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Volcano observatory best practice recommends using probabilistic methods to forecast
eruptions to account for the complex natural processes leading up to an eruption and
communicating the inherent uncertainties in appropriate ways. Bayesian networks (BNs)
are an artificial intelligence technology to model complex systems with uncertainties. BNs
consist of a graphical presentation of the system that is being modelled and robust
statistics to describe the joint probability distribution of all variables. They have been
applied successfully in many domains including risk assessment to support decision-
making and modelling multiple data streams for eruption forecasting and volcanic hazard
and risk assessment. However, they are not routinely or widely employed in volcano
observatories yet. BNs provide a flexible framework to incorporate conceptual
understanding of a volcano, learn from data when available and incorporate expert
elicitation in the absence of data. Here we describe a method to build a BN model to
support decision-making. The method is built on the process flow of risk management by
the International Organization for Standardization. We have applied the method to develop
a BN model to forecast the probability of eruption for Mt Ruapehu, Aotearoa New Zealand
in collaboration with the New Zealand volcano monitoring group (VMG). Since 2014, the
VMG has regularly estimated the probability of volcanic eruptions at Mt Ruapehu that
impact beyond the crater rim. The BN model structure was built with expert elicitation
based on the conceptual understanding of Mt Ruapehu and with a focus on making use of
the long eruption catalogue and the long-term monitoring data. The model
parameterisation was partly done by data learning, complemented by expert elicitation.
The retrospective BN model forecasts agree well with the VMG elicitations. The BN model
is now implemented as a software tool to automatically calculate daily forecast updates.
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1 INTRODUCTION

As societies live and play closer to volcanoes there is a growing
requirement for volcano monitoring agencies to provide
quantitative information on the likelihood and impact of
volcanic hazards that can be understood and utilized by
various stakeholders, including landowners and managers,
infrastructure managers, civil/federal aviation authorities, local
people, and tourists. In addition, national health and safety
legislation increasingly requires dynamic assessment of risk for
employees, their subcontractors, and communication of the
changing risk to other potentially affected parties. Eruption
forecasting underpins such quantitative information and risk
assessments.

1.1 How to Forecast Volcanic Eruptions
Volcano observatory best practice recommendations propose using
probabilistic methods to forecast eruptions and their uncertainties to
account for the complex natural processes leading up to an eruption
(Pallister et al., 2019). A recent comprehensive review on forecasting
volcanic eruptions advocates for integrative frameworks to bring
together diverse information that can come from monitoring data
and geology (Poland and Anderson, 2020). The review highlights
several promising developments that have potential to improve the
utility and accuracy of eruption forecasts. These include the increase
in quality and quantity of multidisciplinary monitoring data and the
enhancement of computer power and machine learning algorithms.

Possible integrated frameworks for forecasting volcanic
eruptions and their hazards include event trees and Bayesian
networks (BNs) (Poland and Anderson, 2020). Event trees are a
graphical representation of the possible sequences of events from
volcanic unrest to the extent of various hazards (Newhall and
Hoblitt, 2002). Each branch in the tree has a probability assigned
to it. Multiplying these probabilities along the path to a particular
outcome can be used to calculate the probability of that outcome.
As a volcanic sequence of events evolves and new information
becomes available, Bayesian methods can be used for updating
model outputs (Marzocchi et al., 2008; Lindsay et al., 2010). For
example, a recent study has revisited an event tree to forecast vent
location and style of eruption for the Auckland Volcanic Field,
incorporating new data and expert elicitation with the aim to
support decision-making for evacuation (Wild et al., 2022).

Bayesian networks (BNs) are an artificial intelligence technology
to model uncertain situations (Korb and Nicholson, 2010). A
graphical component represents the modelled variables for users
to gain a clear understanding of the modelled system while robust
statistics describe the joint probability distribution of all variables.
Various commercial and open-source software packages are
available to build and explore BN models. These allow for
complex calculations quickly and accurately on demand. Thus,
BNs support better probabilistic and causal reasoning and decision-
making. For this purpose, BNs have been used inmany diverse areas
(e.g., Pourret et al., 2008; Weber et al., 2012), including risk
assessment decision support (e.g., Aspinall et al., 2003; Fenton
and Neil, 2013; Gerstenberger and Christophersen, 2016). In
volcanology, BNs have been applied to retrospectively analyse
the 1976–77 volcanic crisis at La Soufrier̀e volcano, Guadeloupe,

(Hincks et al., 2014), the 1993 explosion at Galeras volcano,
Colombia, (Aspinall et al., 2003), and in real-time to the
2011–2012 unrest on Santorini, Greece, (Aspinall and Woo,
2014). Sheldrake et al. (2017) developed a BN to evaluate
evidence for the cessation in eruptive activity of the Soufrière
Hills volcano, Montserrat. Cannavò et al. (2017) introduced BNs
to real-time monitoring on Mount Etna, Italy. Tierz et al. (2017)
used the flexible framework that BNs offer to assess rain-triggered
lahars on Mount Somma-Vesuvius, Italy. Christophersen et al.
(2018) undertook a pilot study to forecast eruptions for
Whakaari/White Island, Aotearoa New Zealand in collaboration
with the volcano monitoring scientists and volcanologists from two
universities. While the pilot study did not result in a tool ready for
application, the simplified graphical presentation of the volcanic
system highlighted assumptions that were made by individual sub-
disciplines but not necessarily widely appreciated before.

Despite these promising case studies, BNs have not been widely
embraced at volcanomonitoring agencies for forecasting eruptions
or as decision-support tools to keep local authorities informed of
impending volcanic hazards. Whitehead and Bebbington (2021)
evaluated several short-term eruption forecasting methods,
including event trees and BNs. They concluded that while BNs
and machine-learning algorithms have significant potential most
volcanoes do not have extensive catalogues of eruptions and
datasets of monitoring data and therefore event trees and expert
interpretation of the system are the only currently available
methods for wide application.

Other recent developments in volcanic eruption forecasting
include machine learning algorithms that search for seismic
precursors to eruptions. Dempsey et al. (2020) used continuous
waveform data, averaged into 10-min bins from Whakaari/White
Island, Aotearoa New Zealand, from January 2011 to January 2020,
and created hundreds of statistical features describing different
aspects of the tremor signal. The 9-year period studied included five
sudden onset explosive eruptions, which are the focus of the
forecast tool. The model was trained on data around the
eruptions and then used to identify similar signals in the
subsequent time series. The forecast method identified four of
five eruptions. The fifth eruption seems to have a slightly different
physical mechanism and highlights the limitation of such purely
data-driven approaches that can only anticipate eruptions with
similar precursor patterns. The model also had 58 false positive
alerts for the period with 5 eruptions, highlighting the need for care
if using such methods for automated alerting and warning. In a
follow-up study, Ardid et al. (2022) describe a seismic precursor
signal for gas-driven eruption derived through correlation analysis
of 18 well-recorded eruptions in New Zealand, Alaska and
Kamchatka. They related the signal to formation of a
hydrothermal seal that enables rapid pressurisation. Automated
recognition of these kinds of precursor signals could become a
component of an integrated probabilistic forecast framework.

1.2 Volcano Monitoring and Eruption
Forecasting in Aotearoa New Zealand
Aotearoa New Zealand straddles the plate boundary between the
Australian and Pacific plates and thus features active volcanism.
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The national volcanic monitoring is coordinated by GNS Science,
New Zealand’s geological agency, through the GeoNet programme
(New Zealand Ministry of Civil Defence and Emergency
Management, 2015). The Volcano Monitoring Group (VMG)
consists of GNS Science staff based at three sites and meets
regularly to review the status of all 14 monitored New Zealand
volcanic centers. The VMG has the responsibility to set Volcano
Alert Levels (VALs) (Potter et al., 2014), the Aviation Color Codes of
the International Civil Aviation Organization and provide scientific
advice to emergency management authorities at the national,
regional, and local level. There are six VALs, ranging from 0–5,
that describe the status of each volcano. The VAL is not predictive or
forecasting, and only describes the current level of activity. No
detectable volcanic unrest corresponds to VAL 0, minor or
moderate to heightened volcanic unrest to VAL 1 and 2. VALs
3 – 5 describe small, moderate and major eruptions, respectively,
causing eruption hazards near vent (3), on and near volcano (4) and
on and beyond volcano (5). VALs aim to inform the public and
agencies of current activity levels, and the hazards associated with
that level of activity.

Since 2014, the VMG has undertaken regular expert elicitations
to estimate the probability of an eruption for volcanoes at VAL 1
(every 13 weeks) and VAL 2 (every 4 weeks), and more often
following an eruption (Deligne et al., 2018). Individual team
members provide their best guess, minimum, and maximum
likelihood estimates for an eruption impacting beyond the crater
rim over the time window of interest, usually 91 days at VAL1 and
28 days at VAL2, via email to a moderator, who is the only person
who knows the identity of elicitation participants for a specific
elicitation. At least 8 participants are required to contribute, with at
least one each from the fields of geochemistry, geophysics, and
geology. Monitoring data and the eruption catalogue provide
fundamental inputs into the elicitation process as well as the
regular discussions of the VMG. The result of this VMG
elicitation, is fed into a life safety calculation (Deligne et al.,
2018) assessing the level of risk and setting access protocols for
staff visiting the volcano.

In this paper we describe a method to develop a BN to support
decision-making, and then apply the method to Mt Ruapehu,
Aotearoa, New Zealand to derive an automated eruption forecast
learned from monitoring data and expert elicitation. Section 2
provides background on BNs in the context of eruption
forecasting and outlines a method for their development to
support decision-making. Section 3 describes Mt Ruapehu,
including the conceptual understanding of the volcano, its
eruption history, as well as available monitoring data to build
the BN. Section 4 applies the method to forecast eruptions within
the parameters of the VMG elicitation. The results are analysed
via three case studies, followed by discussions of advantages and
limitations of this modelling approach. The paper closes by
looking at next steps and future developments.

2 Bayesian Networks for Eruption
Forecasting
Bayesian Networks (BNs) are probabilistic graphical models that
represent a set of random variables and their joint probability

distribution via a directed acyclic graph (Pearl, 1986; Korb and
Nicholson, 2010). Figure 1A shows a simplified example of the
graph for volcanic eruption forecasting. The variables are
represented by nodes. The example includes simplified nodes
for volcanic monitoring data in light blue, the node for Eruption
in orange and one hidden node, Magmatic Intrusion, in yellow,
that cannot be directly observed. Directed links (also called arcs)
point from a “parent” node to a “child” node. “Acyclic” means
that circular loops cannot be modelled while closed loops are
possible. Thus, in the example, an additional arc could be added
between Volcanic Process and Seismicity, with Magmatic
Intrusion the parent node to avoid a cyclical loop. The
direction of the arcs may indicate a causal relationship, e.g.,
Magmatic Intrusion may cause Geochemistry observations.
However, the probabilistic calculations behind the graph
representation only require dependence (e.g., correlation)
between random variables and not necessarily causality.
Therefore, the direction of the arcs can be chosen depending
on how the joint probability distribution can best be quantified.
This is different to event trees where the direction of the arcs
generally indicates a sequence of events.

Most commonly, the random variables are modelled as discrete,
even if they are continuous. Thus, they have a finite number of
states (such as low, medium, high, or increasing, unchanged,
decreasing) that are mutually exclusive, and exhaustively
describe the possible node states. The dependencies of discrete
variables are captured in Conditional Probability Tables (CPTs).

Figure 1B shows fictitious CPTs for the simplified eruption
model where each node only has two states. For Crater Lake
Temperature the states are Hot and Cold, and we assume an equal
probability of occurrence of 0.5 or 50%. The probabilities need to
add to 1 to reflect that the states are exclusive and exhaustive.
Eruption is a child of Crater Lake Temperature and thus, its CPT
requires a probability estimate for each of its own states under all
the possible conditions of the parent nodes(s). In the example,
there is only one parent node with two states, thus there are only
two conditions, Crater Lake Temperature Hot and Cold, for which
to estimate the probability distribution of Eruption. Again, given
the exclusive and exhaustive nature of the states, the probabilities
for each condition must add to one. In the example, we assume a
probability of 0.2 for eruption when the Crater Lake Temperature
is Hot and only 0.01 when it is cold. These probabilities reflect the
observation that eruptions happen more frequently when the lake
is hot, presumably heated from freshmagma (Strehlow et al., 2017).
The probability P(E = Yes) of Eruption being Yes under any
conditions (i.e. the marginal probability) can then be calculated as
follows P(E � Yes) � P(E � Yes|CLT � Hot)pP(CLT � Hot) +
P(E � Yes|CLT � Cold)p P(CLT � Cold), where CLT stand for
Crater Lake Temperature. With the values in the CPTs in Figure 1B
this results in P(E � Yes) � 0.2p0.5 + 0.01p0.5 � 0.105. In the
same manner, the other values shown in the probability
distribution in each node can be calculated.

When a BN is fully parameterized, it can be used to update
distributions given new data or additional observations. This is
referred to as inference, instantiation or (less commonly) bi-
directionality (Gerstenberger et al., 2015). Evidence added to one
node can change the probabilities of all dependent nodes,
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regardless of the direction of the arcs. In Figure 1C, we assume
that Seismicity High has been observed. We can apply Bayes’
theorem (Bayes and Price, 1763)

P(A|B) � P(B|A)pP(A)
P(B)

where A and B are events, and P(A|B) is the probability of
A given B is true and P(B|A) the probability of B given A is
true, and P(A) and P(B) are the marginal probabilities of A
and B, respectively. Applying this to Figure 1C to update the
probability of eruption P(E), this results in P (E � Yes|S �
High) � 0.9p0.105/0.184 � 0.514. The probabilities of all
other nodes in Figure 1C change as well. The probabilities
of the child nodes can be calculated as per the example above
with the updated probabilities. To update the probability

P(CLT) of the parent node Crater Lake Temperature, the
initial probabilities and Bayes’ theorem can be applied to
calculate P(CLT|E) as input with the updated probabilities for
P(E). Adding the evidence of observing “High Seismicity” has
an impact on other monitoring data because they are
connected through the other nodes. This bidirectionality of
BNs is a large advantage over event trees: BNs can be used to
analyse the dependencies and can advance the understanding
of the system.

Real-time models are more complex than this simplified
example and require child nodes with many parents and
discrete variables with many states. The number of CPT
entries to parameterise such a model can become very large.
Some of the conditions might be very rare, making it impossible
to populate the CPT robustly. Trying to restrict the number of
states to a small number creates challenges in setting state

FIGURE 1 | Illustration of (A) a BN structure (B)Conditional Probability Tables (CPTs) associated with each node, and (C) inference, where the observation of “High
Seismicity” changes the probability distribution of the other notes. Monitoring data shown in blue, the Eruption node in orange and “Magmatic Intrusion” as a hidden node
for a volcanic process in yellow. The direction of the arrows connecting the nodes do not indicate causation, or a linear process in time. Instead, they reflect dependence
that is modelled with probabilistic relationships. Subplot (B) shows example of CPTs for a simplified model, where each variable has only two states. For all but the
node Crater Lake Temperature, the distribution of the states is conditional on the states of the parent node. In the text we provide example calculations for the
probabilities, as well as for the inference in (C).
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boundaries (Christophersen et al., 2018), especially for
continuous data such as many volcano monitoring data.

For continuous variables, the most common BN modelling
approach is to either assert some form of discretisation, or
assume a parametric joint distribution (Pearl, 1988; Shachter and
Kenley, 1989). Hybrid nonparametric BNs also exist that can
accommodate ordinal variables measured on both discrete and
continuous scales, without restricting the continuous part to be
described by a parametric family of multivariate distributions
(Hanea et al., 2006; Hanea et al., 2015). This approach is less
common in applications.

2.1 How to Develop a Bayesian Network to
Support Decision-Making
The method that we apply to develop a BN for supporting decision-
making has many similarities to the risk management process as
defined by the International Organization for Standardization (ISO,
2018). Figure 2 is based on the (ISO, 2018) process flow for risk
management, where the central element of risk assessment is
replaced with the BN model development. Communication and
Consultation as well as Monitoring and Review are embedded in the
process. Communication is about informing stakeholders while
Consultation is about gathering feedback from stakeholders on
the model development. Both are important to ensure that the
model fulfils the expectations of the stakeholders and can support the
decisions that they need to make. Communication and Consultation
feed into all stages of the Model Development. Monitoring and

Review also feed into all stages and have the function to improve the
quality and suitability of the model. Before starting on the model
development, it is important to establish the context. This includes
identifying the stakeholders, defining the question that the BNmodel
is supposed to answer, identifying suitable data and information to
build the model, selecting experts and appropriate tools.

The Model Development can be generally described as having
three steps: Developing the model structure, quantifying the model,
and analysing and testing the model. In practice, the process is
iterative. For example, part of the model can be taken through the
three steps individually before the full model is assembled.
Developing the Model Structure includes identifying the key
variables or components. This step is guided by the question that
the model aims to answer, variables that affect the outcome and
available data. Parameterising the model involves quantifying the
joint probability distribution of all variables. Often data can be
presented in different ways, e.g. averaging measurements such as
crater lake temperature over different time spans. Analysis of
correlations between different parameters can guide the choices
of most suitable parameterization. Model analysis is about
understanding the model. It can involve sensitivity analysis
between different parameters. Most BN software packages
provide functionality to do this kind of analysis. Inference, i.e.
setting evidence for one variable and observing the outcomes of
others, is an advantage of BNs that can help investigate different
scenarios.

2.2 Expert Elicitation Integral to Model
Development
Both the structure and the parameters of a BN can be obtained
from data, experts and most commonly a combination of both.
Although more and more volcano monitoring data become
available in real-time, the duration for which datasets for
machine learning exist is small compared to the length of the
eruption cycle of most volcanoes. Therefore, the BN model
development for eruption forecasting will most often require
both data and expert input. Burgman et al. (2021) provide a
summary of available methods for model building and
quantification. While formal/structured protocols for
structured expert elicitation processes exist to parameterise a
model (Cooke and Goossens, 2008; Aspinall, 2010; Hanea et al.,
2016; Colson and Cooke, 2017; Hanea et al., 2022), there is a gap
in well-defined procedures for model development. A recently
developed online platform makes a start in filling this gap
(Nyberg et al., 2021).

3 MT RUAPEHU, AOTEAROA,
NEW ZEALAND

Mt Ruapehu lies at the southern end of the Taupo Volcanic Zone
(TVZ) within the Tongariro National Park (Figure 3). Tongariro
National Park is a dual World Heritage Area for its outstanding
natural and cultural significance. The mountain hosts three ski
areas that are visited by up to 10,000 visitors per day in winter, as well
as being a popular destination for hiking in the summer months. Mt

FIGURE 2 | The process of the BN model development to support
decision-making based on the ISO risk management process (International
Organization for Standardization (ISO, 2018)). It is embedded in
Communication and Consultation with the stakeholders and Monitoring
and Review.
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Ruapehu is capped by a crater lake (also known as TeWai ā-moe) that
creates unique lahar hazards from both eruption and breakout floods.
The Department of Conservation in conjunction with GNS Science
operate eruption and lahar detection and warning systems, designed
to give 1–2min of warning that an eruption has occurred, giving time
for ski field visitors to move out of valleys to high ground to escape
eruption triggered lahars. Regular testing and drills are undertaken to
ensure the effectiveness of the system (Leonard et al., 2008).

A lahar occurred in 1953, when the crater lake outlet that had
been dammed since the 1945 eruption, failed. Floodwaters rushed
down the Whangaehu river destroying a rail bridge minutes
before a train plunged over it, killing 151 people. A similar
dam failure was anticipated following the 1995/96 eruption
episode that built a tephra barrier 7 m above the lake outlet

(Manville and Cronin, 2007). A detection and warning system
was designed and installed, and downstream engineering
mitigation efforts were undertaken to strengthen bridges
across the Whangaehu river valley. The system detected the
dam failure on 18 March 2007 and there was no loss of life or
damage to infrastructure. On 25 September 2007, an eruption
through a cold lake (<13°C) severely injured a climber in the
Dome Shelter, an equipment shed, on the summit plateau.

3.1 Ruapehu Conceptual Model
Ruapehu has been active since the last 230 ka (Conway et al.,
2016; Leonard et al., 2021) with 4 major cone building and
collapse periods. These build and collapse cycles have
resulted in a complex, compound edifice with concentrated

FIGURE 3 | (A)Monitoring network at Mt Ruapehu and Mt Tongariro, with inner region (red circle) and outer region (red square) for seismicity rate. (B) Crater Lake,
Te Wai-ā-moe looking to the north (c Visual Media Library, GNS Science, ID 113328, photographer Dougal Townsend). The outlet of the lake is visible in bottom edge of
the lake in this photo and flows to the right (southeast). (C) TVZ outline (red line) and plate boundary (dashed line), rectangle box is location of map (A).
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areas of hydrothermal alteration reflecting past locations of
central vent volcanism (Kereszturi et al., 2020; Miller et al.,
2020; Kereszturi et al., 2021). Since ~5 ka activity is centred
beneath the crater lake (Conway et al., 2016). Ruapehu magma
is inferred to be hosted in vertical storage domains within the
crust below the volcano (Price et al., 2012). Geophysical
evidence (Ingham et al., 2009) suggests magma storage
domains within the top 10 km are linked by narrow
conduits to the summit of the volcano where the tip of the
magma column resides within the edifice (Figure 4A). In the
top 1 km below the crater lake the hydrothermal system
interacts with the tip of the magma column, transferring
heat and gas into the lake (Figure 4B).

Release of hot magmatic gases into the lake is modulated
by hydrothermal mineralisation (e.g., alunite/natroalunite)
and elemental sulphur deposition, creating low permeability
seals within the upper vent conduits (Christenson et al.,
2010). Magma interacting with hydrothermal fluid also
changes the lake chemistry, so that constituents such as
Mg2+, Cl−, Al3+, Na+, K+, and SO4 are useful indicators of
relative components of magmatic versus hydrothermal input
into the lake. As such, the physical and chemical properties of
the lake are controlled by complex interactions between
influx of deep magmatic gases and the overlying
hydrothermal system.

The interaction of the magmatic and hydrothermal systems
produces cyclic temperatures in the crater lake that vary typically
between 15 and 45°C with approximately 6–18 months cycles.
The median lake temperature since measurements began is 26°C.
Eruptions have occurred from both hot lakes (temperature >45°C,

e.g., 1971, 1995) as well as cold lakes (i.e., 2007, lake temperature
<13°C), however more than half of the eruptions follow lake
temperatures higher than 40°C (Strehlow et al., 2017). Strehlow
et al. (2017) concluded that lake temperatures significantly above
and below long-term background can indicate increased eruption
probability.

Eruptions from lakes hotter than approximately 45°C
suggest that magma intrusion to shallow level is the
causative process, while eruptions from cold lakes (<15°C)
suggest that over pressurisation within the conduit is driven by
a sealing mechanism, such as pore-space mineralisation. In the
sealing scenario, precipitation of minerals such as natroalunite
in conduit fractures and pore-spaces reduces permeability,
preventing the free discharge of hot gas and fluids into the
lake. This results in a build-up of pressure in the conduit below
the seal and can led to eruption when that seal fails, e.g. Raoul
Island (Christenson et al., 2007) andWhite Island (Ardid et al.,
2022). Sealing also results in decreased gas flux, as observed in
the lead up to the 2007 eruption, as well as a change in lake
chemistry as cations that make up alunite/natroalunite seals
(e.g., K and to a lesser extent Na) are depleted from the crater
lake solution (Christenson et al., 2010).

Magma intrusion can also create seismic swarms on the
flanks, as well as at distant locations because of local stress
changes caused by magma injection (Hurst and McGinty, 1999;
Kilgour et al., 2014; Hurst et al., 2018). Girona et al. (2018) also
found that Ruapehu was sensitive to Sun-Moon gravitational
forces during the 3 months prior to the 2007 eruption,
suggesting the system was in a critically stressed state, with
building overpressure behind a mineralogical seal.

FIGURE 4 | Mt Ruapehu volcano conceptual model on two scales. (A) South to north cross section showing crustal setting of Mt Ruapehu and locations of
basement, magma and hydrothermal system inferred from geological mapping and geophysical surveys (modified after Leonard et al. (2021)). The box around the crater
lake region is shown in detail in part (B). (B) Generalised components of the hydrothermal system beneath the crater lake (modified after Christenson et al. (2010)).
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The flux of magmatic or hydrothermal system fluids also
generates volcanic tremor. The cause of tremor is typically
interpreted as the flow of pressurised fluids (gas, liquid, or two-
phase fluid) through a constriction such as a crack or conduit. This
causes the wall of the constriction to vibrate like an organ pipe and
this vibration is called tremor (e.g., Chouet and Matoza, 2013).

In summary, the complex interplay between magmatic and
hydrothermal system processes creates unrest scenarios that
produce a variety of monitoring signals depending on the
dominant mechanism.

3.2 Eruption History
Since 1830 more than 571 eruptions have been recorded (Scott,
2013) making Ruapehu one of New Zealand’s most active
volcanoes alongside Whakaari/White Island (Kilgour et al.,
2021). Many of these eruptions occurred on the same day
during eruption sequences, leaving 338 days in the last
192 years that had eruptive activity. Scott (2013) categorised
eruptions on a 6-point scale where eruptions size 0 (lake
steaming), 1 and 2 are confined to the crater lake or its
immediate basin. Size 3 eruptions deposit material outside

FIGURE 5 | Time series of key parameters in the model and the discretisation intervals of the variables. The panels to the right of each time series show the
histograms for the respective discretisation intervals. (A) Eruption history with events size 3 or larger shown in red. (B) Lake temperature. (C)Mg:Cl ratio, (D,E) Airborne
SO2 and CO2 flux respectively, (F) RSAM, (G) SO4 concentration, (H) Earthquake rate in the outer region, (I) Earthquake rate in the inner region.
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the crater basin but not beyond the summit region, while
eruptions size 4 and 5 deposit material onto the outer flanks or
beyond the whole volcanic edifice. The VMG elicitation and
thus the BN only considers eruptions equal to or larger than
size 3 (Figure 5A in red), as these are the eruptions likely to
extend beyond the crater lake basin and impact infrastructure
and recreational activities in the national park, for which the
ability to forecast and warn is critical. There are 317 eruptions
size 3 or larger since 1830. The most recent eruption of
Ruapehu was 25 September 2007, size 4, (Christenson et al.,
2010; Kilgour et al., 2010), following a size 2 eruption in
October 2006. These two small eruptions followed a
prolonged period of eruptive activity in 1995 and 1996 (Size 5).

Strehlow et al. (2017) proposed that phreatic eruptions at
Ruapehu do not follow a Poisson process, instead they tend to
cluster, possibly linked to an increased heat flow during periods of
shallow magma intrusion. We also recognise this clustering
process. Since we are interested to forecast the first eruption
following a period of unrest, we de-clustered the eruption
catalogue. To do so, we analysed the number of eruptions of
size 3 or larger, within de-clustering intervals ranging from 1 to
365 days (Figure 6). This analysis shows that the number of
eruptions of size 3 or larger, occurring within an interval,
decreases slowly after 14 days from the initial eruption. We
therefore remove eruptions occurring within a 14-days interval
after an eruption resulting in 61 eruptions size 3 or larger.We also
exclude eruptions occurring during the October 1945 to August
1946 and July 1995 to December 1997 magmatic eruption
episodes, as eruptions within these time periods are causatively
linked and violate the Poisson assumption of no causality
between events. This reduces the total number of declustered
eruptions greater than scale 3 to 51.

3.3 Available Monitoring Data
Mt Ruapehu is one of the most intensely instrumented volcanoes
in Aotearoa, New Zealand (Miller and Jolly, 2014). Ruapehu is
monitored by a network of 10 seismometers (5 broadband and 5

short period, 3 of which are housed in 50–100 m deep boreholes),
8 air pressure (infrasound) sensors to detect eruptions, and 9
GNSS stations to monitor land movement. 15 km to the
northeast, Tongariro volcano (including Mt Ngauruhoe) is
monitored by a similar number of seismic, infrasound, and
GNSS stations that also record seismic and volcanic activity
from Ruapehu. Seismic stations that provided data for this
study are shown in Figure 3.

Data are publicly available through webservices provided by
GeoNet. Being able to access all datasets programmatically is
essential to update BN forecasts automatically. Data used in the
BN are listed in Table 1 together with the sampling intervals and
time series start and end dates. Figure 5 shows timeseries of a
selection of the data used in the BN.

3.1.1 Lake Chemistry and Temperature
The crater lake temperature near the outlet (Figure 5B) has been
regularly measured since 1950s, initially intermittently and since
2008, recorded every 15 min and transmitted several times per
day via satellite link to GeoNet’s data center. The lake water level
relative to the overflow point is also recorded, however, it is
strongly affected by external factors, such as rainfall, that can
create lake level changes larger than volcanic processes.
Therefore, we do not use the lake level in the BN. In addition,
water and dissolved gas samples are manually collected from the
lake on an approximately monthly basis and analysed by GNS
laboratories (Figures 5C,G).

3.1.2 Airborne Gas Flux
Mt Ruapehu emits a gas plume through the crater lake that is
measured using spectrometers and electrochemical sensors
(sensing SO2, CO2 and H2S) mounted on a fixed wing
aircraft, at approximately monthly intervals (Figures 5D,E).
Daily images of SO2 concentrations in the atmosphere are
collected from the TropOMI satellite (e.g., Burton et al., 2021),
however the plume from Ruapehu is usually below detectable
levels from the satellite.

FIGURE 6 |Number of eruptions contained in each de-clustering interval. The change in slope at 14 days, marked by the vertical grey bar, is selected as the optimal
de-clustering interval.
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3.1.3 Seismic Data
The Tongariro National Park (TNP) seismic network is part of the
New Zealand seismograph network operated by GNS/GeoNet.
Earthquakes are automatically located within a few minutes of
their occurrence using the SeisComP3 processing system. Since
2015, the magnitude of completeness of the TNP network is
around local magnitude ML0.5 with events down to ML0
recorded in the catalogue. We use earthquake rate as input
parameter, determined from all earthquakes that occur
regardless of the magnitude of completeness, since small events
can be relevant to forecasting eruptions as seen, for example, before
the 2012 Tongariro eruption (Jolly et al., 2014). Only earthquakes
in the upper 30 km of the crust are considered as related to the
volcano i.e., volcano-tectonic and are included here. For the BNwe
divide seismicity into two zones. The inner zone is all earthquakes
within a 5 km radius of the lake, which is approximately the extent
of the upper edifice. The outer zone is all earthquakes within 39 ×
35 km box (EW, NS dimensions respectively) around Mt Ruapehu
(https://www.geonet.org.nz/volcano/eqstats/ruapehu), (Figures 3,
5H,I). The average earthquake rate in the outer and inner region is
1.56 and 0.15 per day, respectively. The median inter-event times
are 8.7 and 67 h.

Continuous seismic data from DRZ and MAVZ stations are
used to calculate 10-min average Realtime Seismic Amplitude
Measurements (RSAM) (Figure 5F). The VMG uses predefined
thresholds for RSAM to classify tremor as low, medium, or high.
The threshold for high tremor was set such that it would be
exceeded by significant periods of increased volcanic tremor
during the past decade, but more transient increases would
remain below. The boundary between low and medium is set
at half the threshold for high.

DRZ was housed in Dome Shelter, approximately 500 m north
of the crater lake. Digital data from this station exist from 2008 to
2017 when it was dismantled. Station MAVZ was installed in
2013 and is now the closest seismic station, about 800 m to the
north of the former DRZ station. Prior to 2008 analogue data
were collected at DRZ beginning in 1984, however calibrations to
rescale the analogue to modern digital data are not reliable; hence
data prior to 2008 are not used. Four years of overlapping data
coverage between the two stations allow DRZ data to be rescaled
to MAVZ data, using a linear correlation of tremor values,
thereby extending the time series from MAVZ.

4 BUILDING AN ERUPTION FORECAST
MODEL FOR MT RUAPEHU

To build the eruption model for Ruapehu, we applied the
methods outlined in Section 2.1. Here we provide details on
establishing the context and the individual steps of the model
development. For model analysis, we describe how we estimate
model uncertainty and undertake model validation.

4.1 Establishing the Context
For the application to Mt Ruapehu, the VMG is the key
stakeholder. Two of the authors (CM and YB) are members of
the VMG and therefore have a deep understanding of the
requirements. The VMG has been involved in regular
communications and consultation throughout the model
development process and monitored and reviewed progress by
presentations of results from the different model development
steps. The question that we address is aligned to the VMG

TABLE 1 | The available monitoring data, their median, smallest and largest sampling intervals, and time period of recording.

Observable Median sampling interval Smallest Sampling Interval
[days]

Largest Sampling Interval
[days]

Time Period

Eruptions As they occur Declustered to 14 days min 1950–06-24–2007-09–25
Crater lake temperature 45 min 0.00694 1,446 1950–03-01–2022-02–22

Crater lake water chemistry

Mg2+ 28 d 1 131 1964–05-09–2022-01–18
Cl− 28 d 1 131 1954–01-22–2022-01–18
SO4

2− 30 d 1 131 1988–11-14–2022-01–18
Na+ 30 d 1 131 1988–11-14–2022-01–18
K+ 30 d 1 131 1988–11-14–2022-01–18
Al3+ 30 d 1 131 1988–11-14–2022-01–18

Airborne gas flux

CO2 42 d 5 189 2003–05-27–2022-01–14
SO2 43 d 6 216 2003–05-27–2022-01–14
H2S 42 d 5 138 2004–04-21–2022-01–14

Seismic

Earthquake catalogue As they occur 2015–01-01–2022-02–22

Seismic data, used to determine Realtime
Seismic Amplitude Measurement (RSAM)

0.01 s 0.01s 0.01 s 2008–01-01–2022-02–22
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elicitation and asks “What is the probability of an eruption at Mt
Ruapehu within the next forecast period that impacts beyond the
crater lake?”. The forecast period depends on the VAL and we
focus here on a 13 week period, which corresponds to VAL 1. The
experts to inform the process were also the members of the VMG.
Data and information to incorporate into the model development
are the monitoring data described in Section 3.3, and the
conceptional model of Mt Ruapehu (Figure 4). To implement
the BN we use the Python programming language and the SMILE
reasoning engine for graphical probabilistic models, available free
of charge for academic research and teaching use from

BayesFusion, LLC, https://www.bayesfusion.com/. Exploratory
data analysis is mainly done in Jupyter Notebooks (Beg et al.,
2021) and the results are visualized with bespoke graphics using
the Plotly graphing library (Plotly Technologies Inc., 2015) and
for the VMG in BayesFusion’s web interface BayesBox.

4.2 Developing the Model Structure
The development of the model had three stages. These broadly
correspond to three sets of parameters, A, B, and C that have
different data availability. The different parameter sets are
represented in different colours, blue for A, green for B, and

FIGURE 7 | The BN model to forecast the probability of eruption to impact beyond the rim of the crater lake during the next 91 days. The orange node represents
Eruption. The blue nodes (Set (A)) represent monitoring data with a long observation period that could be used jointly with the Eruption node to learn the CPTs from the
data. The green nodes (Set (B)) represent monitoring data, which had not sufficient observations when an eruption occurred so that only the condition of no eruption
could be learned from data. The CPT entries for the condition that an eruption occurred were elicited from experts. The yellow nodes (Set (C)) represent two hidden
nodes and geochemical observations, for which the CPTs were fully elicited by members of the VMG.
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yellow for C and the eruption node in orange (Figure 7). The
initial stage was undertaken by the authors, focusing on the
parameters with the longest records, eruptions and crater lake
temperature. Given that the measurements are supposed to reflect
the variables for the next 91 days of the forecast period to align
with the VMG elicitation, we introduced intermediate nodes that
reflect the minimum and maximum temperature and the
maximum trend during the forecast period. In the second
stage, parameters were added with a shorter record, which had
most if not all measurements outside an eruption occurring,
i.e., post 2007. To keep the CPT of the eruption node manageable,
eruption was chosen as parent node for all the variables in set B, as
well as for the hidden nodes that represent the volcanic processes.
We presented the initial model to the VMG for feedback. There
were suggestions to investigate further parameters, including the
magnesium chloride ratio which has a long measurement record.
The final stage was in collaboration with the geochemists and
resulted in two hidden nodes to reflect there are two geological
scenarios (magmatic intrusion or hydrothermal seal) that can
lead to eruption and that those would be preceded by different
observations.

4.3 Parameterising the Model
Table 1 lists all datasets used to train and evaluate the BN and
Figure 5 shows the time-series for a subset of them. Record
lengths and sampling intervals are markedly different for most
datasets. A particular strength of BNs is their ability to handle
missing data, which allows us to use the whole record length for
almost all datasets. When training the BN, missing data are
handled with the Expectation-Maximization algorithm, an
iterative optimisation technique that can be used to infer the
entries of the CPTs even if some of the training data records have
gaps (e.g., Do and Batzoglou, 2008; Ratnapinda and Druzdzel,
2015). During inference, nodes in the BN without data are
integrated over all possible states of the node. Neither of these
two techniques are possible with non-probabilistic machine
learning methods such as standard Artificial Neural Networks.

For the earthquake rate data, we did not use the whole record
length. This is because the seismic monitoring of Mt Ruapehu has
improved significantly over the past few decades and
consequently the number of detected earthquakes 20 years ago
cannot be easily compared to the number detected today. To
systematically use older records, we would need to introduce a
magnitude of completeness and disregard many smaller events.
However, small events can be relevant to forecasting eruptions as
mentioned above. To calculate earthquake rates, we used the
seismic catalogue from 1 January 2015, since when earthquake
detection capabilities have been largely unchanged.

Geochemical samples and measurements are taken about
10–12 times per year whereas geophysical observations are
typically made at least daily. To mitigate the disparate
sampling rates between different datasets we chose to
interpolate and resample all at a daily interval. Other options
include using only data that are available on any given day or
deciding on an arbitrary time window over which an observation
remains valid. Using the data only on the day of measurements
and, for example, the average values on other days lead to abrupt

changes in the forecast probabilities. These sudden changes
would be difficult to explain to stakeholders as they are
counterintuitive given the often more gradual changes in the
volcano monitoring data. Interpolation will certainly deviate
from the true value of, for example, SO2 flux between two
measurements. The interpolated value is, however, likely to be
closer to the true value than the previous measurement and leads
to a smoother time series of eruption forecasts.

We decided to only use discrete variables with either 2 or three
states, depending on the type of data a node refers to. We
distinguished three different types of nodes: binary nodes such
as ‘Eruption’ (states: ‘yes’, ‘no’), dataset nodes such as ‘Measured
temperature’ (states: ‘low’, ‘medium’, ‘high’), and trend nodes
such as ‘Lake SO4’ (states: ‘decreasing’, ‘unchanged’, ‘increasing’).
For dataset nodes, we used prior knowledge to set the state
boundaries if possible. For example, the VMG uses predefined
thresholds for RSAM to classify tremor as low, medium, or high.
In cases where such information was not available, we determined
the state boundaries such that an equal number of values is
assigned to each of the states. This is equivalent to assuming a
uniform prior distribution over the states. It is important to note
here that such automatically determined state boundaries will
vary depending on the time periods spanned by the datasets.

As mentioned above, we divide the network’s nodes into three
sets. Set A (blue in Figure 7) contains nodes for which records go
back at least to the 1960s (crater lake temperature; Mg2+ and Cl-
concentrations). Because there is a big overlap between Set A and
the eruption catalogue, CPTs involving nodes A, that is P(E=yes|
A) and P(E=no|A), can be purely learned from data using
Expectation-Maximization (Ratnapinda and Druzdzel, 2015).
Sets B (green in Figure 7) and C (yellow in Figure 7) contain
nodes for which at most one eruption occurred during the
recording period. CPTs involving nodes in set B can be
partially learned from data. We learn the conditional
probabilities P(B|E=no) from data and elicit the probabilities
P(B|E=yes). Because we introduced the two hidden nodes for the
probability of magmatic intrusion (M) and hydrothermal seal
(H), CPTs involving Set C and the nodes M and H have to be
elicited by experts (P(C|M=yes, H=yes), P(M=yes|E=yes),
P(H=yes|E=yes) etc.).

The elicitation was conducted with members of the VMG in a
similar method as the regular elicitation of probabilities.
Depending on the elicitation question we had between three
and nine expert estimates of the CPTs for nodes in Set B and C.
We combined them by taking the mean over all estimates for each
elicitation question. Unlike the median, the mean guarantees that
the resulting probabilities over all states will still sum to one.
Every expert involved in the elicitation process was also provided
with a model populated with their individual estimates. This
allowed experts to interrogate the model resulting from their own
estimates and compare it to the final mean model.

4.4 Estimating Model Uncertainty
Sources of uncertainty in our forecasts are the BN model
structure, the measurement uncertainty of each dataset, and
the discretisation of the continuous data. Because the BN
includes both data- and expert-informed parts, modifying the
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structure of the BN cannot be done in an automated fashion.
Investigating uncertainty from the model structure is, therefore,
not feasible using the method described below. Estimating
accurate measurement uncertainty is difficult for most datasets
and is unlikely to be significant in comparison to uncertainty
stemming from discretisation. We hence focused on quantifying
the influence of different discretisation on the forecasts. Because
several of the CPTs are determined fully or partially by expert
elicitation, we could not easily change the number of
discretization steps, that is the number of states of each node.
We therefore only varied the state boundaries within a uniform
distribution around the original boundaries and then retrained
and re-evaluated the resulting model. Specifically, we varied all
state boundaries randomly within ±10% of the original
boundaries and repeated this procedure 500 times. This results
in an ensemble of 500 forecast time-series. For each day in the
forecast time-series we approximated the resulting ensemble of
forecasts with a normal distribution to determine the mean and
90 percent confidence interval. The results are shown in Figure 8
and compared to the VMG elicitation.

4.5 Model Validation
Most of the observational data were recorded during a period
with very few eruptions, i.e. have been measured post 1997. As
mentioned earlier, this means it is not possible to establish sound
statistical relationships between the monitoring datasets and
eruptions, which led us to add expert elicited nodes to the BN.
It is, therefore, also not possible to validate the final model using
standard techniques such as cross-validation (e.g., Murphy,
2022a).

While we cannot easily evaluate the accuracy of our forecasts
(which is a common problem for rare events), we can test whether
the long-term, cumulative probability of our forecasts is
compatible with the historic eruption rate for Ruapehu.
Because we learned the nodes in Set A using the eruption
catalogue, we expect the marginal probability of an eruption
(P(E=yes)) to be close to the Poisson probability of the long-term

eruption rate. However, nodes in Set B and C are child nodes of
the eruption node and in the absence of evidence will not
influence P(E=yes). To calculate the long-term probability of
the whole BN’s forecasts we first convert 91-days probabilities to
daily probabilities assuming a binomial distribution. We then
compute the cumulative probability of an eruption during the
8 years between 2014 and 2022 assuming a Poisson binomial
distribution (Hong, 2013). The resulting probability is 0.82 (min:
0.51, max: 0.98), which we convert into a yearly rate of 0.21 (min:
0.09, max: 0.46) assuming a Poisson distribution.

For comparison, the long-term annual eruption rate based on
the declustered eruption catalogue from 1950 to 2022 is 0.28. The
expected annual eruption rate from VMG elicitation forecast is
0.17 (min: 0.05, max: 0.35). Both the BN and the VMG elicitation
include the eruption rate from the catalogue but tend to be
slightly lower, reflecting a period of lower volcanic activity
since the mid 1990s. The annual eruption rate since 2000 has
only been 0.05. Forecast rates for the elicitation and the BN to be
between the long-term and short-term eruption rate appear to be
intuitively correct but the true validity and performance of our
model can eventually only be tested with further eruptions. In the
following section we compare our BN performance to the VMG
elicited values as an additional form of validation.

5 ERUPTION FORECASTS FOR RUAPEHU

Figure 8 shows the parameterised eruption forecast model
developed during this study to be consistent with the VMG
elicitation for 91 days. This is the model using the mean
estimates of the expert elicitation. In addition, there are also
model versions for each individual expert, who participated in the
elicitation. As explained above, we distinguish three sets of
parameters, A, B, and C as indicated by the colours blue,
green, and yellow. In the following sections we discuss the BN
forecasts for three case studies representing different time periods
and analyse the sensitivity of the model to various input

FIGURE 8 | Ruapehu BN time series from 2014 to 2022. The red dashed line shows the BN forecast with its 90% confidence interval shown in shaded pink. The
solid black line shows the median forecast of VMG elicitations with the black dashed line showing their 84th percentile. The green line and shaded area indicates the
Volcanic Alert Level at Mt Ruapehu.
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parameters. We then discuss the possible uses of the forecasts,
followed by advantages and limitations of the BN modelling for
eruption forecasting.

5.1 Investigating Three Case Studies
We look more closely at the forecasts of the BN over three time
periods and compare them to the VMG elicitation eruption
probabilities. The first period is in May 2016 when the highest
lake temperature since the 1995/96 eruption was recorded (46.3°C
on 11 May 2016). The second period lasts from September 2018
to February 2019 when the crater lake was sustained above 28°C
and underwent several short heating cycles. The third period is
fromDecember 2020 to February 2021 when the highest CO2 flux
in the gas plume (3,067 t/d on 16 December 2020) was recorded
since measurements began in 2003. The full suite of monitoring
observations for these periods is summarised in Table 2. These
time periods allow us to investigate the sensitivity of the network
to different parameters.

5.1.1 Case Study 1: May 2016
Between 1 April and 11May 2016 the crater lake temperature rose
to 46.3°C, the hottest lake temperature since the lake reformed
post the 1995/96 eruption episode (Figure 9). In late April 2016 a
swarm of earthquakes was recorded beneath the crater lake in the
inner earthquake zone (https://www.geonet.org.nz/vabs/
79Xso7vAOWamQSKE8UGmiY) as the lake temperature
exceeded 40°C. Volcanic tremor was at low levels during the
start of the heating cycle and increased to medium levels in early
May and had not been at high levels in the previous 100 days
(Table 2). Volcanic gases SO2 and CO2 were also elevated (350 t/d
SO2 and 1800 t/d CO2) and the CO2:SO2 ratio was low (6.5)
indicating a strong magmatic signal. Because of the high lake
temperature and associated elevated gas flux and earthquakes
beneath the lake, the volcanic alert level was raised to VAL 2 on 11
May 2016, and the aviation colour code to yellow (https://www.
geonet.org.nz/vabs/50d2iGPUAUEg4amq0GcsqK). The volcanic
alert level was reduced to VAL 1 and aviation colour code to green

on 5 July 2016, once the lake temperature, gas emission rates and
volcanic tremor intensity declined substantially. The
volcanological interpretation of this activity by the VMG was
likely a perturbation of the hydrothermal system caused by an
influx of hot magmatic gases from a deep source within the edifice
(Figure 4), rather than injection of fresh magma into the shallow
hydrothermal system. The interpretation of a deep magmatic
source was based on the elevated CO2 emission rate. CO2 has low
solubility in magma and as magma ascends it is one of the first gas
species to be exsolved (Lowenstern, 2001), hence elevated CO2 is
often indicative of deeper magmatic degassing.

Figure 9 shows the forecasts of the BN around the heating
cycle from February to August 2016. The black lines show the
VMG elicitation values, and the step up on 11May when the VAL
was raised to level 2 (and the elicitation period reduced from 91 to
28 days). However, 10 days prior to this VMG elicitation round
increasing the eruption probabilities, the BN forecast for the
probability of eruption in the next 91 days raised from
background (approximately 0.05) to 0.23 mean value. Prior to
that, in March, the BN elevated slightly from background to
around 0.15, associated with a small increase in earthquake rates.
The BN forecast peaked at 0.3 mean value, initially on 7 May and
then again on 11 May with a decrease in between caused by
fluctuations in tremor intensity.

The BN forecast then fluctuated in an elevated state, largely
controlled by tremor intensity, until returning to background on
around 18 May when the lake temperature had established a
decreasing trend and had decreased to around 37°C. However, a
week later the rate of lake temperature decrease slowed in
association with another series of short-lived tremor bursts that
also caused short-lived higher eruption probabilities. Finally, in
mid-June the lake temperature continued its decline and as the
tremor decreased so did the BN forecast return to background
levels. Meanwhile the VMG elicitation forecast remained high for
another 28 days, through another cycle of VMG elicitation until 5
July when the temperature had reached 23°C. The VMG elicitation
on 5 July lowered the regular forecast to 0.09 (84th percentile value)
in conjunction with the VAL returning to level 1.

An increase in the lake temperature alone was not sufficient to
significantly raise the BN forecast. It was only when the lake
temperature reaching the high band, and tremor and CO2

reaching the medium band (Figure 5) came together that the
BN forecast increased significantly. The state of two nodes
reflecting either the Magmatic Intrusion or Hydrothermal Seal
by natroalunite as the dominant volcanological processes
(Figure 7) are shown in the top panel of Figure 9. These
nodes show that the dominant process switched from seal to
magmatic intrusion with 0.75 likelihood, about halfway up the
rising lake temperature and prior to the BN forecast increasing.
The change of the dominant process to magmatic intrusion prior
to the BN forecast change provides a useful early indicator of a
pending increase in eruption probability. Magmatic intrusion
remained the likely mode until the lake began to cool and tremor
reduced. Prior to the lake temperature rise, hydrothermal seal was
the dominant process.

This example shows the utility of the network in early
detection of unrest, but importantly also prompt recognition

TABLE 2 | The measured values of the monitoring data for each of the three case
study dates presented in Figure 12.

Date 7/05/2016 29/08/2018 25/12/2020

Mg/Cl trend (per day) −0.001 0.002 0.001
Temperature (C) 44.878 31.638 42.147
Temp. Trend (C/d) 0.790 0.481 0.463
SO4 trend (mg/L/d) 27.115 6.978 45.897
RSAM (nm/s) 193.159 189.711 173.978
High RSAM in last 100 days (Y/N) No Yes No
Eq rate inner (per day) 0.286 0.175 0.571
Eq rate outer (per day) 2.429 1.143 0.571
CO2 (t/d) 1741.194 816.261 1710.573
SO2 (t/d) 375.183 45.051 136.625
CO2/SO2 trend (per day) −9.993 −12.481 −6.620
H2S (t/d) 0.214 0.009 2.829
Mg (mg/L/day) −4.936 14.821 4.126
Mg_Al (mg/L/day) −0.015 0.042 0.005
Mg_Na (mg/L/day) −0.016 −0.082 0.023
Mg_K (mg/L/day) 0.088 0.451 −0.040
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of when the unrest period had ended. The BN detected higher
eruption probability approximately 8 days prior to the VMG
elicitation and further detected a change in state from
hydrothermal to magmatic activity several days before the
increase in eruption probability. The fixed 4-weeks interval of
the VMG elicitation at VAL2 inherently creates a lag, compared
to a daily updated, data-driven BN and in this example by the
time the VMG elicitation had occurred, the peak of the eruption
probability had already passed. In addition, the VMG elicitation
kept the eruption probability elevated for 56 days while the BN
returned to background after approximately 40 days. Even
though VAL is not directly determined by eruption
probability, changes in VAL often reflect the VMG judgement
on the likelihood of eruption. As such, this has implications for
stakeholders and local inhabitants, who may be adversely affected
by restrictions caused by elevated alert levels or whomay be put in
danger by delays in raising an alert level.

5.1.2 Case Study 2: July 2018 to February 2019
Between September and December 2018, the BN forecast was at
an elevated level (0.1–0.45) while the VMG elicitation values
remained around background (0.08, 84th percentile value)
(Figure 10). In mid-August the crater lake temperature
increased from 24 to 33°C and then began to oscillate with
monthly cycles between 28 and 33°C rather than displaying its
usual long term cyclic behaviour. This oscillatory behaviour was
observed in 2012, 2017 and late 2019, but at lower temperatures
(20–25°C). Airborne CO2 flux also oscillated during this period.
CO2 flux was moderate at the start of this period (1,600 t/d) but
decreased to ~700 t/d before increasing again to ~1,300 t/d and
then decreasing to ~400 t/d in later 2018. The CO2:SO2 ratio was
<25 throughout the time interval. Volcanic tremor increased
sharply at the end of August 2018 to the high band and then

remained low aside from a brief spike in November. The Mg:Cl
ratio peaked during the period and then declined in early 2019.
The volcanological interpretation of these data is that the system
was partially sealed allowing only irregular pulses of gas and heat
into the hydrothermal system. This pulsatory behaviour was
enough to maintain the lake at elevated temperatures
throughout this period. The VAL remained at 1 during this time.

The BN forecast shows 4 peaks between late August 2018 and end
of November 2018. The higher eruption probability peaks relate to
peaks of lake temperature fluctuation when the temperature
oscillated 5–10°. The first BN forecast peak in late August 2018
was caused largely by the tremor spike rather than lake temperature
as the temperature did not peak until several days later. For the
remainder of the short-term BN forecast cycles the tremor was not a
significant factor, rather the lake temperature oscillating in and out
of the high band (>31C) was the controlling influence. Interestingly,
the broad temperature peak in late December 2018 to January 2019
did not result in an increased eruption probability. The rate of
change of this temperature peak is less than the previous peaks and
was likely a controlling factor.

For this period the BN forecast was more dynamic than the VMG
elicitations which remained steady throughout, with only a minor
decline after a VMG elicitation in December 2018. According to the
BN, the volcano remained strongly in the hydrothermal seal state
throughout this period; however more magmatic influence is inferred
in the October to November 2018 heating cycle. Throughout this
time-period of elevated eruption probability, the VMG elicited values
remained largely constant at close to background values, with only
small changes occurring at the 13-weeks elicitation intervals. The
VMG did not consider the short-term temperature cycles, or other
monitored parameters unusual enough to require raising the alert
level to VAL2 and hence their elicited probability values stayed low
reflecting the 13-weeks elicitation cycle at VAL1. This period is a good

FIGURE 9 | BN timeseries from February to August 2016 covering period of high crater lake temperature. Pink shading indicates 90% confidence interval around
the mean of the BN forecast (red dashed line). Corresponding best guess and 84th percentile values from VMG elicitations shown in black curves. Lake temperature and
RSAM are shown by blue and green curves respectively. The top panel indicates the values of the hidden BN nodes, magmatic intrusion (red dashed line) and
hydrothermal seal (green dashed line), with shading showing the 90% confidence interval.
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example of the network beingmore reactive to data and could be used
to prompt re-evaluation of the alert level or re-elicitation of the
eruption probability from the VMG.

5.1.3 Case Study 3: December 2020 to February 2021
From December 2020 to February 2021 a heating cycle coincided
with the highest CO2 flux (3,067 t/d) recorded since measurements
began in 2003 (Figure 11). SO2 and H2S gas emissions were also at
high levels and emissions were accompanied by pulsatory tremor to
medium levels. Some volcanic earthquakes up to ML 2.2 were
recorded in the inner earthquake region in late December 2020.
The volcanological interpretation was that the vent was in open
conditions allowing unrestricted gas and heat flux. The combination
of high gas values, high lake temperature and elevated tremor with
discrete volcanic earthquakes prompted the Volcanic Alert Level to
be raised to 2 and the aviation colour code to yellow (https://www.
geonet.org.nz/vabs/2eRQvDWg31q0luE4H2McoY). The VAL
returned to level 1 on 11 January 2021 when the tremor returned
to low levels and the lake had begun to cool.

The BN forecast did not respond to the high CO2 value or initial
temperature rise until the temperature peaked on 21 December. At
this point the increase in BN forecast to around 0.12was coincidental
with the VMG elicitation value of 0.3 (84th percentile value), because
of fortuitous timing of the elicitation. The 84th percentile of the
VMG elicitation probability and the maximum BN forecast values
(red shading in Figure 11) are in good agreement. The BN forecast
values remained elevated until early January 2021 before they
dropped to background. The VMG elicitation probability
returned to background on 11 January approximately 5 days after
the BN forecast. Spikes in the BN forecast during its elevated period
are caused by tremor spikes and the BN forecast reacts to them
immediately, illustrating its ability to rapidly adapt to changing
input data.

During this period the hidden nodes of the BN entered the
magmatic intrusion state during the heating phasing of the cycle
and switched to hydrothermal seal once the heating phase peaked.
Again, detection of the magmatic intrusion state occurred
approximately 1 month in advance of the increase in the BN
eruption probability reflecting both rising temperature and
increasing CO2 flux.

5.1.4 BN Sensitivity
Figure 12 shows the network sensitivity over several days for the
time periods of the three case studies. Sensitivity reflects how
changes in a parameter’s CPT result in changes to the eruption
probability given the current evidence. For nodes with high
sensitivity, changes in the evidence, for example the ‘Lake SO4’
value going from ‘Unchanged’ to ‘Increasing’, tend to also cause
strong changes in the probability of an eruption. In that sense it
expresses the potential of changing the probability of an eruption
with a change of state rather than the absolute contribution of
that parameter to the current probability of eruption. For nodes
with high sensitivity, changes in the state boundaries, have a
strong influence on eruption probability. Although sensitivity
also depends on the evidence Figure 12 shows that under most
circumstances nodes in Set B have the highest sensitivity and will,
therefore, contribute most of the uncertainty shown in Figures
8–11. Figures 9–11 also show that eruption probability is
strongly influenced by the state of ‘Current tremor’ or RSAM.
This is a combined effect of this nodes’ high sensitivity and it
having very small values in its CPT. The latter is less a reflection of
our experts’ opinion on the importance of ‘High’ tremor values
than on what constitutes ‘Low’, ‘Medium’, and ‘High’ tremor.
Hence, the way we discretize our continuous datasets can have a
significant influence on the eruption probability which we
quantify through the uncertainty analysis (Section 4.4).

FIGURE 10 | BN forecast timeseries from August to February 2019 covering period of sustained high crater lake temperature. Pink shading indicates 90%
confidence interval around the mean (red dashed line). Corresponding best guess and 84th percentile values from VMG elicitations shown in black curves. Lake
temperature and RSAM are shown by blue and green curves respectively. The top panel indicates the values of the magmatic intrusion (red dashed line) and
hydrothermal seal (green dashed line) with shading the 90% confidence interval.
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5.2 Advantages and Limitations of BN
Modelling to Forecast Eruptions for Mt
Ruapehu
The graphical component of the BN visually represents the input
variables and helps users to gain a clear understanding of themodelled
systemwhile robust statistics describe the joint probability distribution
of all variables. One advantage of BNs is the process of inference, i. e

the updating of the joint probability distribution given new data or
additional observations. This bidirectionality of BNs is a large
advantage over event trees, which assume a one-way non-
reversable process. Inference can be used to analyse the
dependencies of variables and thus assist in gaining a better
understanding of the modelled system.

In our application to Mt Ruapehu, the BN modelling approach
provided a flexible framework to accommodate data and information

FIGURE 11 | BN forecast timeseries from October 2020 to February 2021 covering period of high airborne CO2 measurement and high lake temperatures. Pink
shading indicates 90% confidence interval around the mean (red dashed line). Corresponding best guess and 84th percentile values from expert elicitation shown in
black curves. Lake temperature, RSAM and CO2 flux are shown by blue, green and orange curves respectively. The top panel indicates the values of the magmatic
intrusion (red dashed line) and hydrothermal seal (green dashed line) with shading the 90% confidence interval.

FIGURE 12 | Normalised parameter sensitivity plots for 3 dates from each time interval discussed.
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from different sources.We aligned the model structure to the VMG’s
conceptual understanding of the volcano processes. The long
observation records of eruption, crater lake temperature and
chemistry allowed for data learning of those nodes (Set A) and
ensured that the probability of eruption is well constrained by the
historical record. For some of the other nodes with a shorter
observation record (Set B), it was straightforward to populate the
CPTs by a mixed method, i.e. data analysis for the condition of no
eruption occurring and expert elicitation for the condition of eruption
occurring. The final set of nodes (Set C) was elicited by experts. It is a
strength of BNs to handle missing data, which allowed us to use the
whole record length for every dataset. A logical next step is to
integrate other sources of information on upcoming eruptions, e.g.
models of seismic precursors to eruptions (Dempsey et al., 2020) or
physical models of volcanic processes (Poland and Anderson, 2020).

BN modelling software tools (the SMILE reasoning engine for
graphical probabilistic models) made it easy to learn from data,
integrate the most recent monitoring data, automatically update
forecast probabilities, and make results available to the VMG. In
addition, we used BayesFusion’s web interface BayesBox to provide
each expert with their individual and the finalmodel results. This is an
online webtool where users can set evidence and explore the model.

The BN forecast responded faster to changes in monitoring
data than the expert elicitation. It detected signs of unrest earlier
and promptly recognised when the unrest period had ended. This
was partly due to the BN updating daily (compared to 4 or
13 weeks for VMG elicitation) but could also be due to the
members of the VMG being more conservative in changing
their forecast probabilities. There is a well-known bias in
expert elicitation, called anchoring (Tversky and Kahneman,
1974). Anchoring occurs when the assessment of a numerical
value is based on an initial estimate (i.e., the long-term eruption
probability) and is not sufficiently adjusted to accommodate
other information. Anchoring could also be responsible for the
observation that VMG elicitation forecasts were significantly
lower than the BN forecasts in some cases.

Expert elicitation required to parameterise the BN focussed on
the relation between individual variables at one time rather than
estimating the overall probability of eruption that is influenced by
many variables. Therefore, individual assumptions can be more
easily tested and explored within a model context. This will make
the forecasts more defensible and robust and plays to the
strengths of subject matter experts.

The BN forecast results could be interpreted because they tied
back to the conceptual understanding of the volcano (in contrast
to pure machine learning methods). Automatically updating and
displaying figures such as the examples from the case studies
(Figures 9–11) to discuss in regular monitoring meetings may
help to advance the understanding of the relationships between
variables and may lead to better understanding of the system and
in turn improvements of the model.

A general limitation of BNs lies within modelling complex
systems with a manageable number of parent nodes and states for
each node. From a conceptual understanding it may be tempting
to have Eruption as a child node of many other nodes (e.g.,
Christophersen et al., 2018), however, this would be very difficult
to parameterise. We circumvented this challenge by the selection

of our model structure to have only some variables as parent to
Eruption and many others being child nodes. Defining the
eruption node to have only two states, yes and no, also helped
to keep the number of required CPT entries small.

The retrospective BN model forecasts agree well with the VMG
elicitations. However, it is challenging to formally test the model
due to the sparsity of data. This challenge is not unique to BN
models and affects other short-term eruption forecasting methods
(Whitehead and Bebbington, 2021) as well as other domains with
limited data such as large earthquakes, e.g., Jordan et al. (2014)
discuss the testability of earthquake forecasts in the context of
Operational Earthquake Forecasting (OEF). They define OEF as
“the dissemination of authoritative information about time-
dependent probabilities to help communities prepare for
potentially destructive earthquakes”. They recommend
developing forecast models, validating them against the available
data, making results available to users and helping them to
formulate mitigation options. With the advances in probabilistic
eruption forecasting volcanology may adapt similar approaches.

The BN forecast would have been very challenging to
constrain without the long record of eruptions (Scott, 2013).
However, there is a place for BN modelling even with little data.
Aspinall and Woo (2014) demonstrate that BNs are valuable to
track various variables to assess the probability of eruption with
limited data and under time pressure.

We were in a fortunate position to work within a team of
varied expertise and strengths to get around most challenges and
limitations and achieve satisfactory results. We also had access to
well-maintained and functional software that requires licensing
for government and commercial use. We would like to encourage
others in less advantageous positions to try BNs as probabilistic
modelling framework for forecasting volcanic eruptions and their
hazards and report on their experiences so that all volcano
observatories can benefit from the learnings. There are freely
available BNmodelling tools and some example BNs published to
get started (e.g., Aspinall et al., 2003; Aspinall and Woo, 2014;
Hincks et al., 2014; Christophersen et al., 2018).

Probabilities of eruption forecasts may be of limited use to other
besides technical stakeholders. Themethod described here to develop
a BN for decision-making can be applied to work with any
stakeholder to identify the question that would be most beneficial
for them to answer for making good and well-informed decisions.

6 CONCLUSION AND OUTLOOK

We have described a method to build Bayesian Network (BN)
models to support decision-making and applied it to develop a
BNmodel to forecast volcanic eruption at Mt Ruapehu, Aotearoa,
New Zealand. The BN model is now implemented as a software
tool to automatically calculate daily forecast updates. Our BN
provides a probabilistic model framework to forecast volcanic
eruptions that incorporates expert understanding of the volcanic
systems, learning from the ever-increasing volcano monitoring
data and allows for expert elicitation when data are not available.

Going forward, we plan to apply the same method to other
volcanoes and to extend the question to address other volcanic
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hazards and their impacts. We also plan methodological
advances. In this study we treated successive datapoints as
independent, effectively ignoring the sequential nature of our
data. A more natural way to model the joint probability of our
datasets would be to include time-dependence which leads to
Dynamic Bayesian Networks (e.g., Murphy, 2002b).

The development of open-source modelling software and
guidelines on how to tailor a forecasting model to a different
volcano would be beneficial to other volcano observatories,
especially smaller ones.

Our application was targeted to the needs of the GNS
Science Volcano Monitoring Group. Before providing
quantitative information on the likelihood and impact of
volcanic hazards more widely, more work is required to
understand the need of various stakeholders so that the
information and its communication can be well targeted.
For example, it is important to balance the tolerance for
risk with the possibility of false alarms, in case stakeholders
turn forecasts into alerts that are linked to certain action and
procedures.
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