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The diversity of geophysical methods and datatypes, as well as the isolated

nature of various specialties (e.g., electromagnetic, seismic, potential fields)

leads to a profusion of separate data file formats and documentation

conventions. This can hinder cooperation and reduce the impact of datasets

researchers have invested in heavily to collect and prepare. An open, portable,

and well-supported community data standard could greatly improve the

interoperability, transferability, and long-term archival of geophysical data.

Airborne geophysical methods particularly need an open and accessible data

standard, and they exemplify the complexity that is common in geophysical

datasets where critical auxiliary information on the survey and system

parameters are required to fully utilize and understand the data. Here, we

propose a newGeophysical Standard, termed the GS convention, that leverages

the well-established and widely used NetCDF file format and builds on the

Climate and Forecasts (CF) metadata convention. We also present an

accompanying open-source Python package, GSPy, to provide methods and

workflows for building the GS-standardized NetCDF files, importing and

exporting between common data formats, preparing input files for

geophysical inversion software, and visualizing data and inverted models. By

using the NetCDF format, handled through the Xarray Python package, and

following the CF conventions, we standardize how metadata is recorded and

directly stored with the data, from general survey and system information down

to specific variable attributes. Utilizing the hierarchical nature of NetCDF, GS-

formatted files are organized with a root Survey group that contains global

metadata about the geophysical survey. Data are then organized into subgroups

beneath Survey and are categorized as Tabular or Raster depending on the

geometry and point of origin for the data. Lastly, the standard ensures

consistency in constructing and tracking coordinate reference systems,

which is vital for accurate portability and analysis. Development and

adoption of a NetCDF-based data standard for geophysical surveys can

greatly improve how these complex datasets are shared and utilized, making

the data more accessible to a broader science community. The architecture of

GSPy can be easily transferred to additional geophysical datatypes andmethods

in future releases.
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1 Introduction

Accurate management and usage of scientific data is

fundamentally dependent on how the data are stored and

documented. Community-agreed-upon standards in data

formatting and organization are a natural and necessary step

in simplifying the transfer and analysis of complex datasets, both

within and across disciplines. In the Earth Sciences, many

communities of practice have evolved, such as Cooperative

Ocean/Atmosphere Research Data Service (COARDS) from

the National Oceanic and Atmospheric Administration

(NOAA), Common Data Form (CDF) from the National

Aeronautics and Space Administration (NASA), or

Hierarchical Data Format (HDF) originally developed by the

National Center for Supercomputing Applications (NCSA) but

currently maintained by The HDF Group (NOAA, 1995; Folk

et al., 1999; Yang et al., 2005; NASA, 2019). Notably, the Network

Common Data Form (NetCDF) architecture has become the

basis for many modern data standards (Rew et al., 2006; Hankin

et al., 2010; Unidata, 2021b). Overall, the purpose of a data

standard is to control how data and metadata are documented,

formatted, and stored such that datasets can be shared, displayed,

and operated on with minimal user intervention across platforms

and software (Eaton et al., 2020).

Geophysical datasets are widely used in Earth system studies

to interrogate subsurface properties and processes. Methods vary

considerably, each relying on different physics and are sensitive

to different physical properties of Earth materials (e.g., rocks,

sediments, and fluids). Geophysical data are commonly acquired

using instruments on land, on or beneath water, from airborne

platforms, or in boreholes. Broad categories of geophysical

methods (e.g., electrical, magnetic, seismic, electromagnetic,

radiometric, gravity) have specific measurement modalities

(e.g., frequency-domain or time-domain electromagnetics),

each of which can have many unique instruments with

differing designs and configurations. In addition to the values

measured by an instrument’s sensors, a host of other auxiliary

information is often needed but contained in separate

supplementary files, field notes, or contractor’s reports and

not directly attached to the data. The supplementary

information includes fundamental positioning information,

general survey metadata, as well as details about acquisition

parameters or instrument characteristics needed to interpret

the measured data. Without this accompanying supplementary

information, acquiring meaningful results and interpretations

would be a challenge.

Although geophysical datasets have much in common at a

basic level—recorded data values, system information,

coordinate information, and auxiliary metadata—data formats

vary widely by method and by instrument. Probably the most

established geophysical formats relate to the Society of

Exploration Geophysicists (SEG) digital tape standards used

for seismic data, owing to the vast amount of industrial

seismic data collection (Northwood et al., 1967; Hagelund and

Levin, 2017). Yet, even within data formats that are more widely

used in the geophysical community, none meet the criteria of 1)

being an open format that allow for publication according to

Findability, Accessibility, Interoperability, and Reuse (FAIR)

principles in public repositories, 2) attaching important

system information and metadata to the data in a single file,

and 3) incorporate a file structure that facilitates transferability

between open-source computational software, web services, and

geospatial systems. The lack of a common open data standard

leads to inefficiencies where processing or interpretation software

must be customized to read specific formats from different

instruments, and data need to be re-formatted before they can

be used by software and/or published according to FAIR

standards (Wilkinson et al., 2016; Salman et al., 2022).

Similar to seismic acquisitions, airborne geophysical surveys

are often acquired by industry for a wide range of government,

academic, and private clients. Airborne geophysical surveys are

becoming more commonplace, providing cost-effective, high

resolution, and multi-scale subsurface imaging not easily

obtained with ground-based observations over large areas. As

with the field of geophysics overall, there is currently no open

community standard that is widely used for sharing and releasing

airborne geophysical datasets. Furthermore, airborne datasets

entail significant supplementary information on survey design,

system and acquisition parameters, and post-processing details

that are often included in PDFs or other report documents

separate from the digital data, posing a risk to the long-term

integrity of the data. The large size and complexity of airborne

geophysical data, as well as their broad community value,

necessitates accessible tools and standards be developed to

keep pace with rising demands and usage.

Efforts have been made in the past to standardize airborne

data formats, along with interoperable inversion software for

working with airborne electromagnetic (AEM) datasets (Møller

et al., 2009; Brodie, 2017). The Australian Society of Exploration

Geophysicists (ASEG) established the ASEG-GDF2 (General

Data Format Revision 2) data standard (Dampney et al., 1985;

Pratt, 2003), an ASCII-based data structure for general point and

line data, with particular focus on large airborne geophysical

datasets such as magnetic, radiometric, electromagnetic, and

gravity. Tabular ASCII data, such as ASEG-GDF2 or CSV,

have the advantage of being both human and machine

readable for easy usage, but these formats result in larger file

sizes compared with binary formats. ASCII formats are also

limited in how datasets can be structured, grouped, and

documented. For example, the ASEG-GDF2 structure includes

general and variable-specific metadata information in separate

definition files that accompany the data, but this design requires

users to always maintain multiple files. In Denmark, a national,

publicly accessible geophysical database (GERDA) hosts

numerous types of airborne and ground-based geophysical

datasets in a structured relational database (Møller et al.,
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2009); however, GERDA databases are not easily used or accessed

outside of proprietary software. Geosoft databases are also an

industry standard for delivery and storage of airborne

geophysical tabular datasets. Their binary format has

advantages in data compression and file size, and Geosoft

databases are supported by sophisticated software such as

Oasis Montaj (Seequent Ltd. https://www.seequent.com/

products-solutions/) for processing, analysis, and visualization.

However, use of this software requires a commercial

subscription, and the binary Geosoft databases do not meet

open standards for publication. Lastly, gridded data and

products often accompany airborne datasets and can be

provided in many binary and ASCII raster formats (e.g., TIF/

GeoTIFF, ARC/INFO, GXF, Geosoft GRD, Surfer GRD, etc.),

each compatible with one or more of the commonly used

software tools. However, some tools are open while others are

proprietary and require paid subscription.

Here, we present a data standard using the NetCDF file format

that provides a structure for storing geophysical data, metadata, and

survey information in a single file. The proposed geophysical

standard (GS) balances the need to require information for

certain datatypes be stored in a well-defined structure, while also

allowing for flexibility with optional information. In addition to

recorded data, we use the hierarchical group structure within the

NetCDF file to store multiple related datasets or products together.

For example, separate groups might contain raw data, processed

data, and physical propertymodels determined through inversion or

other analyses. Storing digital data along with associated coordinate

and system information in a single self-describing open file structure

with well-established standards can greatly improve the

interoperability, transferability, and impact of geophysical

datasets. The underlying HDF data structure is computationally

advantageous when compared to human-readable ASCII files (Yang

et al., 2005; Rew et al., 2006).

Along with the new GS data convention, we developed a

Python package (GSPy) as a community tool which facilitates use

of the NetCDF file structure. A basic function of GSPy is

conversion, either reading original input files into our

proposed data structure and creating the standardized

NetCDF file or converting content from the standard

structure into a different format needed to work with specific

software or for cooperator and end-user needs. Beyond this basic

input-output functionality, GSPy can also be incorporated into

processing and visualization workflows utilizing the GS structure.

Though GSPy is not required to work with the GS data

model—any tools capable of interacting with a NetCDF file

can be used—we developed GSPy as a building block to make

the process of transforming datasets into the GS structure easy

and straightforward to maximize their usability.

In this paper, we define the proposed data standard and provide

an overview of the GSPy software structure and functionality. Our

focus in the initial stage of development of the GS model and

associated GSPy tools has been on airborne geophysical data due to

their immediate need for an open-source community standard,

while also keeping in mind flexibility in design to allow future

accommodation of other types of geophysical data in the same

model. We use an existing airborne geophysical dataset from

Wisconsin as a case study to exemplify the GS convention and

demonstrate usage of the GSPy package (Minsley et al., 2022).

Finally, we discuss the scalability, limitations, and opportunities

provided by a NetCDF-based community geophysics data standard.

2 Methods

Our goal with the GS data model and GSPy software tool is to

assimilate data from a variety of file formats, geometries, and

geophysical methods into a common and open data structure

that can be broadly shared and utilized (Figure 1). The GS data

model provides a common, open, and standardized framework

for geophysical datasets, which is disconnected and independent

from the original source formatting.

In airborne surveys, data from one or more geophysical sensors

(e.g., electromagnetic, magnetic, radiometric, gravity) are acquired

along relatively linear flight lines covering large areas. Data are

stored at a regular sampling interval typically in tabular format, and

published in ASCII files such as CSV or ASEG-GDF2 (e.g., Ley-

Cooper et al., 2019; Drenth and Brown, 2020; Shah, 2020; Minsley

et al., 2021). Data from multiple sensors acquired at the same time

(e.g., electromagnetic and magnetic) are often combined in a

singular tabular dataset at the same sample interval. Two-

dimensional rasterized data, typically gridded maps of measured

values (e.g., flight altitude or powerline monitor) and/or multi-

dimensional interpreted products (e.g., resistivity depth slices or

residual magnetic intensity), are often included with contractor-

delivered datasets or as publicly archived products. In addition to

geophysical sensor data, each measurement also includes important

auxiliary information needed for quality control, processing,

interpretation, and visualization. Auxiliary metadata includes

information such as the position and attitude of the aircraft and

geophysical sensors during acquisition, flight line numbers and

fiducials, timestamps, noise channels (e.g., powerline monitoring

channel for AEM data), and processed or corrected data channels.

The GS convention, through GSPy, integrates airborne geophysical

data and auxiliary metadata from these various input formats and

geometries into a standardized NetCDF file that can be publicly

released and shared through data repositories like ScienceBase

(https://www.sciencebase.gov), and is portable to common

geospatial and visualization software (Figure 1).

2.1 Geophysical data standard

To support efficient metadata documentation, combined

storage of related datasets, and transferability to multiple

software tools and web services, the GS data model is founded
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within the NetCDF file format. NetCDF was established in

1989 by the University Corporation for Atmospheric Research

(UCAR)’s Unidata program (Rew and Davis, 1990), who

continue to provide development and support for newer

NetCDF versions and related software (Rew et al., 2006;

Unidata, 2021b). The latest version, NetCDF-4 is built on the

HDF5 storage layer and format (Rew et al., 2006). As modern

datasets are becoming larger and more complex, e.g., studies are

more often data-rich and/or employ “big data” approaches

(Vermeesch and Garzanti, 2015; Shelestov et al., 2017;

Reichstein et al., 2019; Li and Choi, 2021) the appeal of

NetCDF is growing. Organizations such as NASA, NOAA,

National Snow and Ice Data Center (NSIDC), and National

Center for Atmospheric Research (NCAR) have adopted

NetCDF as one of their preferred formats (Ramapriyan and

Leonard, 2021, see complete list of users at https://www.unidata.

ucar.edu/software/netcdf/usage.html). We have chosen to follow

the same path, recognizing the many advantages provided by the

NetCDF format:

• Self-describing: Metadata are directly attached to datasets.

This architecture eliminates any risk of critical metadata

becoming separated from the data, which can severely

reduce dataset usability. This structure is especially

important in geophysical datasets, where auxiliary

system information such as transmitter waveforms, time

gates, or transmitter-receiver coil orientations are essential

for accurate analysis and interpretation of the data.

• Space-saving: The binary format has a smaller file size

compared to ASCII files. Extra packing and compression

options can further reduce file sizes.

• Accessible: Subsets of large datasets can be accessed

directly without needing to read in the full dataset,

thereby minimizing memory requirements.

• Portable: Files are platform-independent, meaning

datasets are represented uniformly across different

computer operating systems.

• Hierarchical: Multiple datasets can be stored in a single file

following a tiered group organization. This structure

provides a clean and efficient mechanism for archiving

and sharing related datasets in a single file, such as raw

versus processed data, in addition to inverted models and

any products derived from those models.

• Scalable: Files can be read from and written to using large-

scale distributed memory machines, allowing fast access at

massive computational scales.

The GS design builds on existing conventions in other Earth

science disciplines. Specifically, we adapt and extend the Climate and

Forecast (CF)Metadata Conventions (hereafter, the CF conventions;

FIGURE 1
Conceptual diagram of GSPyworkflow. Data from a variety of formats and types are read into GSPy, alongwith requiredmetadata files. Through
the GSPy software, data are converted into a standardized NetCDF file containing the dataset and metadata appropriate for archiving and sharing.
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Eaton et al., 2020) to satisfy the needs of geophysical datasets. The

CF conventions ensure datasets conform to a minimum standard of

description, with common fields and elements, and guarantee data

values can be accurately located in time and space (Eaton et al.,

2020). The CF conventions originated as an extension of the

COARDS NetCDF convention from NOAA (NOAA, 1995), and

are Unidata’s recommended standard of choice. The GS convention

follows the rules and guidelines of the CF standard, with additional

constraints in grouping datasets and metadata while also allowing

for nuances inherent to geophysical datasets. Specific details on GS-

FIGURE 2
GS data convention. (A) Datasets are structured into three fundamental group types based on content and data geometry. The Survey group
contains general metadata about the dataset. Unstructured datasets, such as from CSV or TXT files, form Tabular groups, whereas structured
(gridded) datasets are categorized under the Raster group. Metadata is attached to all groups, with various required attributes (green text) that
expands on the CF-1.8 convention. (B)Groups follow a strict hierarchy in the NetCDF file, with a single Survey group at the top to which all data
groups are attached. Datasets are indexed within their respective group type. (C) Tabular and Raster data groups must contain clearly defined
dimensions, such as index or x, y, z, as well as coordinate variables. Raster groups are distinct in that dimensions are also coordinates, whereas
Tabular datasets are assigned spatial coordinates that align with the index dimension. Lastly, the coordinate variable “spatial_ref” is required for all
data groups, which expands on the “coordinate_information” variable required in the Survey metadata.
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specific metadata requirements are outlined in the GSPy

documentation pages (Foks et al., 2022).

2.1.1 GS group structure
The hierarchical nature of NetCDF allows for groups of

multiple self-described datasets within a single file, where each

dataset can have differing structure or dimensions and can be

accessed separately using a defined path, similar to a file system

directory path (e.g., /group1/group2). The GS data model

contains three fundamental categories for grouping data and

metadata (Figure 2). General metadata for the dataset(s) as a

whole are contained within the Survey group. Every file is

required to have a Survey group which sits at the root of the

hierarchical group structure and contains all data subgroups

(Figure 2B). Data are then categorized by the nature and

geometry of the values. Unstructured data, such as

scattered points or lists of values, are contained within the

Tabular group. Structured data, i.e., gridded data, are

contained within the Raster group. Having two separate

data groups is meant to ease import/export of datasets

with minimal manipulation or alteration, thereby ensuring

transparency and accountability in cataloging processing

steps as well as improving accessibility in data handling.

For example, a Raster dataset can immediately be exported

to a GeoTIFF file, whereas a Tabular dataset would require

modification such as interpolation onto a regular grid. When

there are multiple datasets attached to a single group, we

separate them with a simple integer index (e.g., /survey/

tabular/0 and /survey/tabular/1, in the case where two

tabular entries are attached).

1) Survey: This group contains general metadata about the

dataset, or collection of related datasets, within the

NetCDF file. General information about where the data

was collected, acquisition start and end dates, who

collected the data, any clients or contractors involved,

system specifications, equipment details, and so on are

contained within data variables of the Survey

group. Information included in the Survey group is often

provided or recorded separately from the data, such as in

contractor PDF reports or field notes. Attaching this digital

metadata preserves important survey details and facilitates

processing and analysis, for example, by including instrument

parameters needed for visualization or geophysical inversion.

Users are allowed to add as much or little information to the

Survey data variables as they choose. However, following the

CF convention, we require a set of global attributes [e.g., title,

institution, source, history, references, see section 2.6.2. of

Eaton et al. (2020)]. In the GS standard, we add an additional

“content” key that provides a brief summary of what datasets

are included in the file and their locations, e.g., “raw data at

/survey/tabular/0”. Secondly, a “coordinate_information”

variable is required within Survey and should contain all

relevant information about the coordinate reference system.

More details on handling coordinate reference systems are

described in section 2.1.2.

2) Tabular: Data that is organized in a tabular format, such as a

CSV file with discrete locations along rows and measurement

values along columns, are read and categorized into a Tabular

group. In the case of airborne geophysics this would include

data collected at discrete points along flight lines, inverted

physical property models determined from measured data, or

any other type of scattered point data.

3) Raster: Data that is structured into predefined grids are

categorized into the Raster group. Generally, this includes

two-dimensional (2D) and three-dimensional (3D) gridded

data, such as interpolated geophysical models or surfaces.

Data groups are located a level below the Survey group in the

NetCDF file and have access to the same global metadata

(Figure 2B). The hierarchical group structure allows for

multiple related datasets to be stored and shared together,

such as raw data, processed data, inverted models, and any

products derived from those models. This structure also

inherently provides an audit trail for users, thereby

encouraging transparency and dataset integrity. It is best

practice to provide meaningful variable and dimension names

and follow established conventions (e.g., CF) or community

norms whenever possible. A small set of global attributes are

required for all data groups, as well as required variable

attributes, and a defined “spatial_ref” variable containing the

coordinate system information (Figure 2A).

The relationship between dimensions, coordinates, and data

values differs between Tabular and Raster groups (Figure 2C).

For Tabular datasets, data variables are more often one-

dimensional (1D), such as columns in a CSV, which are by

default given an “index” dimension. For 2D or 3D variables, the

second or third dimensions are defined and attached to the

dataset, such as measurement time gates for time-domain AEM

data channels, or frequencies for frequency-domain data

channels. All data groups require spatial coordinate variables,

standardized as “x” and “y”. In the case of Tabular data, the

coordinate variables match the size of the 1D index dimension

and are sourced from corresponding input data variables, e.g., the

longitude and latitude of data points, through the “key_mapping”

attributes. In contrast, Raster datasets are gridded such that the

dimensions of the data are also the coordinates (Figure 2C). A

Raster group may contain multiple variables (e.g., total magnetic

intensity and residual magnetic field) if all variables within the

dataset share the same dimensions, otherwise separate Raster

groups are encouraged (e.g., /survey/raster/0 and /survey/

raster/1).

Frontiers in Earth Science frontiersin.org06

James et al. 10.3389/feart.2022.907614

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.907614


2.1.2 Coordinate reference systems
All datasets are required to have a defined coordinate

reference system to maintain accurate representation of data

values for both visualization and analysis purposes. Information

about the coordinate system, such as a Well-known ID (WKID;

Esri, 2016) and corresponding authority (e.g., EPSG), if it is

geographic or projected, horizontal and vertical datums, and so

on are stored within the Survey group’s required

“coordinate_information” variable. Any Tabular or Raster

datasets attached to the Survey must have a matching variable

“spatial_ref” and adhere to the same coordinate reference system.

Following CF conventions (see section 5.6 of Eaton et al. (2020)),

the “spatial_ref” coordinate variable must have the attribute

“grid_mapping_name” which ties to a corresponding

“grid_mapping” attribute within the data variables.

Additionally, the “x” and “y” coordinate variables require

certain attributes, such as “GeoX” and “GeoY” for

“_CoordinateAxisType” which connects to a related key in the

“spatial_ref” variable. If the coordinate system is a projection,

then the “standard_name” keys for “x” and “y” should be

“projection_x_coordinate” and “projection_y_coordinate”.

These details ensure that datasets are portable and accurately

represented within geospatial systems (Eaton et al., 2020; Esri,

2022).

2.1.3 NcML
The last piece of the GS convention is the NetCDF eXtensible

Markup Language (XML), NcML,metadata file, which is an XML

representation of the metadata and group structure within the

NetCDF file. NcML files are commonly used to allow simple

updates or corrections to the metadata contained within NetCDF

files (Nativi et al., 2005). For example, the Thematic Real-time

Environmental Distributed Data Services (THREDDS) data

server (TDS) employs NcML to define new NetCDF files, or

augment and correct existing files hosted on their web service

(Caron et al., 2006; Unidata, 2021c). NcML files also serve as a

quick means for users to gain an overview of NetCDF file

contents without needing to access the binary files. The NcML

is not required to understand the data or metadata, but are an

optional component that we recommend including when sharing

or archiving GS NetCDF files.

2.2 GSPy v0.1.0

To implement this new GS data convention, we developed an

open-source Python package, GSPy, which provides a basic

toolkit to build, interface with, and export standardized

geophysical datasets. GSPy utilizes the extensive Xarray

Python package to assemble the GS groups and read/write the

NetCDF files (Hoyer and Hamman, 2017). Xarray’s architecture

consists of DataArrays and Datasets. An Xarray DataArray is a

labeled, multi-dimensional array containing 1) “data”: an

N-dimensional array of data values, 2) “coords”: a dictionary

container of the data coordinates, 3) “dims”: the dimensions for

each axis of the data array, and 4) “attrs”: an attribute dictionary

of key metadata (e.g., units, null values, descriptions) (Hoyer and

Hamman, 2017). An Xarray Dataset is a collection of DataArrays,

and similarly has the components of “dims” and “coords” which

reflect those of the DataArrays (categorized as “data_vars” in the

Dataset) and “attrs” for global metadata attributes that describe

the collection. In the GS structure, each Tabular and Raster data

group, as well as the Survey group, are individual Xarray Datasets.

The data variables (DataArrays) within the Survey group’s

Dataset are unique in that they contain no data values, only

variable attributes of Survey metadata information.

The GSPy package can be found at https://doi.org/10.5066/

P9XNQVGQ, and requires Python version 3.5 or later

(Foks et al., 2022). The software is platform independent

(operates on both Windows and Unix operating systems) and

has been released under the CC-0 license as per U.S. Geological

Survey (USGS) software release policy. In this initial version,

GSPy primarily serves as a data conversion tool, with functionality

to interface with multiple input data formats and output to a GS-

structured NetCDF file. Metadata is currently documented and

input to GSPy through user-prepared JSON files.

2.2.1 Classes
GSPy contains Survey and Data classes, and the Data class is

extended to the Tabular and Raster classes allowing for specific

handling of those data types. The code requires a Survey object be

instantiated as the first step to building a GS dataset (Figure 3A).

A JSON metadata file (Figure 3B) is required to initialize the

Survey object, where dictionaries such as “system_information,”

“survey_equipment,” and “coordinate_information,” for

example, become data-less DataArray variables within the

Survey’s Dataset, consisting primarily of metadata within the

variable attributes. The required dictionary “dataset_attrs”

populates the Dataset attributes, most of which follow the CF

convention required inputs.

Each data assemblage, typically contained within a single tabular

text file or a collection of related raster files, are attached to the

established Survey object as the appropriate Data class using the

“add_tabular” or “add_raster” methods of the Survey (Figure 4A,

Figure 5A). Each instance of “add_tabular” and “add_raster” appends

a new class object, Tabular or Raster, respectively, to the Survey

with an incremented index for each location once written to disk,

e.g., /survey/tabular/0, /survey/tabular/1, and /survey/tabular/2.

The code is ignorant of any meaningful descriptions of data

type, e.g., raw data vs. inverted models, and instead handles

data purely based on the input format type and geometry.

Therefore, it is up to the user to ensure the metadata—we

recommend the “content” attribute field—provide sufficient

description of what each Dataset within a Survey contains.
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GSPy version 0.1.0 supports CSV and ASEG-GDF2 text file

formats for Tabular groups. For CSV files, a “variable_metadata”

dictionary needs to be passed through the JSON file (Figure 4B).

In contrast, ASEG-GDF2 files allow for variable attributes to be

populated from the structured ASEG definition (.dfn) metadata

file (Pratt, 2003). The “variable_metadata” dictionary can be

optionally included for ASEG files to add or overwrite metadata

values. For both input file types, GSPy executes one-to-one

FIGURE 3
Starting a GS dataset with the GSPy package. (A) A GS dataset is always initialized with an instance of the Survey class. General metadata about
the project and survey are read from a JSON file (B) and formatted into an Xarray Dataset attached to the Survey class object. The “dataset_attrs”
dictionary contains required fields that populate the general attributes of the Xarray Dataset, while all other dictionaries become DataArray variables
(black arrows).
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mapping of columns into DataArrays by default. Variables that

comprise multiple columns are handled in one of two ways. First,

if the columns contain an incrementor following the variable

name formatted as [0], [1], . . .. [N] for N number of columns—a

common format for geophysical datasets—then the columns are

concatenated in order and labeled by the root column name. For

example, a time-domain AEM variable that appears as

“EMX_HPRG [0]”, “EMX_HPRG [1]”, “EMX_HPRG [2]” etc.

FIGURE 4
Attaching a Tabular group to a Survey. (A) The “add_tabular” method is used to add a Tabular Dataset to Survey. (B) The Dataset attributes,
coordinate “key_mapping,” variable-specificmetadata, and any second-dimension variables are passed through a required JSON file when attaching
the Tabular group.
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within the contractor-provided data file would be combined into

a 2D DataArray variable, “EMX_HPRG”, within the GSPy

Dataset. In this example, the dimensions of the

“EMX_HPRG” variable would be “index” and “gate_times.”

The “gate_times” dimension values and metadata are also

defined through the JSON file in the “dimensions” dictionary

(Figure 4B). For Tabular groups, users also have the option to

provide bounds on dimensions, when appropriate, such as the

start and end times for each time gate. We follow the CF

conventions’ approach to bounding variables, such that a rank

1 dimension of length N will have bounds of shape (N, 2), where

each value along the first axis has 2 vertices corresponding to its

bounds (Figure 4).

The second approach to multi-dimensional column variables

is to pass a “raw_data_columns” key within the

“variable_metadata” dictionary of the JSON for the desired

FIGURE 5
Attaching a Raster group to a Survey. (A) The “add_raster” method is used to add a Raster Dataset to Survey. (B) As with Tabular groups, the
Dataset attributes, coordinate “key_mapping”, and variable-specific metadata are passed through a required JSON file. The Raster class allows for a
one-to-onemapping of GeoTIFF files toDataArray variables within the Dataset, ormultiple files can be stacked into a single variable. The “raster_files”
dictionary maps the desired variables to its input file(s).
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output variable name, where the values of “raw_data_columns”

points to the original column names in the data file in the order

they should be concatenated. For example, a frequency-domain

AEM variable for in-phase filtered data can often appear in the

raw data file with unique columns named by frequency, such as

“cpi400_filt”, “cpi1800_filt”, etc. A sorted list of these data

columns should be passed through the metadata of a new

variable, such as “ip_filtered,” which would have the

dimensions “index” and “frequency.” As before, the

“frequency” dimension would be defined and described

through a “dimensions” dictionary. Coordinates for Tabular

data are defined through the “key_mapping” dictionary of the

JSON. As stated previously, Tabular variables have coordinates

of dimension “index” and the “key_mapping” allows GSPy to

create the coordinate variables based on named input variables,

e.g., {“x”: “Longitude”, “y”: “Latitude”}.

GSPy v0.1.0 supports GeoTIFF files as the primary input/

output format for Raster groups. In contrast to Tabular groups,

variables are added either as 2D variables from single GeoTIFF

files (1 file = 1 DataArray) or 3D variables by stacking multiple

files along a named dimension (e.g., individual depth slices). In

the JSON metadata file, the “raster_files” dictionary maps each

DataArray variable to a file or list of files. As before, a

“variable_metadata” dictionary is needed to complete the

attributes of each variable. The dimensions of the data are by

default the coordinates defined by the input file, thus no

“dimensions” dictionary is needed. The “key_mapping”

dictionary is still needed for Raster datasets to update the

metadata of the dimension coordinates (“x” and “y”). We use

the Rioxarray module (http://github.com/corteva/rioxarray) to

go between GeoTIFF files and Xarray DataArrays. Upon reading

in a GeoTIFF file, GSPy compares the input coordinate reference

system with that of the Survey. If the input reference system does

not match, the DataArray is reprojected using Rioxarray. Future

versions can follow the same procedures for other standard raster

data file formats.

For all data types regardless of geometry (Tabular and

Raster), the JSON metadata file is required to contain a

“dataset_attrs” dictionary, which populates the attributes of

the Dataset. Since data groups are contained within the Survey

group of the NetCDF file, the globally required attributes of the

Survey apply to all data groups, per CF conventions (Eaton et al.,

2020). Therefore, the attributes of data groups only require the

“content” key and any “key_mapping”, with additional keys such

as “comment” optionally included at user-discretion. Lastly, the

coordinate reference system of the Survey is used to create the

“spatial_ref” coordinate variable to accompany each Dataset,

thereby requiring all groups under a Survey to have matching

coordinate systems. Either a well-known identification (WKID)

number and associated authority, e.g., EPSG:4326, or a

coordinate reference system well-known text (CRS_WKT)

string are needed to then generate the complete “spatial_ref”

variable using the GDAL and Pyproj packages (GDAL/OGR

contributors, 2022; https://github.com/pyproj4/pyproj). We

follow CF conventions and ArcGIS guidelines (e.g., Esri, 2022)

to ensure proper transferability of datasets into common

geospatial and NetCDF-supported software.

2.2.2 Class properties and methods
GSPy provides many helpful properties and methods for

working with datasets. Here we highlight some essential

functions, and refer readers to the GSPy documentation pages

for a complete description of all classes, methods, and

functionality, along with code examples (Foks et al., 2022).

First, all classes share the property of “xarray” to return the

GS-formatted Xarray Dataset (Figures 3, 4, 5A). The

“read_metadatafile” method is common to each class and

attaches the full dictionary read from the provided JSON file

to the property “json_metadata”. If a metadata file does not get

passed or is missing required dictionaries, the

“write_metadata_template” method is called to generate a

template file that users can then edit. This function is useful

for large CSV datasets with many variables, as it will generate a

“variable_metadata” dictionary based on the column names. All

attributes are given “not_defined” values that users can then

update.

Once all groups have been attached to a Survey, the

“write_netcdf” and “write_ncml” methods will write the GS-

structured NetCDF file and accompanying NcML file,

respectively (Figure 6). The data classes, Tabular and Raster,

also contain “write_netcdf” functions to export groups in

separate files; however, we recommend always using the

Survey class “write_netcdf” function to adhere to the standard

with all groups written to a single file. The Tabular and Raster

classes also contain export methods such as “to_csv” and “to_tif”,

respectively. Lastly, some simple plotting methods are provided

for both Raster and Tabular classes using Xarray’s scatter and

pcolor functions (Figure 6).

3 Results

To demonstrate the proposed GS convention and the

functionality provided by GSPy, we converted a recently

acquired airborne geophysical dataset into the new standard

through GSPy workflows. This dataset provides the

opportunity to showcase examples of diverse input data

formats (CSV and GeoTIFF) and geometries (Tabular and

Raster) within the proposed GS architecture. In January and

February 2021, the U.S. Geological Survey oversaw collection of

3,170 line kilometers of AEM and magnetic data over northeast

Wisconsin through collaboration with the Wisconsin

Department of Agriculture, Trade, and Consumer Protection

(DATCP) andWisconsin Geological and Natural History Survey

(WGNHS) (Minsley et al., 2022). The primary purpose of this

effort was to improve understanding of the depth to bedrock
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across the study area. The airborne data were acquired by

SkyTEM Canada Inc. with the SkyTEM 304M time-domain

helicopter-borne electromagnetic system together with a

Geometrics G822A cesium vapor magnetometer.

Input data consisted of 1) a CSV file (3.17 GB) of contractor-

provided raw AEM and magnetic data along with auxiliary flight

data; 2) a CSV file (123.9 MB) of processed AEM data; 3) a CSV

file (145.3 MB) of inverted resistivity models; 4) a CSV file

(4.4 MB) of AEM-derived point estimates of the elevation of

the top of bedrock; and 5) four GeoTIFF files containing gridded

magnetic data (total magnetic intensity: 7.4 MB, residual

magnetic field: 7.4 MB), AEM-derived gridded depth to the

top of bedrock (3.7 MB) and top of bedrock elevation

(3.7 MB). We created JSON files for the Survey group, pulling

critical information on the flightlines, system parameters, and

equipment from the contractor-provided report (Figure 3B).

Each CSV file was added as a separate Tabular group with an

individual JSON metadata file (e.g., Figure 4B). The four

GeoTIFF files were added as variables within a single Raster

group with an accompanying JSON file (Figure 5B).

With the GSPy workflow, and proper documentation in the

JSON files, all datasets were assembled under the Survey group

with complete dataset- and variable-specific metadata, mapping

of dimensions and coordinates, and standardized coordinate

reference systems variables. We then used GSPy methods to

export the combined datasets into a single NetCDF file and

generate the NcML metadata file. Figure 7 shows a simplified

version of the NcML file, with essential elements represented.

Both NetCDF and NcML files were publicly released in

ScienceBase (Minsley et al., 2022). The size of the final GS

NetCDF file was 1.93 GB, corresponding to a file size

reduction of 44% relative to the original input files without

utilizing further compression. The complete file and its

contents were accurately imported into common NetCDF

software such as Unidata’s Integrated Data Viewer (IDV)

(Unidata, 2021a). Raster variables from the full GS NetCDF

file were accurately imported into Quantum Geographic

Information System (QGIS), with correct placement,

coordinate reference system, and null value representation.

ArcMap was unable to import the full NetCDF file

comprising multiple groups, but datasets exported to

individual files, at the root group position, were accurately

imported. Notably, both scattered Tabular data and gridded

Raster data were successfully viewed in ArcMap, but we were

unable to view scattered data in QGIS.

4 Discussion

The GS data convention improves the accessibility and

functionality of geophysical datasets by providing much-

needed standards for the storage of both data and metadata

built on the established NetCDF open data structure and existing

CF conventions. By building on the NetCDF CF conventions, the

GS model has several advantageous characteristics summarized

earlier: it is self-describing, space-saving, accessible, portable,

scalable, and hierarchical. Most importantly, the GSmodel allows

multiple types of geophysical data and incremental data

processing steps to be stored together in a single self-

FIGURE 6
Writing and plotting examples. Once all groups have been
attached to a Survey, the “write_netcdf” and “write_ncml”methods
will write the GS NetCDF and NcML files, respectively. GSPy also
provides methods to generate scatter and pcolor plots for
variables.
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described file with all variable-specific and general survey

metadata attached. Our support for unstructured point data

(tabular) within the NetCDF is particularly novel, as both

historical and modern implementations of the NetCDF format

have dominantly been for gridded (raster) datasets (e.g., Hankin

et al., 2010; Eaton et al., 2020; Morim et al., 2020). These

characteristics are important for both the long-term

accessibility and interoperability of geophysical datasets. While

FIGURE 7
Example NcML file. Due to space constraints, only essential elements are shown here for example representations. Gaps in variable and attribute
lists are noted by ellipses.
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our focus here is on airborne geophysical surveys, this data model

can be readily extended to other survey data that can be described

in tabular or raster formats.

Application of the GSPy workflow and GS data model to a

real airborne geophysical dataset resulted in several successful

outcomes and insights. First, what began as several disconnected,

undocumented, and uniquely formatted data files became a

single NetCDF file with related, self-described datasets clearly

categorized and standardized. This improved the shareability and

usability of the data, as every variable and dataset group were

fully documented and easily accessed within the single file.

Second, the NetCDF file, and its accompanying NcML file,

was all that was needed to be archived for public release. This

resulted in a significantly simplified data release process, i.e., file

preparation, metadata documentation, and the review process

were all streamlined compared to a traditional release of the

original data files and incomplete metadata documentation.

Lastly, the standardized datasets within the NetCDF file were

accurately viewed and represented within common NetCDF and

GIS software, signifying the broad transferability and

interoperability of the GS format.

We recognize the aforementioned advantages of using the

NetCDF file structure also comes with some challenges.

Accessing information in binary NetCDF files may be a

barrier for users not familiar with this format, especially

compared with ASCII-based file formats. The accompanying

GSPy software tools include methods for exporting to

common tabular or raster formats if those are needed for

specific end-users. Additionally, raising awareness about

common GIS or other software tools that can read NetCDF

files, along with their current limitations, will be important.

Preparing the JSON metadata files can be time consuming,

but once prepared executing the GSPy workflow is

straightforward and efficient. Furthermore, datasets being

published in an open repository would need much of the

same metadata information, prepared here in JSON input

files, to instead be produced in XML or other online

metadata records. Thus, we recognize that documentation

of metadata can be a tedious endeavour but a necessary one

nevertheless. While accessibility and ease-of-use need to be

continually improved upon, such as changing to a slightly

more user-friendly metadata input format like Yet Another

Markup Language (YAML), for example, the additional

complexity of the GS convention is outweighed by its

broader advantages discussed above. Upfront time costs

with the GSPy workflow will likely balance out with time

savings during archival, as well as improve overall dataset

usability and impact.

The first version of GSPy has focused on an implementation

of the GS data model for airborne geophysical data; however, we

have developed the software, data classes, and functions with the

intention of being generalized and adaptable to all types of

geophysical methods. We plan to layer new functionality for

ground-based and airborne geophysical data alike in future

versions, such as method-specific converters for ground

resistivity data and models or seismic timeseries. A guiding

principle is to build a strong foundation for the data standard

and software tools that can be readily extended to other datatypes

without changing the basic structure. Any number or type of

classes can be attached as groups within the hierarchical NetCDF

file structure, always falling under a general metadata Survey

group. Most geophysical datasets and related products can be

described by the generic Tabular or Raster classes, and additional

classes can be developed as needs are identified. By developing

GSPy as an open-source package, our goal is to enable a broad

community of users to improve its functionality and capabilities.

New GSPy functionality is planned for future versions to

simplify import and export workflows, such as automatically

recognizing different datatypes and routing to customized

methods that handle different datatype requirements. Support

for other data formats and software interfaces is also planned, for

example leveraging existing packages such as gxpy (https://

github.com/GeosoftInc/gxpy) to directly import data from

commonly used binary Geosoft databases and sciencebasepy

(https://github.com/usgs/sciencebasepy) to automate the

publication process to the USGS ScienceBase repository.

Accessibility can also be broadened by including

documentation and links in future versions for common

software programs that can read GS-structured NetCDF files.

Additional worked examples of other airborne geophysical

datasets and data types are needed to continue refining the

structural details of how data and metadata are imported to and

stored in the GS data model. For example, identifying and revising

required versus recommended versus optional attributes and

variables, defining generic and adaptable structures for storing

Survey metadata information, and standardizing JSON templates

for various data types will improve the overall usability of the data

standard. Future GSPy functionality can also be added to aid in data

processing and visualization—eventually with GSPy serving as a

central platform for importing datasets, processing, exploring,

reformatting, interfacing with various inversion software, and

exporting in a standardized format for public release.

Additionally, we plan to explore the use of web-based tools such

as the THREDDS Data Server (Caron et al., 2006; Unidata, 2021c)

for accessing and subsetting content from GS-structured files stored

in online repositories, without needing to download entire datasets.

If adopted as a common standard for geophysical datasets,

further efficiency could be realized by having instruments or

contractor-delivered datasets directly create GS-structured files,

or at least the information needed to readily create them. Likewise,

processing, visualization, and inversion software tools could

directly read files in the GS convention without having to

export other specialized input formats. For example, the study

presented in this paper required multiple file format conversion

steps throughout the workflow: contractor-provided databases and

PDF reports, processed data, inverted geophysical models, and
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bedrock elevation picks were all exported from proprietary

software tools into CSV and JSON formats to prepare them for

publication in open formats. Significant improvements in

workflow efficiency and interoperability can be achieved by

using the GS convention as a link that connects instrument-

recorded data and metadata to processing, visualization, and

interpretation tools as well as archival-ready data structures.

5 Conclusion

The field of geophysics encompasses diverse and complex data

formats that can vary between methods, techniques, and from one

collection to another. Inconsistencies in data and metadata

documentation reduce the longevity and impact of geophysical

datasets. To address the pressing need for a community-supported

geophysical data standard, we have developed the GS convention,

based on the NetCDF file format and CF metadata conventions. The

GS convention meets the goals we set out to achieve in a geophysical

data standard:

• The format is open source meeting the requirements of

FAIR data publication standards.

• The file format allows for multiple related and self-

described datasets to be grouped together under a clear

and standardized hierarchical structure.

• Dataset- and variable-specific attributes join important

auxiliary information and metadata directly to the

digital data, ensuring dataset integrity, longevity, and

interoperability.

• Data dimensions and coordinates are clearly defined, along

with a well-defined coordinate reference system for

accurate visualization and representation.

• The format is transferable between open-source

computational software, web services, and geospatial

systems.

The accompanying open-source Python package, GSPy,

facilitates efficient data conversion between common data

formats (e.g., CSV, ASEG-GDF2, GeoTIFF), proper metadata

documentation through JSON supporting files, and export of GS

NetCDF files. We demonstrated the GS structure and GSPy

workflow using an example airborne geophysical dataset from

Wisconsin. The single resulting GS NetCDF file was significantly

reduced in size compared to the multiple ASCII-text and

GeoTIFF input files. Furthermore, metadata that was

previously distributed throughout a contractor-provided PDF

report was cleanly incorporated and appropriately attached to

specific dataset groups and variables. Aside from a few

limitations identified, such as the group structure in ArcMap

or scattered data in QGIS, the GS-formatted file and/or

individual data groups were successfully loaded and accurately

represented in geospatial software.

Adoption of the GS standard for airborne geophysical data fills a

particular need for an open-source, community-wide standard that

ensures accurate archival of critical metadata jointly with digital

datasets. Moreover, establishment of a NetCDF-based open data

standard for a broad range of geophysical survey types can help to

greatly improve how these complex datasets are shared and utilized,

making the datamore accessible to a broader science community and

the public. File formats and functionality supported by GSPy v0.1.0 is

limited; however, by developing the standard and package as open

source, we aim to leverage the broad geophysical community to

contribute to the continued development of robust data standard

requirements and tools to facilitate their use.
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