATA AND METHODS

2.1 Datasets
2.1.1 Meteorological Dataset
Meteorological data were obtained from the China
Meteorological Forcing Dataset (CMFD) (1979–2015), which
is the first land surface meteorological dataset with a temporal
resolution of 3 h and a spatial resolution of 0.1° developed for
studying land surface processes in China. The high-resolution
temporal and spatial coverage of this dataset has made it one of
China’s most widely used climate datasets (He et al., 2020). We
also merged meteorological observation data from the China

Meteorological Administration with the Princeton reanalysis
dataset (Sahoo et al., 2015), the Global Land Data Assimilation
System forcing dataset (Rodell et al., 2004), the Global Energy and
Water Cycle Experiment–Surface Radiation Budget forcing
dataset (Pinker et al., 1992), and precipitation data from the
Tropical Rainfall Measuring Mission (Rosenfeld, 1999; Chen
et al., 2020). These data contained reanalysis datasets for seven
major land surface meteorological elements. Comparing the
accuracies of the observation results of independent stations,
the CMFD provides superior data quality than the Global Land
Data Assimilation System, particularly in areas with sparse
weather stations (He et al., 2020). Therefore, the CMFD
enables accurate analysis of meteorological elements under the
complex topography of the Sichuan–Chongqing area.

2.1.2 Urbanization Dataset
The urbanization data for the Sichuan–Chongqing area are based
on land cover types from the Land Cover Classification System
(LCCS) of the United Nations Food and Agriculture
Organization (Hansen et al., 1998, 2000), which we used to
determine the urban and non-urban areas of the region for
each year between 1992 and 2015. To consider data quality in
terms of reliability and continuity, we compared the annual LCCS
data with the land cover data released by the European Space
Agency’s Climate Change Initiative (Poulter et al., 2015). Because
this dataset covers 22 different land types, exhibits long-term
consistency, is updated annually, and has a global horizontal
resolution as high as 300 m, it has been widely applied in land
assessments, forest and desertification monitoring, and many
other fields. However, notably, as LCCS data prior to 1992 are
not available, the 1979–1991 LCCS data range was considered
equivalent to that of 1992 for land cover type during the slow
urbanization development stage (SUDS, 1979–1993).

2.2 Methodology
Six precipitation indices recommended by the Expert Team on
Climate Change Detection and Indices (Table 1) (Zhao et al.,
2014) were adopted to quantitatively evaluate the precipitation
amount and frequency as well as the intensity of summer
precipitation and extreme precipitation events in the
Sichuan–Chongqing area during the period 1979–2015. The
specific procedures for calculating the extreme precipitation
indices are as follows. For each of the 5,384 meteorological
grid points in the Sichuan–Chongqing area, precipitation
events with a daily precipitation amount of ≥1 mm during the
1979–2015 period were sorted in the ascending order (Zhai et al.,
2005; Zhang et al., 2013; Wu et al., 2019), and the 95th percentile
was estimated as the extreme precipitation threshold. When the
precipitation amount of a given day exceeded this threshold, an
extreme precipitation event was considered to have occurred.
Accordingly, we defined “PRCPTOT95” as the extreme
precipitation amount, “RD95” as the extreme precipitation
frequency, and “SDII95” as the extreme precipitation intensity.

Sen’s slope estimation method (Sen, 1968) was employed to
evaluate the linear trends of all grid points in the
Sichuan–Chongqing area during the study period that passed
the Mann–Kendall trend test (Mann, 1945; Kendall, 1975; Yue
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and Pilon, 2004). When the calculated Z-score of each grid point
was greater than the critical value of the standard normal
distribution at the 90% confidence level, a statistically
significant positive or negative trend in the data series was
identified (Da Silva et al., 2015; Zhang et al., 2016; Gu et al.,
2017a, 2017b).

3 RESULTS AND DISCUSSION

3.1 Spatial Distribution of Extreme
Precipitation Events
Figure 4 shows the annual average distribution of all
precipitation events and extreme precipitation events in the

Sichuan–Chongqing area. These events are consistent in the
high-value areas of precipitation amount, frequency, and
intensity, indicating that extreme precipitation events are
affected to some extent by the long-term climate background.
Moreover, the high-value areas of PRCPTOT, PRCPTOT95,
SDII, and SDII95 are all located on the west side of the basin
where cold air and warm air mix in the transitioning
mountainous area between the plateau and basin. This region
is a prominent rainy area in China (Wang et al., 2013; Wang and
He, 2017). The areas with high precipitation frequency are
primarily located on the western edge of the basin, whereas
plateau areas occur at relatively high altitudes. This
characteristic is consistent with typical plateau summer
precipitation (Liu and Yin, 2001). By analyzing the ratios of

TABLE 1 | Precipitation indices and definitions recommended by the Expert Team on Climate Change Detection and Indices.

Index Description Definition Unit

PRCPTOT Total precipitation Annual total precipitation from days with ≥1 mm mm
RD Precipitation frequency Number of wet days with ≥1 mm day
SDII Precipitation intensity Specific daily intensity: ratio of total precipitation (PRCTOT) to precipitation frequency (RD) mm/day
PRCPTOT95 Total extreme precipitation Annual total precipitation from extreme precipitation days with >95th percentile mm
RD95 Extreme precipitation frequency Number of extreme precipitation days with >95th percentile day
SDII95 Extreme precipitation intensity Ratio of total extreme precipitation (PRCTOT95) to extreme precipitation frequency (RD95) mm/day

FIGURE 4 | Annual average distribution of all precipitation and extreme precipitation events in the Sichuan–Chongqing area: (A,D, and G) show all precipitation
events; (B,E, and H) show extreme precipitation events; and (C,F, and I) show the ratios of extreme precipitation events to all precipitation events.
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PRCPTOT95: PRCPTOT, RD95: RD, and SDII95: SDII (Figures
4C,F,I), we found that the Sichuan basin is primarily dominated
by extreme precipitation events in terms of precipitation amount,
frequency, and intensity. Notably, strong convection events in the
basin are more common in most urbanized areas.

We divided urbanization into the SUDS (1979–1993) and
FUDS (1994–2015) stages for comparison. During these two
stages, the high-value areas of the three precipitation indices
exhibited no significant differences (Figure 5). However, after
calculating the differences in each grid between the two stages, we
observed that during the FUDS, the means of PRCPTOT95,
RD95, and SDII95 in the basin area increased by ~120 mm,
5 days, and more than 4 mm/d, respectively.

Based on our analysis, extreme precipitation events in the
Sichuan–Chongqing area were primarily concentrated in the
Sichuan basin, which is dominated by urban areas.
Furthermore, urban areas were more likely to experience
extreme precipitation during the FUDS.

3.2 Temporal Evolution of Extreme
Precipitation Events
Because the CMFD and LCCS have different spatial resolutions,
we adopted the processing method of Su et al. (2019) to evaluate
the temporal evolution of extreme precipitation events. On a

CMFD grid, if the LCCS urban grids occupy more than 50% of its
area, the land cover type is defined as urban; otherwise, it is
defined as non-urban. For the statistical analysis of the urban and
non-urban grids, only those with a significant trend that passed
the MK test at the 90% confidence level were considered. The
proportions of grid points that passed the MK test for the
PRCPTOT95, RD95, and SDII95 thresholds were 22.55, 18.93,
and 46.92%, respectively. To avoid the influence of climate and
topography on the comparative analysis between urban and non-
urban areas, we used the precipitation anomaly percentage
difference (PAP-DIFF) to account for the influence of extreme
precipitation (Nazeri et al., 2020). It should be noted, however,
that the urbanized and non-urbanized grid points were not fixed
in each year.

Figures 6A,C,E show the trends in the precipitation
anomaly percentage difference (PAP-DIFF) for
PRCPTOT95, RD95, and SDII95, respectively, in urban and
non-urban areas during the period 1979–2015. The PAP-DIFF
for both PRCPTOT95 and SDII95 exhibited an overall
increasing trend, and the difference between urban and
non-urban areas began to increase after 1994 when
urbanization became more intense. However, the PAP-DIFF
of RD95 showed no significant trend, indicating that the
extreme precipitation frequencies in urban and non-urban
areas were not significantly different.

FIGURE 5 | Distribution of average annual extreme precipitation amount (PRCTOT95), extreme precipitation frequency (RD95), and extreme precipitation intensity
(SDII95) in the Sichuan–Chongqing area: (A,D, and G) show the slow urbanization development stage (SUDS, 1979–1993); (B,E, and H) show the fast urbanization
development stage (FUDS, 1994–2015); and (C,F, and I) show the differences in each grid between these two stages.
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Figure 6B shows that the PRCPTOT95 PAP-DIFF from the
SUDS to FUDS increased from −0.58 to 2.44%/year. The average
trend of the PRCPTOT95 PAP-DIFF in urban and non-urban
areas reached 0.42%/year throughout the study period. Similarly,
Figure 6D shows that the PAD-DIFF between the urban and
non-urban areas exhibits no significant change between 1979 and
1993, and there is no trend in the RD95 PAP-DIFF between urban
and non-urban areas, with an average of 0.05%/year, increasing to
1.05%/year in the 1994–2015 period. Figures 6E,F show that the
SDII95 PAP-DIFF exhibited a similar trend to the
PRCPTOT95 PAP-DIFF; between 1979 and 1993, the PAP-
DIFF between the urban and non-urban areas showed no
evident decrease, whereas between 1994 and 2015, this trend
substantially increased, with an average increase of 5.5%/year.
The trends in extreme precipitation during each urbanization
stage are further summarized in Table 2.

The changes in PRCPTOT95 and RD95 revealed that extreme
precipitation in the Sichuan–Chongqing area is primarily reflected
by an increase in the amounts of individual precipitation events,
which is consistent with the SDII95 data. Based on the PAP-DIFF

between urban and non-urban areas throughout the study period,
rapid urbanization since 1994 has been associated with an increase
in extreme summer precipitation in the Sichuan–Chongqing area.

3.3 Probability Analysis of Extreme
Precipitation Events
To further explore the impact of urbanization on the probability
of extreme summer precipitation events, we followed the
“Technical Specifications for Rainstorm and Flood Disastrous

FIGURE 6 | Precipitation anomaly percentage difference (PAP-DIFF) trends of the annual average PRCPTOT95 (A,B), RD95 (C,D), and SDII95 (E,F) between
urban and non-urban areas in the Sichuan–Chongqing area. PRCPTOT95 is the extreme precipitation amount, RD95 is the extreme precipitation frequency, and SDII95
is the extreme precipitation intensity. Only grid points that passed the Mann−Kendall trend test at the 90% confidence level were included in the PAP-DIFF trends.

TABLE 2 | Comparison of the evolution of precipitation anomaly percentage
difference during different stages of urbanization in the Sichuan–Chongqing
area. “PRCPTOT95” is the extreme precipitation amount, “RD95” is the extreme
precipitation frequency, and “SDII95” is the extreme precipitation intensity.

Year PRCPTOT95 (%/year) RD95 (%/year) SDII95 (%/year)

1979–2015 0.42 0.05 1.25
1979–1993 −0.58 −0.16 −0.25
1994–2015 2.44 1.05 5.5
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Risk Mapping” of the CMA. Given the large disparities in extreme
precipitation between location, different levels of precipitation
intensity were defined as weak precipitation (<25mm/d), heavy
precipitation (25–35mm/d), torrential rain (35–45mm/d), and a
downpour (≥45mm/d). Thus, we calculated and compared the
probability distribution function (PDF) by occurrence (PDFc) and
the PDF by volume (PDFv) of daily precipitation under the various
precipitation intensities (R) during the SUDS and FUDS stages
(Guo et al., 2016; Wang et al., 2020). Overall, the PDFc of weak
precipitation events during the FUDS was lower than during the
SUDS (Figure 7A), whereas the PDFc of heavy precipitation events
during the FUDSwas higher than during the SUDS (Figure 7B). In
the case of PDFv, the volume of weak precipitation events
decreased during the FUDS (Figure 7C), but the volume of
heavy precipitation events substantially increased (Figure 7D).

Further analysis revealed that the PDFc of weak precipitation
events (<1 mm) was excluded during the FUDS, with no noticeable
changes during this stage. In contrast, the PDFc of heavy rain,
torrential rain, and downpour events increased by 11.97, 11.45, and
11.50%, respectively, which is consistent with the precipitation
frequencies previously discussed. In addition, the changes in PDFv
during the FUDS were more noticeable, with heavy rain, torrential
rain, and downpour events increasing significantly by 13.84, 12.06,
and 10.71%, respectively. This indicates that strong convective
events have occurred more frequently during the FUDS (Karl and
Knight, 1998; Fujibe et al., 2005; Liao et al., 2011).

3.4 Causal Analysis of Extreme Precipitation
Events
The atmospheric environment and circulation are primarily
affected by two types of disturbances related to urbanization,

i.e., the change in land cover type and the increase in
anthropogenic pollutant emissions (Zhong et al., 2015). The
UHI circulation and the reduction in surface wind speeds in
the urban environments leads to unstable atmospheric
stratification, favoring the generation of thermal convection
and the production of convective precipitation. The UHI effect
might, therefore, be an important component of the influence of
urbanization on extreme summer precipitation in the
Sichuan–Chongqing area. Indeed, large amounts of carbon
dioxide and other greenhouse gases released by human activities
coupled with the heat released from anthropogenic sources
typically result in higher temperatures in cities compared to
non-urban areas. As shown in Figures 8A,B, urban surface
temperatures have been increasing annually in our study area
relative to non-urban areas, particularly during the FUDS.

In addition, the difference in atmospheric humidity
between urban and non-urban areas has increased
annually (Figures 8C,D). The relatively high roughness of
urban surfaces coupled with the UHI circulation leads to
greater mechanical and thermal turbulence relative to the
suburbs. Moreover, the amount of water vapor transported
vertically to the upper layer through turbulence is more
significant in urban areas than in non-urban areas. This
results in a stronger upward motion, leading to more
moist convections that supply water vapor for heavy
summer precipitation. In addition, the uneven heights of
city buildings can act as mechanical obstacles to airflow,
triggering turbulence and uplift, and affecting vertical
airflow. Due to the relatively high surface roughness of
cities, airflow tends to decelerate on approach, which can
also increase the duration of precipitation event. Indeed, as
shown in Figures 8E,F, the annual mean wind speed in the

FIGURE 7 | Probability distribution functions (PDFs) by occurrence [PDFc; (A,B)] and volume [PDFv; (C,D)] for different intensities of summertime precipitation
events during the slow urbanization development stage (SUDS) and fast urbanization development stage (FUDS) in the Sichuan–Chongqing area.
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Sichuan–Chongqing urban areas decreased overall between 1979
and 2015. Air masses can be blocked by cities, converging in
downwind areas and resulting in upward air motion (Cotton and
Pielke, 2007). This further enhances atmospheric convergence
(Bornstein and Lin, 2000) and alters momentum, heat, and
water exchanges between the land surface and atmosphere
(Crutzen, 2004). Collectively, these factors likely contributed to
the observed increases in precipitation during the FUDS in the
Sichuan–Chongqing region.

4 CONCLUSION AND FUTURE RESEARCH

We provide the first analysis of changes in precipitation events in
the Sichuan–Chongqing area as a consequence of rapid
urbanization based on high-spatiotemporal-resolution
meteorological reanalysis data and land cover between 1979
and 2015. We adopted six precipitation evaluation indices
alongside spatiotemporal, probability, and mechanism analyses
to analyze the distribution and evolution of extreme precipitation

events before and during urbanization. Based on our results, we
draw the following main conclusions:

1) In terms of spatial characteristics, extreme precipitation events
in the Sichuan–Chongqing area were primarily concentrated in
the highly urbanized Sichuan basin, and extreme precipitation
occurred more frequently in urban areas during the FUDS.

2) Between 1979 and 2015, the impact of urbanization on
summertime precipitation trends was prominent. In
particular, rapid urbanization since 1994 has been
associated with increases in the amount and intensity of
extreme summer precipitation events.

3) In addition to large-scale climate change, the UHI effect and
changes in underlying urban surface characteristics caused by
rapid urbanization may have played critical roles in enhancing
extreme summer precipitation in the Sichuan–Chongqing area.

Overall, our results highlight how urbanization can lead to
changes in precipitation characteristics, having impacts on local
climates and altering extreme precipitation trends. This implies

FIGURE 8 | Comparison of annual average temperature (TEMP), specific humidity (SHUM), and wind speed (WIND) in the Sichuan–Chongqing area in urban and
non-urban areas between 1979 and 2015: (A,C, and E) show anomaly trends (%), and (B,D, and F) show anomaly differences (%).
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that with the continuous growth in the global urban population,
an increasing number of urban agglomerations and their
associated impacts on land use and land cover changes will
result in the widespread alteration of precipitation patterns.

Extreme precipitation events have an increasing impact on
natural climate factors and human social and economic activity.
However, studies on the impact of urbanization on extreme
precipitation have primarily been focused at the local scale,
whereas the understanding of regional-scale influences is still
lacking. Furthermore, while we focused on the relationships
between extreme summer precipitation and rapid
urbanization, the mechanisms underpinning urban thermal,
dynamic, and water vapor dynamics and extreme precipitation
still need to be established. This could be achieved using
numerical simulation and verification based on regional
climate models. Finally, we suggest that the understanding of
physical cloud-formation processes in urban areas needs to be
deepened to establish reliable early warning and forecasting
schemes for extreme regional-scale precipitation events.
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