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In an age of both big data and increasing strain on water resources, sound

management decisions often rely on numerical models. Numerical models

provide a physics-based framework for assimilating and making sense of

information that by itself only provides a limited description of the

hydrologic system. Often, numerical models are the best option for

quantifying even intuitively obvious connections between human activities

and water resource impacts. However, despite many recent advances in

model data assimilation and uncertainty quantification, the process of

constructing numerical models remains laborious, expensive, and opaque,

often precluding their use in decision making. Modflow-setup aims to

provide rapid and consistent construction of MODFLOW groundwater

models through robust and repeatable automation. Common model

construction tasks are distilled in an open-source, online code base that is

tested and extensible through collaborative version control. Input to Modflow-

setup consists of a single configuration file that summarizes the workflow for

building a model, including source data, construction options, and output

packages. Source data providing model structure and parameter information

including shapefiles, rasters, NetCDF files, tables, and other (geolocated)

sources to MODFLOW models are read in and mapped to the model

discretization, using Flopy and other general open-source scientific Python

libraries. In a fewminutes, an external array-basedMODFLOWmodel amenable

to parameter estimation and uncertainty quantification is produced. This paper

describes the core functionality of Modflow-setup, including a worked example

of a MODFLOW 6 model for evaluating pumping impacts to a lake in central

Wisconsin, United States.
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Introduction

Numerical groundwater models can provide water managers and other stakeholders

with a powerful physics-based framework for evaluating complex hydrologic systems,

which may be difficult or impossible to represent analytically (e.g., Anderson et al., 2015).

In comparison to analytical methods, numerical models provide flexibility in their ability
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to finely discretize natural heterogeneity and complex boundaries

or structures, and in their ability to represent transient effects. In

many real-world systems, these capabilities may be essential to

representing and understanding questions of interest (e.g., Leaf

et al., 2015; Fienen et al., 2022,2021a). Just as importantly,

numerical models allow for higher dimensional

parametrization that can be critical for effective data

assimilation, associated model error reduction, and

meaningful consideration of model uncertainty (e.g., Moore

and Doherty 2005; Hunt et al., 2007; White et al., 2021,

2014). Because of these advantages, numerical groundwater

models are used widely. MODFLOW (e.g., Niswonger et al.,

2011; Langevin et al., 2017) and related codes are the most

popular framework for numerical modeling of groundwater

flow and transport worldwide.

The flexibility of numerical models, however, comes with

steep costs. Disparate input data must bemapped to thousands or

millions of computational cells, a process that can be

cumbersome, labor-intensive, and error-prone. The number

and complexity of operations presents a fundamental

challenge to scientific reproducibility (e.g., Peng 2011; Fienen

and Bakker, 2016), step-wise modeling (Haitjema, 1995), and the

modeler’s own cognitive load (e.g., Sweller 1988). The inherent

difficulty of, for example, changing discretization or model

structure makes it difficult to revisit these choices later in a

project in response to what is learned, and carrying alternative

conceptual models through a project is seldom feasible. As noted

by White et al. (2021), realistic representation of model

uncertainty presents an additional set of challenges that may

be out of reach if the basic model inputs cannot be efficiently

built. As a result of these costs, numerical groundwater models

are not only expensive but can often fall short of expectations

(e.g., Donoho et al., 2008; Moran 2016; Doherty and Moore,

2020). A key goal, then, is to automate repetitive, but crucial,

model construction tasks such that a modeler can focus their

efforts on the underlying problem and conceptualization rather

than model mechanics.

Numerical groundwater models are often constructed with

the help of a graphical user interface (GUI). GUIs provide an

interactive environment for building and post-processing models

that is especially helpful for visualization and handling of model

input and output formats. Some GUIs even support grid-

independent input. The reader is referred to Anderson et al.

(2015) for a more thorough discussion of GUI options. Although

many consider the “point and click” approach afforded by GUIs

to be more intuitive than direct manipulation of model input

files, most GUI workflows are not readily automatable, and

therefore prone to the issues mentioned earlier. Without

automation, meaningful documentation of the workflow

requires additional effort on the modeler’s part and may not

be feasible under typical project constraints.

In recent years, open-source software tools to automate the

mapping of disparate data to computational grids have become

readily available and easy to use. These include Python packages

for working with MODFLOW files (Bakker et al., 2016), GIS file

formats and geoprocessing (Gillies 2022a,b,c,d), NetCDF data

(Hoyer and Hamman, 2017), coordinate transformations (Snow

et al., 2022), and general scientific algorithms (Virtanen et al.,

2020); as well as software development tools that facilitate

collaborative version control (e.g., Git; https://git-scm.com/and

GitHub; https://github.com/), automated testing (e.g., Pytest;

https://pytest.org), continuous integration, and online

documentation (e.g., Sphinx; https://www.sphinx-doc.org/);

and accessible tutorials that show domain scientists how to

use them (e.g., https://nsls-ii.github.io/scientific-python-

cookiecutter).

Script-based development of model input with a high-level

language such as Python has therefore been proposed as a

solution to overcome model construction challenges (e.g.,

Bakker et al., 2016), but in practice this is easier said than

done. Ad hoc scripts must be assembled into a carefully

documented workflow that can have many steps and

interdependencies and is itself subject to the “ubiquity of

error” (Donoho et al., 2008). Even the most well documented

workflows depend on the quality of the underlying code and

therefore, the fastidiousness and programming abilities of the

modeler. In the end, a fully scripted workflowmay be no easier to

understand, repeat, or reproduce than a sequence of manual

operations in a GUI or spreadsheet environment.

Fisher et al. (2016) presented what may be the best published

example of a fastidious model construction workflow. In

development of a groundwater model for a project in Idaho,

United States, they developed code functions and assembled

them into a formal R package complete with code

documentation and vignettes (R Core Team, 2014) walking

users through the workflow. Although this approach almost

certainly improved reproducibility and likely carried other

advantages, it was focused on a single project, and likely

required considerable overhead effort that may not be readily

transferable to other work.

Quality code development for robust and reproducible

workflows takes time (e.g., Donoho et al., 2008; Wilson et al.,

2014) that is most efficiently spent developing general code that

can be reused in many different contexts. Functions and other

objects that are dedicated to specific tasks and can be readily

imported into a script or called repeatedly in a loop provide a

local means for reusability. Functions carry the added benefit of

breaking complex workflows into easily understandable pieces

that can also be readily tested, thereby reducing error. At a higher

level, software packages provide a well-understood framework

for developing, testing, and sharing collections of functions and

other objects. The Flopy project (Bakker et al., 2016) provides

such a package, but at a low level that typically requires extensive

ad hoc scripting and geoprocessing outside of Flopy to develop a

MODFLOWmodel in a real-world context. MODFLOWmodels

are not internally geolocated, so Flopy is always referenced to
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MODFLOWmodel grids rather than geospatial coordinates. As a

result, all source data must be mapped to the MODFLOW grid.

Modflow-setup provides a formal, tested, and documented

Python package that builds on Flopy and the other packages

referenced earlier to provide a robust, fully automated workflow

for constructing MODFLOW models in a wide variety of

contexts. Source data can include shapefiles, rasters, NetCDF

files, and other MODFLOW models that are geolocated. We

chose MODFLOW as the endpoint because it is free, open-

source, easy to use (and widely used), well documented and

tested, and well supported by Flopy. Modflow-setup extends the

datatypes of Flopy to facilitate reading and writing MODFLOW

package input and handle inter-package dependencies in

memory. A key advance of Modflow-setup is the

configuration file, which succinctly summarizes the data

sources to a groundwater model and the methods used to

process the data into model input. The information in the

configuration file can be used to drive a fully automated

model construction workflow, reducing the scripting needed

to build a MODFLOW model to as little as a few lines of

Python. This paper gives an overview of Modflow-setup,

including a working example based on a published study in

Wisconsin, United States (Fienen et al., 2022; 2021b).

Methods

Overview of the Modflow-setup workflow

Figure 1 illustrates the use of Modflow-setup in a

groundwater modeling workflow. Grid-independent source

data are preprocessed as needed and specified in a

configuration file for input to Modflow-setup, along with

other settings such as space and time discretization. Modflow-

setup reads the configuration file, maps the input data to the

model grid, and produces a modified Flopy model object. Some

model inputs, such as external array text files, are written directly

by Modflow-setup; other input, such as MODFLOW package

input files, are written by Flopy. Prior to writing any files,

additional scripting can be performed on the Flopy model

object as needed, to prepare any input not supported by

Modflow-setup. Parameter estimation can then be performed

on the working model, which may lead to re-evaluation of the

conceptual model and changes to the model structure or

discretization. Modflow-setup can rapidly regenerate a new

model incorporating the changes.

General paradigms

Modflow-setup supports the construction of MODFLOW 6

(Langevin et al., 2017) or MODFLOW-NWT (Niswonger et al.,

2011) models from scratch (i.e., from grid-independent source

data) or as an “inset” model that is coupled in one direction to a

“parent” model via specified head or flux perimeter boundaries

from the parent model solution. Parent and inset models can be

mixed between MODFLOW 6 and MODFLOW-NWT. An

additional “local grid refinement” (LGR) option for

MODFLOW 6 models allows for specification of an inset

model that is dynamically linked (in both directions) to the

parent model at a finer grid resolution. Unlike previous versions

of LGR (e.g., Mehl et al., 2006; Vilhelmsen et al., 2012), this inset

model formulation is coupled to the parent model at the matrix

level (Langevin et al., 2017), making this an efficient option for

simulating both regional flow and a detailed area of interest. To

facilitate array resampling and dereferencing, currently; only

uniform structured grids (that may be rotated) are supported.

Temporal discretization is specified in blocks that are piecewise-

constant, allowing, for example, for longer spin-up periods early

in a simulation, followed by a finer temporal discretization in a

FIGURE 1
Modflow-setup in the groundwater modeling workflow. Modflow input can be written directly, or additional scripting can be performed with
Flopy to customize the model. By automating the discretization of input data, Modflow-setup allows the conceptual model and model structure to
be more readily revised in response to parameter estimation or new information.
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period of interest. The model grid is referenced internally to a

specified projected coordinate reference system (CRS; with units

of feet or meters), but source data can be in any CRS; reprojection

is handled automatically as needed via the Pyproj package (Snow

et al., 2022). Similarly, length and time units can be specified for

the inset and parent models, and any source data and unit

conversions are handled automatically.

Time-varying specified head or specified flux boundaries can

be applied to the perimeter of an inset model from a parent

model solution, via the Constant Head and Well Packages,

respectively. The parent and inset model grids need not align,

but spatial alignment of the two grids can be beneficial for

preserving mass when resampling recharge from one grid to

another. Parent and inset model grids are located relative to one

another using their respective CRS. Currently, transient inset

models must have either a steady-state parent, or align

temporally with a subset of the parent model stress periods.

Currently, the Streamflow Routing (SFR), Lake, and basic

stress packages (Constant Head, Drain, General Head, River, and

Well Packages) are fully supported for internal boundaries, with

some limited support for the Multi-node Well 2 (MNW2)

Package in MODFLOW-NWT. Unlike previous inset model

translators such as MODTMR (Leake and Claar, 1999),

internal boundary conditions are always re-discretized from

their grid-independent source data (typically shapefiles), as

inset models will usually carry a finer discretization than the

parent. An exception is an option to translate the Well Package

based on the nearest neighbor location of the model cell centers.

Preparation of SFR input is handled by SFRmaker (Leaf et al.,

2021). In general, the geographic extents of surface water features

are specified via shapefiles, and any transient data such as stream

inflows or pumping rates are specified via comma separated

variable (CSV) files. Well locations can be specified with CSV or

shapefiles. Transient input data are mapped to the model stress

periods by computing a specified statistic (usually the mean) for

values falling within each model stress period, or within a user-

specified timeframe (for example, a long-term average period

representing steady-state conditions).

Array-based input can be specified from rasters, shapefiles,

NetCDF files, or the parent MODFLOW model. Rasters can be

used to assign values to specific layers or stress periods; input is

resampled to themodel grid at the cell center locations using either a

nearest neighbor or linear interpolation approach. Shapefiles are

generally only used for delineating discrete features such as the active

model area and are mapped using the rasterize method in the

Rasterio package (Gillies, 2022b). NetCDF files provide a convenient

mechanism for array-based input with many two-dimensional time

slices, for example, daily estimates of net infiltration from Soil-

Water-Balance code (SWB; Westenbroek et al., 2018). Similar to

other transient inputs, NetCDF time slices are mapped to the model

time discretization by computing period statistics. As with other

data, unit conversions are performed automatically if the units are

specified. Finally, arrays from a parent MODFLOW model can be

resampled to the inset grid in time or space. Inset-parent layer

mapping is typically specified for static inputs such as aquifer

properties or cell top and bottom elevations. The coarser parent

model values are then upsampled by layer to the inset model

resolution, using a barycentric scheme similar to the griddata

method in Scipy (Virtanen et al., 2020). In the case of perimeter

boundary conditions, fields of head or flux components from the

parentmodel are upsampled by stress period to the inset model grid,

using the same barycentric interpolation scheme but in three

dimensions, which simplifies specification of the system state

along the inset model perimeter when the inset and parent grids

do not align exactly (e.g., Leake and Claar, 1999).

Another key feature of Modflow-setup is the creation of

MODFLOW observation input. Head observation locations can

be supplied via a CSV file and are then mapped to the closest model

cell center. Observations are set up in each model layer at the

mapped locations, to allow for subsequent post-processing of model

output to derive simulated head equivalents for the well open

intervals (for example, using the transmissivity-based weighting

functionality in Modflow-obs; https://github.com/aleaf/modflow-

obs). Head observation input is created for the observation utility

in MODFLOW 6 (Langevin et al., 2017) or the HYDMOD Package

in MODFLOW-NWT (Hanson et al., 1999). Streamflow

observations can also be supplied, with either coordinate

locations or unique identifiers referencing them to a specific

flowline within the input hydrography. SFRmaker will then

locate the observations within the SFR package and create the

relevant SFR package observation input (Leaf et al., 2021).

Finally, other types of observations can be set up automatically

based on lake numbers (for the Lake Package) or boundnames (for

the basic stress packages in MODFLOW 6; Langevin et al., 2017).

Version control presents a fundamental challenge to

reproducibility and robustness in numerical models. Even if a

version control system such as Git is used to track model

construction, the model files may inevitably get copied or

modified outside of the Git framework, leading to confusion

about their provenance. Modflow-setup records up to three levels

of version information in the comment headers of the produced

MODFLOW input files: 1) the Flopy version, 2) the Modflow-setup

version (including the commit hash), and 3) themodel version, if the

model is being tracked by Git, or if a version is specified in the

configuration file. In the former case, Git versioning information is

read by Modflow-setup using an approach similar to the Versioneer

package (https://github.com/python-versioneer/python-versioneer).

This way, the methods used to generate a particular model input file

can be understood and reproduced, even if the code base and model

have changed.

Software implementation

Modflow-setup is implemented as a Python package that works

on Linux, OSX, orWindows. The version of the code documented in
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this study is available as a USGS software release (Leaf et al., 2022);

the current development version that incorporates bug fixes and

other improvements is available through GitHub (https://github.

com/doi-usgs/modflow-setup) or the Python Package Index (PyPI).

It should be noted that Modflow-setup has software dependencies

thatmust be installed prior to its use. Detailed instructions on how to

install the dependencies and Modflow-setup are available in the

online documentation (https://doi-usgs.github.io/modflow-setup).

Similar to any Python package, Modflow-setup consists of objects

that can be imported into a Python session and therefore usedwithin

scripts or other Python code. The use of Modflow-setup does not

require extensive knowledge of Python, however. In the simplest use

case, input can be specified in a configuration file, and a

MODFLOW model can be built from the configuration file

using only a few lines of Python, as illustrated in the example.

Code organization

The core function of Modflow-setup is to automate mapping of

disparate, grid-independent data to a finite difference grid. At a basic

level, the Modflow-setup package houses general objects (functions,

classes, and methods) to do this. The objects are organized into

modules that loosely correspond to the components of a

MODFLOW model (e.g., “oc.py” for output control) or specific

functionality (e.g., “interpolate.py” for interpolation). Ideally, each

module has a corresponding test module in the “tests” folder, and

each object a corresponding test within that test module. In practice,

much of the testing follows an integration approach where entire

packages or models are built within a single test, effectively testing

the interactions of multiple objects at once.

While Modflow-setup may evolve to include more functionality

as a library of stand-alone components, the current development

focus is on an integrated workflow that builds Flopy model objects

from information provided in a configuration file. Three model

classes, each contained in their own module, are central to this focus.

The MF6model and MFnwtModel classes subclass the Flopy

ModflowGwf and Modflow classes, respectively, to add additional

model construction functionality for MODFLOW 6 and

MODFLOW-NWT models. Both MF6model and MFnwtModel

also subclass a shared MFsetupMixin class that contains core

functionality common to any MODFLOW version. The model

classes themselves contain a number of methods centered around

various arrays and packages, which, in turn, interact with functions

and other objects in the remaining Modflow-setup modules.

The configuration file

Most user interaction with Modflow-setup is through the

configuration file, which is specified in the YAML format (yaml.

org). YAML maps key:value pairs similar to a Python dictionary

(https://docs.python.org/3/tutorial/datastructures.html), except

that whitespace and newlines can often be used in the place

of commas and brackets to delimit structures. YAML input in the

configuration file is organized into blocks that generally follow

the MODFLOW input structure, with primary blocks

representing specific MODFLOW packages or model

components, and sub-blocks representing MODFLOW 6 input

blocks or features in Modflow-setup. The naming of blocks and

variables is intended to follow MODFLOW and Flopy

conventions as closely as possible, with MODFLOW given

preference where these conflict. For example, this block (from

the example problem discussed below) describes the

MODFLOW 6 simulation:

In the model setup workflow, input from the configuration

file is loaded by Modflow-setup into a configuration dictionary

attached to the model object. For example, the simulation:

block shown above would be loaded as:

The above dictionary would then be fed to the Flopy

MFSimulation class constructor to create a simulation

instance. Within package blocks, input to MODFLOW can be

specified directly using the appropriate variables and structures

described in the MODFLOW input instructions (Niswonger

et al., 2011; Langevin et al., 2017). For example, in the block

below, the dimensions: and griddata: sub-blocks would be fed

directly to the MODFLOW 6 Discretization Package constructor

in Flopy:

Such direct input might also contain paths to external text

file arrays that are consistent with the model grid.

Alternatively, source_data: sub-blocks can be used to

reference grid-independent data (shapefiles, rasters, or

comma separated variable files, etc.) that need to be

mapped to the model grid. The Pleasant Lake example

described below includes a DIS package block that

references GeoTIFF rasters as input for layer tops and

bottoms. More details on configuration file input options

are available in the online documentation (https://doi-usgs.

Frontiers in Earth Science frontiersin.org05

Leaf and Fienen 10.3389/feart.2022.903965

https://github.com/doi-usgs/modflow-setup
https://github.com/doi-usgs/modflow-setup
https://doi-usgs.github.io/modflow-setup
http://yaml.org
http://yaml.org
https://docs.python.org/3/tutorial/datastructures.html
https://doi-usgs.github.io/modflow-setup
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.903965


github.io/modflow-setup), which includes a gallery of working

configuration files for various models in the Modflow-setup

test suite.

An example model build script

With an appropriate configuration file, a Python script to build

aMODFLOWmodel can be as simple as the following three lines of

Python:

In this example, the model object class is imported, similar

to Flopy, and the setup_from_yaml constructor method is

called with the configuration file. An MF6model instance,

which is essentially a Flopy model object with additional

functionality, is returned. The MF6model instance can be

used to write the model input files or as the basis for additional

custom scripting.

Example: Setup of the Pleasant Lake
model

The Pleasant Lake model (Fienen et al., 2022) is a MODFLOW

6 simulation that was constructed using Modflow-setup. We show

this example both because this projectmotivated the development of

the Modflow-setup code and because it highlights a complex

workflow that benefits greatly from the scripting approach. A

simplified version of this workflow with a smaller model domain

is available on the Modflow-setup GitHub site (https://github.com/

doi-usgs/modflow-setup); the published, fully detailed models for

Pleasant Lake are available from Fienen et al. (2021b). Another

worked example including uncertainty analysis and a decision

support outcome is available from Fienen and Corson-Dosch

(2021; https://github.com/usgs/neversink_workflow).

The goal of the Pleasant Lake model, part of the Central Sands

Lake Study (Fienen et al., 2022), was to address connections between

groundwater abstraction and the ecological function of a lake in central

Wisconsin, United States (WDNR 2021; Figure 2). This required

modeling at multiple scales. Fine discretization was needed near the

FIGURE 2
The full Pleasant Lake model domain with location map, showing the relationship between the regional, intermediate and LGR inset models, as
well as the irrigation wells considered.
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lake for accurate simulation of water levels and groundwater–lake flux.

A largemodel domain was also needed to simulate farfield water-

use activity (chiefly irrigated agriculture), in order to delineate a

limit of connection, as well as to incorporate distant hydrologic

boundaries. Adopting a fine enough discretization for the lake

detail throughout the farfield would have resulted in amodel with

more cells than could be practically managed. To mitigate this,

three models were combined: a large regional model built with

MODFLOW-NWT, an intermediate MODFLOW 6 model inset

within the regional model to simulate the irrigated agriculture

area, and a refined MODFLOW 6 inset model (nested within the

intermediate model) to simulate the lake (Figure 2; Fienen et al.,

2022). Regional groundwater flow and the effects of distant

boundaries were simulated with the MODFLOW-NWT

model, which was coupled sequentially (one-way) to the

MODFLOW 6 models through time-varying specified head

boundaries along the intermediate MODFLOW 6 model

perimeter. The two MODFLOW 6 models were coupled

dynamically (both ways) within the groundwater flow

solution, allowing for feedback between the models. Estimates

of groundwater recharge for the MODFLOW models were

provided by a SWB simulation that could represent alternative

assumptions of climate and land use. Net infiltration estimates

from the SWBmodel in the NetCDF format were read directly by

Modflow-setup to produce Recharge Packages for the

MODFLOW models. Climate-based estimates of irrigation

demand from SWB were also passed to the Well Package for

simulations that considered future scenarios.

TheMODFLOW 6models were set up using theModflow-setup

LGR feature, which uses the LGR utility in Flopy (Bakker et al., 2016)

to create input for the Groundwater Flow Exchange Package, which

dynamically links MODFLOW 6 models within the same matrix

solution via fluxes across their shared boundaries (Langevin et al.,

2017). TheModflow-setup LGR feature also sets up theWater Mover

Package to maintain continuity in the SFR Package streamflow across

the linked model boundaries. Construction of the LGR inset model is

activated by an lgr: sublock within the parent model configuration

file, which points to a second configuration file for the LGR inset. Full

versions of the parent and inset model configuration files for the

example are available in the online documentation (https://doi-usgs.

github.io/modflow-setup). An abbreviated version of the example

LGR inset model configuration file is reproduced in snippets here for

illustration.

As noted earlier, the simulation: block provides input to the

Flopy MFSimulation constructor, and, critically, the version:

argument that also tells Modflow-setup which version of

MODFLOW to use. Similarly, the model: block contains input to

the Flopy ModflowGwf constructor and ultimately, the MODFLOW

6 Name file (Langevin et al., 2017). The packages: argument tells

Modflow-setup which packages to build. Since this model is an LGR

inset, the parent model is already known to Modflow-setup and does

not need to be re-specified here. Similarly, any packages included in the

package list, but not specified in the inset model configuration file, are

simply built (on the inset model grid) from the input in the parent

model configuration file.

The setup_grid: block specifies the orientation and

discretization of the LGR inset grid. Model grids in Modflow-

setup can be defined explicitly or using a buffer around a feature

of interest. If the model is associated with a parent model, the model

discretization is aligned with the parent model grid by default (this is

required for LGR models). A snap_to_parent: option allows

for unaligned grids. Unrotated models with a grid spacing that is a

factor of 1,000 m can also be aligned with the National

Hydrogeologic Grid, a framework intended to facilitate the

development and use of national-scale hydrogeologic datasets in

the United States (Clark et al., 2018).

In this case, a polygon for Pleasant Lake is provided via a

shapefile, and Modflow-setup is instructed to create a regular 40-m

mesh within a 1000-m buffer of the lake. The projected CRS for the

model grid is Wisconsin Transverse Mercator (indicated by EPSG

code 3070). The vertical discretization is specified in a dis:

(Discretization Package) block. A digital elevation model (DEM)

in units of meters is specified for the model top. As in Python,

numbering for layers or stress periods is zero-based. Since no bottom

elevation grid is supplied for layer 0, the bottom of that layer will be

set halfway between the model top and the specified bottom of layer

1. Additional layers could be similarly subdivided by specifying the

desired layer number for the next bottom surface elevation.

The Lake Package (lak:) block includes shapefile input to

delineate the horizontal extent of the lake, and optionally, a
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bathymetry_raster: input to delineate bottom depths that

are subtracted off the initialmodel top (which is assumed to represent

the water surface, typically the case for DEMs). Alternatively, a

stage_area_volume_file: can be specified to allow for

more accurate representation of lake volume and surface area as

lake levels change. Initial values for lakebed leakance can be input for

both a littoral zone extending a specified distance from shore around

the perimeter of the lake, and a lower permeability profundal zone in

the lake interior (e.g., afterHunt et al., 2013; Leaf andHaserodt, 2020).

Finally, climate input, including daily precipitation and mean air

temperatures, are supplied in a text file downloaded from the PRISM

Climate Group (2019); PRISM provides modeled climate time series

at any point location within the United States. Precipitation is used

directly by the Lake Package to compute the lake water balance;

Modflow-setup uses the Hamon (1961) method to convert daily

mean air temperatures to estimates of lake surface evaporation

(Harwell, 2012). A period_stats: sub-block specifies how the

climate input should be aggregated to the model stress periods. For

the initial steady-state period, 2012–2018 averages of the daily

precipitation and lake surface evaporation are used; subsequently,

the average values within each monthly stress period are used.

Alternatively, lake climate information can be input directly or

supplied in a general CSV format.

The sfr: block instructs Modflow-setup to generate an SFR

Package for the LGR inset model area, using SFRmaker (Leaf

et al., 2021). Since this is an LGR inset model, Modflow-setup will

automatically set up the Water Mover Package as needed to

connect the SFR network across the boundary with the enclosing

parent model.

To simplify input as much as possible, Modflow-setup

includes configuration files of default settings for MODFLOW

6 and MODFLOW-NWT models. In constructing a model, the

default configuration files are read first, and the settings within

them are recursively updated with user-specified input.

Therefore, many settings are optional. For example,

save_flows: True in the sfr: block earlier is also specified

in the default configuration, making it technically redundant,

although perhaps useful as a placeholder to turn the setting on or

off. Other examples of default configurations include the Output

Control Package, which is generated by default to save output on

the last timestep of each stress period, and initial heads, which are

set to the model top by default if no configuration is specified.

The default configuration files can be viewed in the online

documentation.

The obs: block here illustrates how head observation

locations can be supplied from multiple CSV files. In this

case, no x and y column arguments are needed, because both

files have the default column names of “x” and “y.” Non-default

column names can be specified with the column_mappings:

argument. In this example, the column names “obsprefix” and

“common_name” are mapped to the default “obsname,” column

for observation names.

Since this is an LGR inset model that shares a MODFLOW

6 simulation with the enclosing parent model, the simulation-

level Temporal Discretization and Iterative Model Solution

Packages are specified in the parent model configuration file.

The remaining unspecified packages (Initial Conditions, Output

Control, Node Property Flow, Storage, Recharge, and Well

packages) are generated for the LGR inset model using the

input blocks specified for the parent (MODFLOW 6) model,

as described previously. The simplified example version of the

Pleasant Lake model from the online documentation is shown in

Figure 3.

Discussion

After setting up this framework for model construction and

linkage, it is straightforward to evaluate some of the many decisions

that are often made once in a modeling workflow and not revisited

again, such as spatial discretization, time discretization, changing

data sources, or hypothesis testing. In the Pleasant Lake example, the

key goal of establishing a causal connection between human water

use (chiefly irrigation abstraction) and lake levels required

evaluation of multiple conditions. Under a unified representative

climate, we evaluated recharge and irrigation-required water

abstraction for three land use scenarios: 1) no irrigated

agriculture, 2) irrigated agriculture in the footprint of current

conditions, and 3) potential maximum irrigated agriculture.
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Consideration of these multiple hypotheses required multiple

instances of the SWB model, with the outputs from each

instance ingested as recharge and water-use inputs to multiple

MODFLOW 6 models. The robust and repeatable nature of the

Modflow-setup framework enabled efficient evaluation of the

scenarios and has yielded similar benefits to other projects

involving multiple numerical models or advanced analyses (e.g.,

Fienen et al., 2022; 2021a).

As is typical in modeling projects, a single iteration of this

workflow was insufficient, as all modeling requires

refinement of datasets, testing of hypotheses, and

incorporation of lessons learned (e.g., Anderson et al.,

2015). For example, examination of model history

matching results pointed to the need to better represent

headwater springs near the lake. This required rebuilding

the SFR package, a task that would be prohibitively time-

consuming in a traditional modeling workflow but that was

easily done with Modflow-setup. In addition, Modflow-setup

allowed for multiple updates to the layering and geological

structures represented in the model as new data became

available during the course of the project. By opening the

numerical model structure to testing and improvement, the

FIGURE 3
Close-up of the example local grid refinement inset model configuration, showing the discretization and combined water table solution, as well
as Streamflow Routing (SFR) Package cells and the littoral and profundal lakebed leakance zones.
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automated workflow enabled by the Modflow-setup can

maximize the assimilation of data and ultimately provide

models that are better suited for decision support.

It is important to note that while Modflow-setup aims to be

general, development is ongoing on the project GitHub site, and to

date has focused primarily onmeeting project needs through iterative

improvement, instead of building a comprehensive tool from the

ground up. Some features are incomplete, and others haven't been

developed yet. While the configuration file interface is mostly

established, it may change somewhat going forward to

accommodate new features or improve the user experience. The

internal code structure is almost certain to change. While the online

documentation is also a work in progress, it aims to accurately

describe the current state of the project and how to use it.

Contributions and ideas at all levels are encouraged and can be

submitted through issues and pull requests on the project GitHub

page, or via email. In any case, the integration ofModflow-setup with

the general Python interface provided by Flopy allows for custom

code to be added to a model construction workflow as needed.

Finally, like many open-source software projects, Modflow-

setup depends on a large “stack” of other software that is

constantly changing. Regular continuous integration testing helps

ensure functionality by executing the test suite in freshly built

Python environments encompassing the last two minor versions

of Python (e.g., 3.10 and 3.9), across the supported platforms. For

reproducibility, a project-specific Python environment built from a

configuration file works well (for example, a Conda environment

file; https://docs.conda.io/). Long-term archives that are meant to

persist over years may consider packaging this environment into a

stand-alone Python distribution, for example using Conda-pack

(https://github.com/conda/conda-pack).

Conclusions

Modflow-setup provides a rapid, reproducible, and robust

framework for building MODFLOW models from grid-

independent source data. Common model construction tasks

are distilled in an open-source, online code base that is tested

and extensible through collaborative version control. The

workflow for building the model—including input data,

construction options, and output packages—is summarized

in a single configuration file in the human-readable YAML

format. Integration with Flopy allows for additional

customization of the model construction workflow as

needed. The benefits of Modflow-setup include reduced time

and labor required to build a groundwater model, reduced

potential for error, improved reproducibility, expanded

ability to explore alternative conceptual models or

hypotheses, and a reduction in cognitive load that allows the

modeler to focus on the most important aspects of the analysis.

In the case of the Pleasant Lake model, the robust automation

enabled by Modflow-setup allowed for efficient exploration of

cumulative pumping impacts to lake levels from hundreds of

wells, across multiple scenarios.
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