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Extreme weather induced by climate change has triggered large-scale power outages
worldwide, particularly during the cold season. More insight into the climatic impacts
(especially those of precipitation) on cold season residential electricity consumption (REC)
is needed. This study quantified the climatic impacts on REC, with a focus on precipitation,
and projected the associated changes under representative concentration pathways
(RCPs) 2.6, 4.5, and 8.5 climate change scenarios in Lanzhou and Lhasa, two cities in
China with distinctive cold season climates. The climatic impacts on REC in both cities are
driven by heating-related demand. A stronger precipitation impact during the cold season
was observed in both cities, since precipitation (particularly snowfall) boosts electricity
consumption during the cold season. As the two cities become warmer and wetter,
increased precipitation will offset the impact of warming on REC, with Lanzhou being more
strongly affected. Based on the projections for Lanzhou, the offsetting effect will be more
pronounced during the cold season across all scenarios, and will be particularly strong
under RCP 2.6. For the remainder of the year, the effects of increased precipitation and
warming will have competing importances under the RCP 4.5 scenario, whereas
temperature effects will generally dominate the climatic impacts under the RCP
8.5 scenario. These results provide new insights for future cold season climate–energy
studies and can be used to improve regional climate adaptation policies. We also propose
a method to project climate-based REC changes which is compatible with potential early-
warning projects to protect against extreme weather-induced power outages.
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1 INTRODUCTION

Extreme weather events induced by climate change threaten energy supplies worldwide (Mideksa
and Kallbekken, 2010). This threat is particularly pronounced during the cold season. The Hunan
power shortage in China in 2020 (Zheng, 2020), the Texas power crisis in the United States in 2021
(Busby et al., 2021), as well as the power outages in the northeastern United States in 2022 (Aljazeera,
2022) all occurred during the cold season. Understanding how residential electricity consumption
(REC) responds to climatic conditions during the cold season is critical for mitigating these threats,
and can assist in evaluating the social cost of carbon, which is a key indicator for policies focused on
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mitigating climate change (Nordhaus, 2017; Li et al., 2019), and
developing targeted adaptive measures (Deschênes and
Greenstone, 2011; Auffhammer and Mansur, 2014; Davis and
Gertler, 2015; Auffhammer et al., 2017).

Previous studies have suggested that the climatic impacts on
REC are mostly due to heating and cooling demands, and that
climate change will increase and decrease REC during the warm
and cold seasons, respectively (Deschênes and Greenstone, 2011;
Auffhammer and Mansur, 2014; Auffhammer et al., 2017; Waite
et al., 2017). In Earth science, climate is defined as the mean
temperature and precipitation, and their seasonal variations over
time (Strahler, 2011). Climate change not only increases summer
temperatures, but can also affect precipitation and induce more

extreme weather throughout the year (Cohen et al., 2014). The
power outage events mentioned above were all accompanied by
snowfall/blizzard events, indicating that the role of precipitation
(particularly snowfall) is critical for estimating heating-related
REC during the cold season.

Compared to temperature, precipitation has been largely
generalized in the econometric models used in previous studies
(Davis and Gertler, 2015; Auffhammer et al., 2017; Li et al.,
2019; Du et al., 2020; Zhang et al., 2020). Cooling degree days
(CDD) and heating degree days (HDD) are used to group
temperature data (Du et al., 2020; Zhang et al., 2020).
However, there is no equivalent metric for precipitation
data. Another method for sorting temperature data uses

FIGURE 1 | Location of the cities of Lanzhou and Lhasa.

FIGURE 2 | Results of algorithm selection for estimating Lanzhou and Lhasa residential electricity consumption (REC). Blue bars indicate negative mean squared
error (MSE) and pink bars indicate the average ranking for each algorithm based on 100 runs. Shorter bars indicate a better baseline performance of the corresponding
algorithm (GBM - gradient boosting machine, ET - extra trees, KNN - k-nearest neighbors, AB- adaptive boosting, RF - random forest, CART - classification and
regression tree, SVR - support vector regression, LR - simple linear regression model, i.e., the ordinary least squares (OLS) model).
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distribution-based temperature bins (Deschênes and
Greenstone, 2011; Davis and Gertler, 2015; Li et al., 2019);
however, fewer data points are available for precipitation than
temperature during a given study period (Deschênes and
Greenstone, 2011; Davis and Gertler, 2015). Alternatively,
precipitation can be treated as a covariate or control
variable, i.e., as the background setting rather than the

focus of the study (Auffhammer et al., 2017; Zhang et al.,
2020), which effectively attributes less attention to
precipitation than to temperature. However, precipitation
does affect REC (Auffhammer and Aroonruengsawat, 2011;
Deschênes and Greenstone, 2011), and precipitation changes
have been shown to increase the predictive uncertainty of REC
in Jiangsu, an eastern province of China (Zhang et al., 2020).

TABLE 1 | Results of ordinary least squares (OLS) linear regression modeling of the Lanzhou and Lhasa year-round datasets. (REC - residential electricity consumption).

Data Response Variable R2 Coefficient Predictor Variables p

Lanzhou 2011–2019 (year-round) REC 0.901 −1459.1703 Temperature 0.000
−136.8127 Precipitation 0.441
3154.4050 Income 0.000
−277.0476 Population 0.023

Lhasa 2014–2019 (year-round) REC 0.851 −438.3596 Temperature 0.000
48.2718 Precipitation 0.374
62.8833 Income 0.863

1915.3652 Population 0.012

FIGURE 3 | Validation of the Lanzhou and Lhasa models. The blue line marks the reserved residential electricity consumption (REC) validation data. The red line
indicates REC estimated using the corresponding model with temperature, precipitation, income, and population inputs. (A) and (B) show the validation results for
models trained using datasets for Lanzhou during 2011–2019 and for Lhasa during 2014–2019, respectively.
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Moreover, precipitation has been found to be playing a key role
in shaping cold-season REC (Xia et al., 2022).

This study aimed to quantify the impacts of climate on REC
and project future trends under climate change in two cities with
distinctive cold season climates, with a particular focus on how
future precipitation changes will impact REC. This study
hypothesized that precipitation impacts heating-related REC
during the cold season, likely in the form of snowfall. If this
hypothesis is correct, climatic impacts on REC during the cold
season may not simply decrease with climatic warming, but
instead may increase if there more precipitation occurs during
the cold season. To test this hypothesis, an algorithm model was
constructed using seven machine learning algorithms and
predicted the future climatic impacts on REC under three
climate scenarios projected with different greenhouse gas
representative concentration pathways (RCPs). The RCPs used
herein were: RCP 2.6, in which greenhouse gas emissions are
expected to begin decreasing by 2020 and reach zero by 2,100;
RCP 4.5, in which emissions are assumed to peak around
2040 and then decline; and RCP 8.5, in which emissions
continue to increase throughout the 21st century.

Two cities in China, Lanzhou and Lhasa, were selected as the
research targets. These two cities were selected to represent
different climate patterns. As indicated by Figure 1, the region
where Lanzhou and Lhasa are located is generally cold due to the
uplift of the Tibetan Plateau, and climate in the region is greatly
shaped by atmospheric circulations of westerlies and monsoons;
Lanzhou is located in the prevailing westerly-dominated climate
zone, while Lhasa is located in the monsoon-dominated climate
zone (Yao et al., 2013). Lanzhou has a longer cold season
(hereinafter defined as months with average temperatures
below 0 °C) than Lhasa. Lanzhou also receives more
precipitation during the cold season than Lhasa, where
precipitation events are concentrated in the warm season (Yao

et al., 2013). These two cities also represent the different heating
infrastructures present in northern and southern China, as
defined by the Qinling–Huaihe Line. Lanzhou is equipped
with a central coal-fueled heating system, as in other northern
cities, while Lhasa relies mostly on household electric heating, as
does the rest of southern China.

By investigating the climate–REC relationships in Lanzhou
and Lhasa and determining the projected impacts of climate
change, the results of this study provide new insights for future
climate–energy studies of the cold season and can be used to
inform policies for regional climate adaptation. The algorithm
model developed herein is also readily compatible with potential
early-warning projects to protect against extreme weather-
induced power outages.

2 MATERIALS AND METHODS

2.1 Research Design
Previous studies have suggested that factors impacting REC
include temperature, precipitation, income, population, and
urbanization (Auffhammer and Aroonruengsawat, 2011;
Deschênes and Greenstone, 2011; Auffhammer and Mansur,
2014; Davis and Gertler, 2015; Frederiks et al., 2015; Fan
et al., 2017; Li et al., 2019). Since urbanization in essence is
the process of rural population moving to urban areas, and
Lanzhou and Lhasa are both urban areas, the factor of
urbanization can be reflected by population in these two cities.
Thus, the model was constructed using temperature,
precipitation, income, and population as predictor variables,
and REC was used as the response variable. Unlike previous
studies that used data modeling, an algorithmmodeling approach
was adopted. With respect to the predictive accuracy and
interpretability, the results from the model developed herein

FIGURE 4 | Individual conditional expectation (ICE) plots and partial dependence plots (PDPs) for the models. Results of model estimates for REC in (A) Lanzhou
during 2011–2019 and for (B) Lhasa during 2014–2019. Subplots ①, ②, ③, and ④ show the partial dependences of temperature, precipitation, income, and
population, respectively.
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were compared with those of the parameter-based models used
previously to verify and demonstrate the strength of this new
modeling approach. The capacities of the new model to
holistically estimate and project climatic impacts were used to
determine the projected impacts of climate change on REC under
the RCP 2.6, 4.5, and 8.5 scenarios.

2.2 Data
The estimates of this study was based on panel data for the period
of 2011–2019 in Lanzhou and for the period of 2014–2019 in
Lhasa. According to the data source (to be specified later), before
2014, REC data for Lhasa was compromised by wholesale
consumption that cannot be differentiated from residential

use. Therefore, we only used after-2014 REC data for Lhasa,
which resulted in the inconsistent study periods of the two cities.
As this study investigates the impacts of climate change, changes
in both the mean temperature and precipitation, as well as their
seasonal variations were included. Each dataset included monthly
REC, monthly mean temperature, monthly precipitation, annual
salary, and annual population. The study periods were mainly
defined by the availability of monthly REC data for the two cities.
Obtaining more than 5 years of monthly REC observations from
Lhasa is difficult, as the grid company has changed how REC is
calculated several times over recent decades. Since the
constructed panel dataset must include the REC, this study
had to settle for a shorter study period to construct the model.

TABLE 2 | Results of ordinary least squares (OLS) linear regression modeling of the Lanzhou and Lhasa cold-season data subsets. (REC - residential electricity
consumption).

Data Response Variable R2 Coefficient Predictor Variables p

Lanzhou 2011–2019 (cold season) REC 0.959 −1307.5208 Temperature 0.009
4985.5676 Precipitation 0.001
3911.2492 Income 0.000
−299.2837 Population 0.062

Lhasa 2014–2019 (cold season) REC 0.884 −941.8544 Temperature 0.001
-1628.8780 Precipitation 0.198
−355.0618 Income 0.632
3219.3960 Population 0.042

FIGURE 5 | Correlation heat maps of the 2011–2019 Lanzhou and 2014–2019 Lhasa data. Correlations among the data variables in the Lanzhou (A) year-round
and (B) cold season datasets and correlations for the Lhasa (C) year-round and (D) cold season datasets. (REC - residential electricity consumption).
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The model results are reliable as long as the model validation is
sound (i.e., does not exhibit overfitting).

Lanzhou REC data was obtained from the Gansu State Grid
Company (GSGC), while Lhasa REC data was obtained from the
Tibet State Grid Company (TSGC). Monthly mean temperatures
and monthly precipitation data were calculated using daily
temperature and precipitation data for 2011–2019 in Lanzhou
and for 2014–2019 in Lhasa, which were obtained from the China
Meteorological Administration (https://data.cma.cn/en). Annual
salary and population data were obtained from the National
Bureau of Statistics of China (https://data.stats.gov.cn/english/).

To predict future climatic impacts on REC in Lanzhou and
Lhasa, we used future climate projections for China, which are
based on the regcm4.6 model under the RCP 2.6, 4.5, and
8.5 scenarios (Lei and Xiaoduo, 2020). This regional climate
model has yielded more accurate simulation results of the
present mean climatology over Northwest China than those of
the Met Office Hadley Centre Earth System (HadGEM2-ES)
global climate model (Pan et al., 2020). Climate projections
were extracted for Lanzhou and Lhasa from the nearest
available locations in the data (i.e., at 36° N, 103.5° E for
Lanzhou and at 29.5° N, 91° E for Lhasa). This climate
projection data is more reliable for Lanzhou, as it is located in
Northwest China where the regcm4.6 model performs well.
However, Lhasa is located not only in Southwest China, but

also on the Tibetan Plateau. While the Tibetan Plateau is
increasingly becoming warmer and wetter (Yao et al., 2019),
climate projections for the region are complicated substantially by
the uplift of the Tibetan Plateau, and reliable near-term climate
change projections are not yet available (Hu and Zhou, 2021).
Since Lanzhou is also projected to become warmer and have
increased precipitation (Lei and Xiaoduo, 2020), we were able to
obtain a qualitative perspective for Lhasa from the results
obtained for Lanzhou.

2.3 Methods
2.3.1 Algorithm Vs Data Models
Algorithm modeling was used in this study rather than data
modeling, which has been used by previous studies. Modeling is a
process that associates predictor variables with the response
variable. The main difference between data modeling and
algorithm modeling is the way in which the association is
constructed (Breiman, 2001). Data modeling assumes that
real-world data conform to a stochastic regression function
that incorporates predictor variables, random noise, and
parameters. The model then attempts to estimate the response
variable using functions that are validated using goodness-of-fit
tests (Breiman, 2001). In contrast, algorithm modeling assumes
that the association is unknown and attempts to identify an
algorithm that can best predict the response variable using the

FIGURE 6 | Partial dependence plot (PDP)-based interpretation of gradient boosting machine (GBM) models for the 2011–2019 Lanzhou and the
2014–2019 Lhasa year-round datasets. Marginal effects of all climate conditions considered by the GBM model on residential electricity consumption (REC) in (A)
Lanzhou and (C) Lhasa, with x-axes showing temperature, y-axes showing precipitation, and z-axes showing the marginal effect of the climate feature on the model
outcome. Average climatic impacts based on climate patterns in (B) Lanzhou and (D) Lhasa, with x-axes showing the month, purple y-axes showing the marginal
effect of the climate feature or climatic impact, blue y-axes showing temperature, and green y-axes showing precipitation.
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predictor variables. The results are then validated using the
predictive accuracy (Breiman, 2001). Algorithm and data
modeling are known as randomized and distributional
approaches, respectively, in the computer science community.
The two modeling types are considered to be two sides of the
same coin, as algorithm modeling approximates the best
performance with probabilities, while data modeling uses
parameters to obtain the best performance (Yao, 1977)

Data models attempt to fit real-world observational data for
various systems with unknown mechanisms into a parametric
model selected by a statistician. This inevitably compromises the
accuracy, as well as the insight of the model (Breiman, 2001).
Despite efforts to minimize parametric assumptions (Deschênes

and Greenstone, 2011), the econometric models used in previous
studies remain parameter-based data models with similar
limitations. Conversely, algorithm modeling is entirely data-
driven, as it makes only one assumption, i.e., that the data
were obtained from an unknown multivariate distribution
(Breiman, 2001). A model with a higher accuracy yields more
reliable information regarding the underlying data mechanism.
Since algorithmic models have generally been shown to make
better predictions (Breiman, 2001), we adopted algorithm
modeling in this study.

Since algorithm modeling treats the association between the
predictor and response variables as unknown, there was nomeans
of ensuring that the algorithm worked well with the data prior to

FIGURE 7 | Projected climate change and change in climatic impact on residential electricity consumption (REC) in Lanzhou and Lhasa. Comparisons of observed
and simulated monthly mean temperatures for status-quo periods in (A) Lanzhou and (B) Lhasa. Comparison of observed and simulated monthly mean precipitation for
status-quo periods in (C) Lanzhou and (D) Lhasa. Comparisons between the status-quo climatic impacts on REC with those under the projected climate scenarios
during 2036‒2045 in (E) Lanzhou and (F) Lhasa. Status-quo data are marked in green, RCP 2.6 data in blue, RCP 4.5 data in orange, and RCP 8.5 data in red.
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testing. We derived a pool of seven commonly used candidate
algorithms (Brownlee, 2016), three of which were basic
algorithms: k-nearest neighbors (KNN), support vector
regression (SVR), and classification and regression tree
(CART). The KNN algorithm is designed with the assumption
that similar things are in close proximity to each other. It makes
estimations by measuring the distances between an instance and
all other instances in the dataset, then selects the specified number
of instances (K) closest to the point of interest, then votes for the
most frequent label (in the case of classification) or averages the
labels (in the case of regression) (Altman, 1992). SVR works by
constructing a hyperplane or hyperplanes in a high-dimensional
space for either classification or regression. The hyperplane with
the longest distance from all of the nearest training data points of
any class (also known as the functional margin) is considered to
be a good separation, as a larger margin yields a lower
generalization error (Cortes and Vapnik, 1995). CART is also
known as a decision tree, since it is a tree-like algorithm that is
constructed by repeatedly splitting into two child nodes. It splits
on a single input variable that improves the Gini index, which is a
performance measure that calculates the probability of a specific
input variable being classified incorrectly when selected randomly
(Breiman et al., 2017). The structure of CART makes it (along
with other tree-based algorithms) innately immune to
correlations among the predictor variables (Friedman et al.,
2001).

The other four algorithms were ensemble algorithms, which is
a machine learningmethod that combines several base algorithms
to decrease the variance and bias or to improve predictions. We
used Adaptive Boosting (AB), Random Forest (RF), Extra Trees
(ET), and Gradient Boosting Machine (GBM), all of which are
CART ensembles with different ensemble methods. The RF and
ET algorithms train their individual trees independently and
average the predictions across trees, which is an ensemble
method known as bagging. RF and ET differ in how their
individual trees split, as well as how they sample the data. RF
splits where the performance measurement is best, whereas ET
splits randomly. RF sub-samples the data sample with
replacement or bootstrapping, while ET uses the original data
sample (Ho, 1995; Geurts et al., 2006). The AB and GBM
algorithms build one tree at a time, wherein each new tree
corrects errors made by the previous tree, which is an
ensemble method known as boosting. AB and GBM differ in
how they identify and correct errors of previous trees. AB
identifies errors using high-weight data points as each new
tree up-weights the observations that were misclassified by the
previous tree, whereas GBM identifies errors using the gradient of
loss function computed in the previous tree, which reflects how
well the previous tree performed. AB corrects errors by assigning
its trees different weights in the final prediction based on their
performance. In contrast, GBM weights all trees equally, but
restricts their predictive capacities through the learning rate,
which represents how quickly an error is corrected from each
tree to the next, for greater accuracy (Mason et al., 1999;
Friedman, 2001; Kégl, 2013).

The baseline performance of the seven algorithms was
determined by running the data with each algorithm using the

default hyperparameters of the algorithms in a Python
3.7 environment with scikit-learn implementation (Pedregosa
et al., 2011). The scikit-learn utility of Pipeline (Pedregosa
et al., 2011) was used to automate the workflow and avoid
data leakage. In the workflow, we standardized the data to test
all candidate algorithms. In the study, 80% of the data was used
for algorithm testing and modeling and 20% reserved for
validation. The training data and the reserved validation data
were split randomly. And 10-fold cross validation was used to
estimate the algorithmic performance as measured by the mean
squared error (MSE).

The stochastic nature of machine learning algorithms means
that the model results for each run can differ. To ensure that we
selected the best algorithm from the candidate pool, each of the
seven candidate algorithms was run 100 times on the data and
their performances were averaged in terms of the MSE and
averaged ranking out of 100 runs.

For comparison, a simple multivariate parameter-based
ordinary least squares (OLS) model is also used in parallel
with the algorithm model as follows:

″RECi � β0Tempi + β1Precii + β2Salaryi + β3Popi + ωi″, (1)
where i is the sample month, RECi is residential electricity
consumption for month i, Tempi is mean temperature of
month i, and Precii is the total precipitation of month i.
Salaryi and Popi are salary and population levels for month i,
respectively, both averaged from their yearly total. The
coefficients of interest are β0, β1, β2, and β3, representing the
impact of temperature, precipitation, income and population,
respectively ωi represents the bias. To ensure that no additional
assumptions were made for this model than for the algorithmic
model, neither temperature nor precipitation data was regrouped
in this parallel model, nor did we conduct any log
transformations. This parameter-based model and the machine
learning algorithms were tested together for baseline
performance.

2.3.2 Comparing Predictive Accuracies
Figure 2 shows the baseline performances of the candidate
algorithms using the Lanzhou and Lhasa data, respectively.
The GBM ensemble algorithm was the best fit for the Lanzhou
data during 2011–2019 data and the Lhasa data during
2014–2019, as it exhibited the lowest average MSEs with a
high consistency.

To validate the model results in case of overfitting, the
predictor variables from the validation datasets were run with
the prepared models to make predictions. The validation results
are shown in Figure 3. The low MSE results suggest that the
model was not overfitted. This indicates the strength of the
algorithm model to make predictions based on limited data
points.

2.3.3 Comparing the Interpretability of the Models
A robust interpretation of the models can only be achieved
with models that exhibit high predicative accuracies. Figures
2, 3 indicate that the GBM yielded the highest predicative
accuracy for both the Lanzhou and Lhasa data. To compare its

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9082598

Xia et al. Cold Season Residential Electricity Changes

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


interpretation with those of the traditional parameter-based
models, Table 1 presents the results of the OLS linear models
across different datasets. Table 1 indicates that the OLS
models can explain 90.1% of the variation in the Lanzhou
year-round data and 85.1% of the variation in the Lhasa data
during 2014–2019. Hence, it was meaningful to compare the
OLS interpretation with the GBM model interpretation for
Lanzhou, as both were good models for the Lanzhou data, with
the GBM yielding better predictions (Figure 2).

Despite their reputation for being “black boxes” that are
difficult to interpret (Azodi et al., 2020), algorithmic models
have been shown to be interpretable in ways that not only
show the individual impacts of the predictor variables, but also
the joint impact of multiple predictor variables (Friedman, 2001;
Friedman andMeulman, 2003; Strobl et al., 2007; Goldstein et al.,
2015; Zhao and Hastie, 2019; Azodi et al., 2020; Mehdiyev and
Fettke, 2020; Molnar, 2020). We used partial dependence (PDP)
and individual conditional expectation (ICE) plots to interpret
the data mechanisms underlying the algorithmic models (Zhao
and Hastie, 2019; Mehdiyev and Fettke, 2020; Molnar, 2020). We
used the concept of feature to discussion the PDPs and ICE plots.
The concepts of “feature” and “predictor variable” are often used
interchangeably, particularly in machine learning models.
However, we made a distinction between the two in this study
for clarity. We use the term “predictor variables” to refer to
individual variables we used for the modeling (i.e., temperature,
precipitation, income, and population). A “feature” can either be
an individual predictor variable, such as temperature, or two
combined predictor variables (e.g., climate, which comprises both
temperature and precipitation).

The PDPs depict the overall dependence of model prediction
on a given input feature by marginalizing over the values of all
other input features. ICE plots disaggregate this average by
showing the estimated functional relationship of each instance
(Goldstein et al., 2015; Zhao and Hastie, 2019; Mehdiyev and
Fettke, 2020; Molnar, 2020). While PDPs are useful for depicting
the overall marginal effect of a given feature, they can also obscure
heterogeneous relationships caused by interactions (Friedman
and Meulman, 2003; Goldstein et al., 2015; Zhao and Hastie,
2019; Mehdiyev and Fettke, 2020; Molnar, 2020). For this reason,
we compared the ICE plots and PDPs to determine whether
heterogeneous relationships were present in the estimations.

The PDP utility offered by scikit-learn (Pedregosa et al., 2011)
was adopted for the ICE and PDP visualizations. To compare
with the OLS interpretation based on coefficients for the predictor
variables, the study first interpreted the roles of the predictor
variables for the GBMmodel, as shown in Figure 4. Note that the
marginal effect is not the predicted REC value; rather, it is the way
in which the REC changes with the feature. All of the ICE plot
curves generally followed the same pattern indicated by the PDP
line. This means that the PDPs of the models provided a reliable
interpretation of the relationships between the features and REC.

Interpretations using the GBM and OLS models on individual
predictor variables were generally consistent for the temperature‒
REC relationships, with the innately non-linear GBM being more
informative than the OLS model. The GBM suggests that
precipitation plays a role in influencing REC, whereas the OLS

appeared to differ since it failed to reach a conclusion on the role
of precipitation, as shown by the high p-value and the opposite
signs of the precipitation coefficients for the two cities (Table 1).
At this stage, we cannot be sure which interpretation is correct,
owing to the multi-collinearity between the year-round
temperature and precipitation data, as shown in Figures 5A,C.

Multi-collinearity may be one of the reasons why precipitation
has not been fully considered in previous studies. Multi-
collinearity can reduce the precision of the estimated
coefficients in linear regressions and it is common to remove
or lessen the weight of one predictor (in this case, precipitation).
Correlations between temperature and precipitation are also
challenging for the GBM interpretation, as the use of PDPs
and ICE plots is based on the assumption that the features are
not correlated (Zhao and Hastie, 2019; Mehdiyev and Fettke,
2020; Molnar, 2020).

tTo test our hypothesis regarding the role of precipitation
during the cold season, the study created a data subset
comprising data from November, December, January, and
February, i.e., the cold season only. Multi-collinearity
between temperature and precipitation in this subset was no
longer a problem for either city, as shown in Figures 5B,C. For
this reason, this study used this subset (rather than the year-
round dataset) to analyze the individual roles of temperature
and precipitation.

Quantification of year-round climatic impacts should be
conducted without interference from multi-collinearity.
Interpretations of an algorithm model can manage the multi-
collinearity between temperature and precipitation by combining
them into one feature (Molnar, 2020). Unlike OLS models that
can only rely on individual predictor variable coefficients for
information, the PDPs of algorithmic models can be applied to a
predictor variable, as well as to a feature comprising two
combined predictor variables (Friedman and Meulman, 2003;
Goldstein et al., 2015; Molnar, 2020). Since the climate feature
was not correlated with the other features of the model in this
study, our interpretations of the climatic impacts were not
affected by the influence of multi-collinearity.

It is noteworthy that the PDP for the climate feature was not a
simple combination of the individual PDPs for temperature and
precipitation, as shown in Figure 4. Rather, the PDP for the
climate feature captured changes in temperature and
precipitation, as well as their interactions, and showed the
marginal effects of these components as a whole, since partial
dependence was calculated by marginalizing over all the other
inputs of the estimation (i.e., income and population) (Friedman
and Meulman 2003; Molnar 2020). When quantifying the
marginal effect of the climate feature, a newly developed
method was used: First, the monthly mean temperature and
monthly precipitation were averaged by calendar month to
represent the corresponding mean climatic patterns for
Lanzhou and Lhasa during their respective study periods; then
the potential variation ranges for the climate patterns using the
standard deviations of the monthly mean temperature and
monthly precipitation were obtained for each calendar month
in both cities; finally, the average marginal effects of climate for
each calendar month in each of the two cities were obtained by
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averaging the marginal effects of all the climate conditions within
the variation range for each month (Xia et al., 2022).

Built on the method mentioned above, this study further
tapped into the potential of the algorithm model for
holistically quantifying the climatic impacts on REC to predict
the impacts of climate change on REC in Lanzhou and Lhasa.
This was achieved by replacing the climate observations with RCP
2.6, RCP 4.5, and RCP 8.5 climate projections in the PDP-based
quantification. The climate projections were summarized into
monthly mean climate as follows:

″Cm′ � [(TMEANm′± STD(Tm′)),
(PMEANm ′± STD(Pm′))]″, (2)

Where Cm′ represents the climate pattern projected for calendar
monthm, which is obtained by first averaging projected daily
temperature and precipitation for calendar monthm to get
TMEANm′ and PMEANm ′, while keeping a variation range
derived from standard deviation of changes in TMEANm′ and
PMEANm ′ across the projected years.

Then the marginal effects of all climate instances within the
variation range of Cm′ were calculated as follows:

″Rm′ � Cm′∩ Cl′ ″ (3)
Where Rm′ is the intersection between the projected climate
pattern of Cm′ and all the climate combinations Cl′ simulated
during the PDP calculation that defines the bounds of the PDPs.
Rm′ is then used to calculate the projected averaged climatic
impact in monthm as follows:

″pdCl′(rm′) ≈ 1
nRm′

∑n

j�1f(rm′, sc(
j)

i )″, (4)

Where nRm′ represents the number of instances rm′ in Rm′ and sci
the socio-economic instances in the observation dataset. By using
the observed socio-economic inputs. This study effectively
controlled the socioeconomic conditions at the status-quo level
of the study periods. As this study focused on the climatic
impacts, pdCl′(rm′) in effect denotes the projected climatic
impact on REC in monthm. This study made projections for
the decade from 2036 to 2045, since this period is more likely to
accommodate the socioeconomic presumption than more distant
periods, but is sufficiently distant for meaningful climate
projections.

3 RESULTS

3.1 Individual Temperature and
Precipitation Roles
The GBM and OLS interpretations described in Section 2.3.3
indicate a negative effect of temperature on REC in both cities,
which is consistent with the heating “half” of the U-shaped
temperature–REC function obtained in previous studies
(Auffhammer and Mansur, 2014; Li et al., 2019). Combined
with local knowledge, we are confident that the climatic
impacts on the REC in Lanzhou and Lhasa are mainly driven
by heating consumption. However, fewer evidences were

available from previous studies regarding the role of
precipitation, and neither the OLS coefficient nor the GBM
PDPs were conclusive in this respect. To test our hypothesis
regarding the role of precipitation during the cold season, we ran
the OLSmodel using the cold season data subset and obtained the
results presented in Table 2.

The OLS model based on the Lanzhou cold-season data subset
yielded an R2 of 95.9% and considers precipitation to be a
statistically significant predictor variable, with a p-value lower
than that of temperature. The positive precipitation coefficient
suggests that more precipitation during the cold season will drive
up REC. The cold season data subset was too small to model using
GBM; however, we were able to obtain confirmation based on its
year-round interpretation. In Figure 4, the GBM indicates that
the marginal effects of precipitation on REC are higher when
monthly precipitation falls below 40 mm in Lanzhou and below
20 mm in Lhasa. Climate patterns in the two cities (Figures
6B,D) indicate that such low monthly precipitation only occurs
during the cold season, suggesting that the impact of precipitation
is stronger during the cold season.

The OLS model for the Lhasa cold season data subset yielded
an R2 of 88.4% and suggests a negative precipitation–REC
relationship. No statistically significant precipitation–REC
relationship was obtained in this case, although the p-value for
precipitation was considerably lower for the Lhasa cold season
data subset than for the year-round Lhasa data. Despite this, the
result can be used as a parallel evidence, as the statistical
community has warned that it would be inappropriate to
conclude that there is no association simply because the
p-value is >0.05, i.e. statistical significance (Amrhein et al.,
2019). We compared the p-values with results of GBM models
to verify the role of precipitation during cold season. The GBM
interpretation of the precipitation impact in Lhasa (Figure 4B)
also confirmed this theory, as it exhibited a small peak for a low
precipitation range during the cold season, suggesting the
existence of a precipitation impact during the cold season.

An explanation of the absence of a positive OLS coefficient for
precipitation during the cold season in Lhasa was identified by
comparing the climate patterns of Lhasa and Lanzhou, as shown
in Figure 6B,D. The monthly mean temperature rarely drops
much below 0 °C in Lhasa, even during the cold season. In
addition, monthly precipitation during the cold season in
Lhasa is considerably lower than that during the cold season
in Lanzhou. In other words, compared with Lanzhou, snowfall is
not as frequent or as heavy in Lhasa; thus, the impact of
precipitation during the cold season in Lhasa is less
observable. This study concluded that the impact of
precipitation was stronger in both cities during the cold
season as a result of snowfall, which increased electricity
consumption used for heating.

3.2 Climatic Impacts
As discussed in Section 2.3.3, quantifying the marginal effects of
year-round temperature and precipitation separately would not
be accurate due to the presence of multi-collinearity. It is
unreasonable to omit either temperature or precipitation from
our estimation just because of their numerical correlation, as we
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have already shown that both play roles as independent climate
variables that influence REC. For this reason, we quantified their
joint impact (i.e., the climatic impact) by interpreting the climate
feature enabled by the PDP. Figures 6A,C show the marginal
effects of climate on REC and the climatic impacts on REC in
Lanzhou and Lhasa, respectively. We used real-world climate
patterns in Figures 6B,C to assist in constraining the way in
which we used the PDPs such that the conclusions were not
obtained based on extremely unlikely temperature and
precipitation combinations. A climatic impact of zero indicates
that the climate feature did not have any effect on the estimation.
Positive climatic impact values indicate that the corresponding
climatic conditions will increased the estimated REC, while
negative values indicate reductions in REC. We hereafter
describe changes in the climatic impacts by referring to them
as positive or negative climatic impacts; i.e., when we state that
the climatic impact was enhanced, this means that the climatic
impact has increased its absolute value.

Interpretation of the GBM model using a holistic climate
feature (Figure 6B) exhibits a V-shaped relationship between
the climatic impact on REC and calendar month for Lanzhou,
with July exhibiting the strongest negative climatic impact and
November, December, January, and February exhibiting the
largest positive climatic impacts. The change in the climatic
impact during the cold season was more consistent with the
change in precipitation, which agrees with our previous finding
that precipitation has a stronger impact on REC in Lanzhou
during the cold season, likely in the form of snowfall given that
the mean temperatures during the cold season months were
slightly above or below 0 C.

In Lhasa, the relationship between the climatic impact on REC
and calendar month was U-shaped (Figure 6D), with June, July,
August, and September exhibiting similarly strong negative
climatic impacts, and December and January exhibiting the
largest positive climatic impacts. The change in climatic
impact during the cold season was more consistent with the
change in temperature than the change in precipitation. This can
be explained by the fact that less snowfall occurs in Lhasa.
Precipitation is low in Lhasa during the cold season, during
which only 1 month has a mean temperature below 0 C.

Although ‘V-’ and ‘U-shaped’ were used to describe the PDP
curves, the curves were completely different from the U-shaped
curves commonly discussed in previous studies. This study
moved beyond the temperature-based climate–REC concept to
include temperature, precipitation, and seasonal variations in the
climate–REC relationship. While the U-shaped curves discussed
in previous studies reflect the temperature-–REC relationship, the
V- and U-shaped curves in this study reflect the monthly/
seasonal variations in climatic impacts, including the effects of
both temperature and precipitation on REC. The lower end of the
V- and U-shaped curves exhibited negative REC responses to
climate during the warm season, and positive REC responses
during the cold season, suggesting that climate impacts REC in
different directions during the warm and cold seasons. In other
words, REC in Lanzhou and Lhasa is mostly driven by the heating
demand, as a strong cooling demand would be reflected as a
positive response during the warm season. This is consistent with

local knowledge that residents of both cities do not commonly use
air conditioners for cooling during the warm season. In this case,
for a city with both strong heating and cooling demands, we
would expect a W-shaped PDP curve. The V- and U-shaped
curves obtained for Lanzhou and Lhasa, respectively, indicate that
REC in Lanzhou is more sensitive to climatic variations during
the warm months than REC in Lhasa.

It is also notable that the temperature threshold for climatic
impacts on REC in the two cities was not consistent, as opposed to
the assumptions of HDD and CDD that there is a consistent base
temperature at which there is no energy demand for cooling or
heating. Climatic impacts on REC are approximately zero when
the monthly mean temperature is ~12 °C in Lanzhou and ~8 °C in
Lhasa. This further supports our point that temperature alone
does not determine the climatic impact on REC. It is inferred that
precipitation, as well as socioeconomic factors, also play a role in
determining the climate threshold when there is no energy
demand for cooling or heating.

3.3 Projected Changes in Climatic Impacts
on REC
To obtain meaningful comparisons of climatic impacts on REC
under status-quo and the projected RCP 2.6, 4.5, and
8.5 scenarios, insights are needed regarding the biases of the
simulated climate patterns. A smaller simulated bias indicates a
more reliable projected climatic impact. We compared the
climate patterns simulated by the Regcm4.6 model under the
different climate scenarios for Lanzhou and Lhasa with the
observed climate patterns during 2011‒2019 and 2014–2019,
respectively. The data used to train the model developed
herein was considered as the status-quo condition. Figures
7A,B show comparisons of the status-quo and simulated
temperature patterns, and Figures 7C,D show the precipitation
patterns.

For Lanzhou, the simulated temperatures were lower than
observed temperatures under all three climate scenarios, although
they were within an accepted range (with the exception of
February and March). The simulated temperature in February
was <0 °C across all scenarios, while the actual observed
temperature was >0 °C. This may create confusion, given that
our hypothesis is dependent on precipitation taking the form of
snowfall. The underestimation of the simulated temperature
during March was too large to be used. For Lhasa, the
simulated temperatures were considerably lower than the
observed temperatures under all three climate scenarios
throughout the year, with the cold season months all
exhibiting negative simulated values, while the observed
temperatures were positive.

For precipitation, the Regcm4.6 model overestimated
precipitation during the cold season months in both Lanzhou
and Lhasa under all scenarios, with Lanzhou exhibiting a much
smaller (and thus more acceptable) bias throughout the year than
Lhasa. Thus, the climatic impact projection for Lanzhou is more
reliable than that for Lhasa. With this consideration, the climatic
impacts on REC under the status-quo scenario with those under
the RCP 2.6, 4.5, and 8.5 climate scenarios for Lanzhou and Lhasa
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were compared (Figures 7E,F). The absence of projections under
some scenarios was the result of projected climate conditions
exceeding the boundaries of the PDPs defined by the status-quo
observational data.

For Lanzhou, February and March were excluded from this
discussion due to the unacceptable bias during these months.
During the cold season, climatic impacts on REC were projected
to increase in November, and decreased only slightly in
December and January for the period of 2036‒2045. The
climatic impact in November would increase more under RCP
2.6 and 4.5 than under RCP 8.5, and would decrease less in
December under RCP 2.6 than under RCP 4.5 or 8.5. The positive
climatic impacts on REC were projected to increase or decrease
less during the cold season for scenarios exhibiting slower
warming rates (i.e., RCP 2.6), suggesting an offsetting role of
precipitation. In other words, although warming reduces REC
during the cold season, increased precipitation increases REC
during the cold season in Lanzhou. This result indicates that
precipitation has an offsetting effect to temperature on cold
season REC in Lanzhou.

For the remainder of the year, only July, August, and September
exhibited enhanced negative climatic impacts. This also suggests an
offsetting role of precipitation, as warming alone would only
enhance the negative climatic impacts. Since July and August
(i.e., the two warmest months in Lanzhou) will still experience
negative climatic impacts, we do not believe that the decrease in
negative impact during the othermonths is driven by cooling-related
demands. Rather, a more logical explanation is that more
precipitation may have a cooling effect, which will offset the
warming impact on REC. This offsetting impact of precipitation
may be sufficiently strong to change the climatic impact. For
example, the climatic impact under RCP 2.6 during October
changed from negative to positive, suggesting that the climatic
impact changed from reducing the REC estimation to increasing
it. This can be confirmed by the fact that negative climatic impacts
were generally more enhanced under RCP 8.5 than under RCP 2.6.
The varying rankings of the climatic impacts under RCP 4.5 for the
three scenarios suggest that, under this scenario, the effects of
precipitation and temperature have competing importances for
shaping the overall climatic impact.

The quantifications of climatic impacts on REC in Lhasa was
not thoroughly interpreted, as the simulated climate was
considered to be excessively biased, thereby making
interpretations of the projected climatic impacts on REC
extremely difficult. However, as Lhasa, like Lanzhou, is
becoming warmer and wetter over time, we also inferred that
the impact of precipitation will likely offset the warming impact
on REC. However, as Lanzhou exhibited a stronger precipitation
impact during the cold season and was more sensitive to climate
during warm months, we expect that Lanzhou will be affected by
this offsetting effect more than Lhasa.

4 CONCLUSION

The results indicate that the climatic impacts on REC in both
Lanzhou and Lhasa are driven by heating-related demand. The

model results support the hypothesis regarding the role of
precipitation. Both Lanzhou and Lhasa exhibited stronger
precipitation impacts during the cold season, this confirms
previous evidence that precipitation (particularly snowfall) boosts
electricity consumption during the cold season. The impact was
stronger in Lanzhou, which has more months when the temperature
is below 0 °C experiences and more precipitation during the cold
season. As the two cities become warmer and wetter, precipitation
will offset the impact of warming on REC throughout the year, with
Lanzhou being more affected. Based on the projections for Lanzhou,
the offsetting effect was more pronounced during the cold season
across all scenarios, and was particularly strong under RCP 2.6. For
the remainder of the year, the effects of increased precipitation and
warming will have competing importances under the RCP
4.5 scenario, while the effects of temperature will generally
dominate the climatic impacts under the RCP 8.5 scenario.

5 DISCUSSION

This study shows the strength of algorithm modeling, as it
exhibits improved predictive accuracy and interpretability for
studying climatic impacts on REC than linear models. Compared
with previous econometric models used in climate–REC studies,
themethod described herein allows highly correlated temperature
and precipitation data to be interpreted as one climate feature to
quantify the climatic impact. This allowed us to treat temperature
and precipitation equally, which has the potential for use in all
climatic impact studies.

A data-driven model can only be as good as the data. The
model developed herein failed to make predictions for several
scenarios that exceeded the bounds of the PDPs of the climate
feature. This study was also limited, as we controlled the non-
climate inputs at the status-quo level to predict the climatic
impacts on REC; however, socioeconomic conditions will
definitely alter REC and the marginal effects of the climatic
impacts. Future studies should have a socioeconomic focus to
enable more accurate predictions. The projection obtained for
Lhasa was also limited by insufficient climate projection studies in
the region. More accurate climate projections are needed to
improve the understanding of potential future climatic impacts
on REC in southern China.

This study highlights the need for climate-related energy
studies to holistically address climate, rather than to focus
solely on temperature, particularly in regions with cold
winters, as well as in areas vulnerable to extreme weather such
as blizzards. The findings provide previously unavailable insights
for future cold season climate–energy studies, particularly for
regions with cold baseline climate but are getting more
precipitation such as the Tibetan Plateau and its surroundings.
As this study shows that precipitation and temperature impact
REC in opposite ways in cold season in the region, strong increase
in precipitation during the cold season may offset the REC
reduction supposedly brought by warming. This study can
thus be used to assist with regional policy-making regarding
climate change adaptations. The PDP-based projection developed
herein is also readily compatible with potential early-warning
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projects, as it can be easily replicated with high frequency panel
data and can make predictions based on weather forecasts, which
will help to protect against power outages induced by extreme
weather.
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