AUTHOR=Zhao Ziru , Dong Chunmei , Ma Pengjie , Lin Chengyan , Li Guiang , Du Xinyu , Luan Guoqiang , He Yinjun , Liu Weibin TITLE=Origin of Dolomite in Lacustrine Organic-Rich Shale: A Case Study in the Shahejie Formation of the Dongying Sag, Bohai Bay Basin JOURNAL=Frontiers in Earth Science VOLUME=Volume 10 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.909107 DOI=10.3389/feart.2022.909107 ISSN=2296-6463 ABSTRACT=In most organic-rich shale reservoirs, dolomite is widely distributed and has different types and crystal sizes. However, the characteristics and formation mechanism of the dolomites in organic-rich shale are still poorly understood. Petrographic and geochemical analyses were performed to interpret the formation of dolomite in the lacustrine organic-rich shale of the Shahejie Formation, Dongying Sag, Bohai Bay Basin. Four types of dolomites, which represent episodic recrystallization, were classified based on crystal size and shape: (1) micritic dolomite (Dol-1), (2) sub- to euhedral (cloudy cores with clear rims) dolomite (planar-e) (Dol-2), (3) anhedral dolomite (coarse planar-s to nonplanar crystals) in phosphatic particles (Dol-3), and (4) fracture-filling anhedral dolomite (Dol-4). Dol-1 has nonplanar mosaic micritic crystals with irregular intercrystalline boundaries and dull cathodoluminescence (CL), suggesting dolomitization during the early burial stage. Dol-1 tends to occur under high paleosalinity and warm conditions.Furthermore, the syngenetic relationship, with abundant framboidal pyrite and gypsum, suggests that bacterial sulfate reduction (BSR) may influence the formation of Dol-1. The high content of Sr and low content of Mn/Sr also indicate less influence on burial. The Dol-2 crystals show cloudy cores with clear rims attributed to progressive dolomitization during burial. Dol-2 is always associated with the organic matter within the organic matter-rich lamina. The anhedral crystals and undulate (sweeping) extinction of Dol-3, which is usually encased by phosphatic particles in the organic-rich lamina, reflect the recrystallization affected by bacteria and the subsequent thermal evolution of organic matter. Dol-4 fulfills the abnormal pressure fractures crosscutting the earlier phases (Dol-1 and Dol-2) with undulate (sweeping) extinction and different rare earth element (REE) patterns. Dol-4 may be affected by hydrothermal fluids, which are influenced by the thermal evolution of organic matter. The 87Sr/86Sr values of the four types of dolomites similarly demonstrate the same dolomitizing fluids. Dol-1 to Dol-3 have similar REE patterns but are different from Dol-4, suggesting that Dol-4 likely resulted from circulation through basinal sediments instead of different fluids. Focusing on the origin of dolomite has been instrumental in understanding the diagenetic evolution, fluid flow, and organic-inorganic interactions in organic-rich shale and, hence, the reservoir formation of shale oil.