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Once a majority of earthquakes occur without prediction, it is very likely to have

a huge impact on human society. To solve the worldwide challenging problem

of earthquake prediction, our laboratory has developed a set of sensory systems

to monitor the abnormal activity of geological signals before an earthquake

happens in China. At present, more than 300 stations have been deployed, and

the observation time has exceeded 4 years. Based on the various geological

activities collected, a local correlation tracking method is used to capture signal

anomalies before an earthquake, and then the ROC curve is used for the

evaluation of the predictive accuracy. The method is applied in the Sichuan-

Yunnan area weekly, verifying the forecast within a 91-week time frame and a

30-week time frame. The method proposed in this article has earthquake

prediction ability with a rate of over 70%. It promotes and contributes to

helping people avoid the fear of unpredictable earthquakes.
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Introduction

Earthquake prediction is very challenging. Countries have carried out a lot of research

but still have not made substantial progress. An earthquake is a major event of earth

activity; before the release of huge energy, there must be some precursors in a region

through various forms (Yin et al., 2004; Keilis-Borok et al., 2004; Pulinets and Ouzounov,

2011; Roger, 2010; McGuire et al., 2005; Schorlemmer and Wiemer, 2005). In Martinelli

et al. (2020a) and Martinelli et al. (2020b), Martinelli et al. studied shear experiments on

quartz rocks and single quartz crystals. Through their experiments, they proposed that

shear-stressed quartz crystals can generate electromagnetic emissions in the LF-MF range.

They also discovered that a characteristic migration of peak frequencies was observed,

proportional to the evolution of the fracturing process. Those signals, observed

in laboratory faults, also widely precede earthquakes and may contain precursors.

In earthquake prediction, observational science should be very important. Through
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long-term high-density observations, rich earthquake and

precursory signal data can help us find the difference between

predicted and actual earthquake occurrence.

This study selects the electromagnetic disturbance data of

No.90MX station (Figure 7A) and No.75 QW station (Figure 7B)

of our system (Acoustic & Electromagnetics AI, AETA) to

calculate the Pearson correlation coefficient and LCT

correlation coefficient. The data window is from 14 July

2017 to 13 August 2017. From the results (Figure 7), the LCT

method has a better output based on non-stationary signals. The

classical correlation method cannot reasonably reflect the

correlation between the electromagnetic signals from two

stations (Figure 7C). If the signals from a station are

obviously abnormal, this method cannot be applied to

effectively find anomalies. In contrast, the use of the local

cross-correlation tracking method can well reflect the

correlation between the electromagnetic data of any two

stations. Even if very weak signals show anomalies, this

method is able to sensitively pick up the anomalies

(Figure 7D). In the analysis, Figure 6 shows the epicenter at

Jiuzhaigou and the five AETA stations; the LCT method was

employed to calculate the correlation between AETA stations.

The anomaly detected by using this method is called the LCT

anomaly correspondingly. In order to show that the LCTmethod

is able to find the correlation between AETA electromagnetic

data and detect earthquake anomalies, the electromagnetic

disturbance data of five AETA stations within 200 km from

the epicenter are collected (Figure 8). Although the

electromagnetic disturbance data from the No.43 QC station

fluctuates obviously from July 15 to July 25, the signals from these

five stations have all been collected in waveform (Figure 8). The

electromagnetic disturbance data from each four observation

stations for various precursor signals, no precursor signals, and

corresponding abnormal features have been found to imply a

100% coming earthquake (Schuck, 2005). Many different non-

seismic pre-earthquake A plethora of non-seismic signals have

been reported, but there is great uncertainty about their origin,

correlation with each other, and the impending seismic events

(Freund., 2010).

Researchers have made long-term exploration and analysis of

the mechanism of earthquakes. Also, put forward many theories

and models. Paul and Pedersen come up with theories that the

aftershock duration is consistent with models of seismicity rate

variations based on rate- and state-dependent friction laws

(Jónsson et al., 2003).

Moreno et al. proffered that co-seismic slip heterogeneity at

the scale of single asperities should indicate the seismic potential

of future great earthquakes, which thus might be anticipated by

geodetic observations (Moreno et al., 2010).

Olson and Allen propounded that the frequency of radiated

seismic waves within the first few seconds of rupture scales with

the final magnitude of the event. Thus, the magnitude of an

earthquake can be estimated before the rupture is complete

(Olson and Allen, 2005). However, the models are based on

overmuch assumptions, and the actual situation is significantly

different from the model, which cannot provide substantial

guidance for earthquake prediction.

Regarding earthquake prediction, although mechanism

exploration is crucial, observational science should be the first

to be concerned. Only by collecting a large number of

observations, we will be able to determine whether effective

precursor signals can be captured and thus make accurate

predictions (Chadha et al., 2003) (Uyeda et al., 2011). Second,

through long-term high-density observations, the abundant data

of earthquake and precursor signals could assist us in improving

the construction and demonstration of the earthquake

mechanism model and finding the differences between the

predictions and actual earthquake happenings.

Based on the analysis of our observational data and the

models constructed by our AETA laboratory in the past

4 years, in this project, a spatio-temporal earthquake

prediction model based on local cross-correlation of seismic

data from our AETA stations was proposed. This new model

is applied to predict weekly earthquakes with M3.50 or higher in

the Sichuan-Yunnan region (22° N-34° N, 98° E-107° E) from

22 April 2019 to 24 January 2021, 21 months (91 weeks) in total.

Our success rate for earthquake prediction is up to 72.50%.

Intensive precursor network AETA

The AETA (Acoustic & Electromagnetics AI) system makes

use of electromagnetic disturbance and geo-acoustic signals as

observation inputs. It aims to commence imminent earthquake

prediction by using large-scale and high-density seismic data as

well as well-developed methods from data mining, machine

learning, neural network, and relevant fields. The AETA

system consists of two parts: 1) the data acquisition subsystem

and 2) the data analysis and prediction subsystem.

1) The data acquisition subsystem consists of many AETA

stations. Each AETA station is equipped with an electromagnetic

sensing probe, a geo-acoustic sensing probe, and a data terminal.

Data from the sensing probes will be collected, packed, and

transferred to a cloud server. 2) The data analysis subsystem

includes a cloud server, a database, a client of data display, a

website for data display (https://www.aeta.cn), and our software

for real-time seismic prediction. The cloud sever and the database

are used for feature extraction and data storage. The software is

working to check the data updates and display the predicted

outcomes in real time (Figure 1).

In this article, only electromagnetic data are being analyzed

in the proposed model. The specifications of the electromagnetic

probes are described as follows: the frequency band is

0.1 Hz–10 kHz, the spatio-temporal model of dynamic range

is 0.1–1,000 nT, the sensitivity is >20 mV/nT@0.1 Hz–10 kHz,

and the sampling rate for the low-frequency band (≤200 Hz) is

Frontiers in Earth Science frontiersin.org02

Xie et al. 10.3389/feart.2022.902745

https://www.aeta.cn
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.902745


FIGURE 1
Architecture of the AETA system.

FIGURE 2
Distribution of AETA observational stations.

Frontiers in Earth Science frontiersin.org03

Xie et al. 10.3389/feart.2022.902745

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.902745


500 Hz, which is 30 kHz for the full frequency band (≤10 kHz).

Its noises are within 0.1–0.2 pT/Hz@(10 Hz–1 kHz) (Guo et al.,

2021).

Since January 2017, the AETA team has started constructing

the observation network in China (Figure 2). Up to now, more

than 300+ stations have been deployed. Most of them are located

in the Sichuan-Yunnan region (more than 200 stations, namely,

22°N-34°N and 98°E-107°E) because the region has high

seismicity than other places in China (Guo et al., 2021). After

4 years of observations, more than 45 TB of data has been

collected, and 20 GB of new data is collected every day. In

order to analyze multiple dimensional features, 95 classes of

electromagnetic and geo-acoustic signals have been taken into

account (Guo et al., 2021). In this article, an average of the

electromagnetic data is imported into the proposed model to

represent the data in the temporal domain.

Our spatio-temporal model for
earthquake prediction

Based on two classes of precursor signals observed by using

the AETA system, a newmodel to predict whether an earthquake

will occur in the Sichuan-Yunnan region is proposed. The

prediction will be made every Sunday, and the time frame for

this prediction is the next 7 days (Figure 3). An LCT algorithm

(i.e., local correlation tracking) is being applied to cope with the

electromagnetic signals of the AETA system.

LCT algorithm

The proposed LCT method is an improvement of the

conventional linear correlation method (Verma et al., 2013).

The novelty of this method is that a sliding window in the

temporal domain is added, and the correlation between local

covariance matrices is calculated in each time window (Schuck,

2005). The correlation calculated by this method in this study is

called the LCT correlation.

Regarding time series analysis of electromagnetic signals, at

first, a sliding window in the temporal domain xt,ω is applied to

FIGURE 3
Workflow of our proposed model.

FIGURE 4
Exponential decay window.
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segment the data at time t. The window in this article is an

exponential decay window, namely, at time t, all windows xt,ω are

multiplied by an exponential weight βt−τ. Among them, the

window xt,ω closer to the time t will be given a larger

exponential weight, while the window far away from the time

t will be assigned a smaller weight (Figure 4). Hence, the darker

the color, the greater the weight, and vice versa.

Regarding any streaming data X, its local covariance matrix

at time t is expressed by Eq. 1.

Γt
→

X,ω, β( ) � ∑
t

τ�1
βt−τXτ,ωXτ,ω. (1)

After calculating the covariance of the two streaming data by

using Eq. 1, the local covariance matrix at time t is obtained. After

a singular value decomposition (SVD) operation, local

covariance matrices Γt
→(X) and Γt

→(Y) are obtained by using

Eq. 2 and 3.

Among them, feature vectors corresponding to the largest

eigenvalues are ux and uy. In Eq. 2, U(X) is the left singular vector

(LSV) of Γt
→(X), V(X) is the right singular vector (RSV) of Γt→(X),

and Σ is the singular value matrix (SVM) of Γt
→(X)as the same in

Eq. 3.

Γt
→

X( ) � U X( )ΣV X( )T, (2)
Γt
→

Y( ) � U Y( )ΣV Y( )T. (3)

Similar to the principal component analysis (PCA) method

(Wold et al., 1987), the first few principal components will retain

most of the information. Depending on the data distribution, the

first k principal components keep the principal feature vector

(PFV) matrix. Therefore, the two PFV matrices YX and UY are

shown in Eq. 4 and 5, respectively.

UX � U X( ) :, k[ ], (4)
UY � U Y( ) :, k[ ]. (5)

Now, there are two spaces span(UY) spanned by UY and

span(UX) spanned by UX. Then, multiply ux by using UY at the

left side and get UT
Yux, which is a projection in space span(UY).

Similarly, multiply uy by UX at the left and get UT
Xuy, which is a

projection in space span(UX) (Figure 5). The angle between them

is expressed as Eq. 6 and 7, correspondingly.

θ1 ≡ ∠ ux, span UY( )( ) � ∠ ux, U
T
Yux( ), (6)

θ2 ≡ ∠ uy, span UX( )( ) � ∠ uy, U
T
Xuy( ). (7)

Thus, if two spaces have LCT correlation, θ1 and θ2 approach

0.00, and cos θ1 and cos θ2 will tend to 1.00 as shown in Eq. 8

and 9.

| cos θ1| � ‖UT
Yux‖/‖ux‖→ 1.00, (8)

| cos θ2| � ‖UT
Xuy‖/‖uy‖→ 1.00. (9)

Finally, define the local correlation LocoScoret at time t as

shown in Eq. 10.

LocoScoret � 0.5 · | cos θ1| + | cos θ2|( ). (10)

In summary, the LCT method is applied to calculate the

correlation between two streaming data. If there is a large LCT

correlation between them, LocoScore should tend to 1.00. On the

contrary, if the LCT correlation is small, LocoScore should be

close to 0.00.

The analysis of earthquake data by using
the LCT method

An earthquake (103.82°E, 33.2°N, M7.0) occurred in

Jiuzhaigou County, Sichuan Province on 8 August 2017.

There are five AETA stations whose geographic locations are

near the epicenter (Figure 6 and Table 1), and the low-frequency

electromagnetic data collected from these stations 1 month

before the earthquake was selected for the analysis.

In order to calculate the correlation coefficient between the

data from our stations, it makes use of the classical correlation

method and local cross-correlation tracking method to calculate

the Pearson correlation coefficient (Jacob et al., 2009).

First, select the electromagnetic disturbance data of

No.90 MX station (Figure 7A) and No.75 QW station

(Figure 7B) to calculate the Pearson correlation coefficient and

LCT correlation coefficient. The data window is from 14 July

2017 to 13 August 2017. From the results (Figure 7), the LCT

method has a better output based on non-stationary signals. The

classical correlation method cannot reasonably reflect the

correlation between the electromagnetic signals from two

FIGURE 5
Local cross-correlation.
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stations (Figure 7C). If the signals from a station are obviously

abnormal, this method cannot be applied to effectively find

anomalies.

In contrast, the use of the local cross-correlation tracking

method can well reflect the correlation between the

electromagnetic data of any two stations. Even if very weak

signals show anomalies, this method is able to sensitively pick

up the anomalies (Figure 7D). In the analysis, the LCT method

was employed to calculate the correlation between AETA

stations, and the anomaly detected by using this method is

called the LCT anomaly, correspondingly.

In order to show that the LCT method is able to find the

correlation between AETA electromagnetic data and detect

earthquake anomalies, the electromagnetic disturbance data of

five AETA stations within 200 km from the epicenter are

collected (Figure 8). Although the electromagnetic disturbance

data from the No. 43 QC station fluctuate obviously from July

15 to July 25, the signals from these five stations have all been

collected in waveform (Figure 8). The electromagnetic

disturbance data from each AETA station have anomalies in

the week before the earthquake.

Subsequently, the electromagnetic disturbance data from

these five AETA stations were analyzed by using the LCT

method, a set of LocoScore scores were calculated between

every pair of two stations, and there were a total of

C2
5=10 sets of results. Among them, in the green box, the

FIGURE 6
Epicenter at Jiuzhaigou and the five AETA stations.

TABLE 1 Selected five AETA stations.

No. Station name Abbreviation Longitude Latitude

90 MaoXian MX 103.85 31.69

121 JiuZhaiGou JZG 104.25 33.26

129 SongPan SP 103.60 32.65

116 PingWuxian PW 104.55 32.41

43 QingChuangxian QC 105.23 32.59
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LocoScore of each group was abnormal about 1 week before the

earthquake (Figure 9). However, due to the fluctuations in the

electromagnetic data of the No.43 QC station, the LocoScore

related to the QC station was abnormal before July 25 (Figure 9).

From previous analysis and experimental results (Figure 9), it

is found that in the long period of observations before the

earthquake, LocoScore between the signals from every two

stations is basically close to 1.00, that is, the electromagnetic

signals from the stations are the same. The data have good spatial

consistency. However, a week before the earthquake, LocoScore

between every two stations showed an anomaly of less than 1.00,

that is, the original spatial correlation of the electromagnetic data

between the two stations was broken by the earthquake. These

LCT anomalies reflect precursors related to earthquakes. Based

on the analysis, applying the LCT method to AETA

electromagnetic disturbance data is able to predict an earthquake.

LCT abnormal calculation

Based on the LCT algorithm, the electromagnetic data from

every pair of AETA stations will be applied to an abnormal

evaluation, which will be output every day.

First, define the LCT anomaly: the electromagnetic data from

multiple AETA stations will be analyzed by using the LCT

method to calculate the LocoScore of each pair of stations

before the earthquake and a total of 10 days after the

earthquake. According to the choice of the time window,

there will be different LocoScore values.

There are 24 values in the LocoScore per hour per day for a

total of 24 × 10 = 240 values in 10 days. Thus, define the anomaly

of each day as LocoScoreDay (Figure 10) or day-based.

Therefore, the abnormal results of LCT will be output every

day. The median of the daily LocoScore is selected as the outlier of

the two stations per day.

Large-scale application of the LCT
method

By using the LCT method of AETA, an outlier is able to be

obtained from the data of the two stations every day. The outlier

is between [0,1.00]. The smaller the value, the more serious the

abnormal situation between the data of these two stations. There

are 80 stations that were selected after removing those stations

with frequent failures or with unchanged signals, and get

C2
80=3,160 LCT outliers every day. It’s necessary to choose a

threshold x and calculate the number of these 3,160 LCT outliers

that are less than x to count the anomalies of electromagnetic

signals in the Sichuan-Yunnan region on 1 day. After multiple

tests, finally, the threshold is set x as 0.08. The number of outliers

less than this threshold is called Num.

FIGURE 7
(A) Normalized electromagnetic disturbance data of MX station, (B) normalized electromagnetic disturbance data of QW station, (C) the
Pearson correlation coefficient between (A) and (B), and (D) LCT correlation coefficient between (A) and (B).
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The specifications in this work from the different datasets for

the model were extracted.

Weekly earthquake prediction in the
Sichuan-Yunnan region

The LCT anomalies were calculated based on AETA

electromagnetic disturbance data for 21 months (91 weeks) in

the Sichuan-Yunnan region from 22 April 2019 to 24 January

2021. During this period of time, the distribution of earthquakes

and AETA stations (Figure 11). The red dots indicate the

epicenter, and the blue dots show the AETA station.

The daily LCT abnormal times in the Sichuan-Yunnan area for

1 week are counted, then look for the value threshold Val ∈ R and

the number thresholdNum ∈ Z+ of daily anomalies, and review all

of them every Sunday. If the times of LCT abnormalities whose

values are lower than Val on a day of this week exceed Num, it is

considered that there will be an earthquake ofM3.5 or higher in the

next week. Otherwise, it is predicted that there will be no

earthquakes next week. For example, let’s assume Num=20. A

one-week review was conducted on Sunday (3 January 2021), and

the LCT anomalies from 28December 2020 to 3 January 2021were

counted. It is found that on 30 December 2020, the number of

anomalies below 0.08 was 48. More than 20, we predict that the

next week from 4 January 2021 to 10 January 2021, there will be an

earthquake in the region (Table 2). A suitableNumwill be found so

that the outcome of using LCT anomalies to predict weekly

earthquakes is the best. By using the ROC curve to analyze and

calculate, the Num result is 30.

ROC curve

ROC curve refers to the receiver operating characteristic

(ROC) curve. The ROC curve is a diagram composed of the

false alarm probability as the horizontal axis and the hit

probability as the vertical axis; the curve is drawn by different

results obtained by the subjects under specific stimulus

conditions due to different judgment standards (Molchan,

2010; Mirmiran et al., 2004).

The hit rate in the ROC curve is the proportion of positive

samples in the test set that are correctly classified. The false-

positive rate in the ROC curve is the proportion of negative

samples in the test sample set that are incorrectly identified

(Kamarudin et al., 2017).

For a dataset, each classification model has a ROC curve (Calì

and Longobardi, 2015). The classification model follows a rule,

FIGURE 8
Normalized electromagnetic disturbance data from (A) MX, (B) JZG, (C) SP, (D) PW, and (E) QC.
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usually, a threshold. The hit rate and false alarm rate of this

threshold based on the sample set are obtained, so as to mark a

point on the ROC curve, it could continuously adjust the

threshold of the classification model and mark the points on

the ROC map, and these points are connected to the ROC curve

of this classification model based on this sample set.

For the classification results by using the LCT method, a

threshold is needed to be fixed. If the threshold is exceeded, the

sample is judged as an earthquake sample; otherwise, it is judged

as a no-earthquake sample. We make use of the number of

anomalies to make judgments. For our dataset, if the earthquake

magnitude is higher than M3.5, the week is defined as a positive

week, while the weeks without earthquakes are treated as negative

weeks (Figure 12).

Obviously, if the threshold is 0.00, all samples are judged as

positive samples. At this time, the hit rate is 1.00, and the false

FIGURE 9
There are 10 sets of LocoScore scores calculated by using the LCT method.
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alarm rate is 1.00, corresponding to the points at (1.00, 1.00) in

the top-right corner. If the threshold is set at infinity, all samples

are judged as negative samples. At this time, the hit rate is 0.00,

and the false alarm rate is 0.00, corresponding to the points at

(0.00, 0.00) in the bottom-left corner. The remaining points on

the blue line correspond to other thresholds. As the threshold

continues to increase, the corresponding points move along the

blue line from the top-right to the bottom-left corner. A small

drop in false alarm rates is a tradeoff with a drop in hit rates. The

most ideal point is the point at the top-left corner. The hit rate is

1.00, and the false alarm rate is 0.00, which means this

classification model completely distinguishes between positive

and negative samples. The closer to the upper left corner, the

better the threshold.

The red star and the black star (Figure 12) are the closest ones

to the top-left corner. The threshold related to the red star is 8,

and the threshold corresponding to the black star is 30. The

coordinates of the red star are (0.50, 0.86), while those of the

black star are (0.22, 0.69). The distance from (0, 1.00) is 0.52 for

the red star and 0.37 for the black star. The classification result

with the threshold of 30 corresponding to the black star is better.

The AUC value of the classifier for the number of abnormal

points in the LCT model, which is the area under the diagonal

line, is calculated easily (Kamitsuji and Kamatani, 2006; Lever

et al., 2016) (Figure 12) as 0.74, far exceeding 0.50. This is a good

result in earthquake prediction. With the AUC value, it can be

concluded that LCT anomalies have a considerable correlation,

which proves that LCT anomalies are effective in predicting

earthquakes that will occur in a few days.

To sum up, first, use the LCT method to analyze the

electromagnetic signals from the AETA station, get the signal

anomalies between two stations every day, and count the number

of abnormal values below 0.08. A weekly review is carried out

every Sunday. If this week has anomalies and the number of

anomalies for this week is greater than or equal to 30, it is

predicted that an earthquake will occur in this region next week;

otherwise, it is predicted that no earthquake will occur.

FIGURE 10
LocoScore curve.

FIGURE 11
AETA stations and earthquakes in the Sichuan-Yunnan area.

TABLE 2 Specifications of the original data.

Zone Sichuan-Yunnan region

Period 2019.4–2021.1

Source Data from AETA stations

Size 598.50 MB

Earthquakes 59

Max magnitude M6.0

Frontiers in Earth Science frontiersin.org10

Xie et al. 10.3389/feart.2022.902745

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.902745


Prediction result analysis

The ROC curve can be used to find the optimal and sub-

optimal amounts of data and draw a prediction chart based on this.

Therefore, earthquakes can be predicted more intuitively

(Figure 13). The abscissa is the number of weeks in

chronological order, and the ordinate is the number of LCT

outliers less than 0.08. The blue discount indicates the actual

occurrence of earthquakes in the 91 weeks, 0 means no earthquake

occurred this week, and non-zero means an earthquake occurred

this week. The black horizontal line represents the threshold

represented by the black star (Figure 13), which is 30. The red

broken line represents the number of days with the largest number

of LCT outliers of less than 0.08 this week. If the red broken line is

lower than the black horizontal line, it will be predicted that there

will be no earthquakes; otherwise, the occurrence of earthquakes

will be predicted. Compared with the blue broken line, which

indicates the actual occurrence of the earthquake, the yellow area is

to indicate whether the earthquake is correctly predicted

(Figure 14, Figure 13). The threshold presented by using a

black horizontal line has been changed to 9, which corresponds

FIGURE 12
ROC curve of our method.

FIGURE 13
Prediction result 1.

FIGURE 14
Prediction result 2.
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to the threshold represented by the red star (Figure 12), the correct

prediction time has also been replaced by a light green block, and

the orange color block indicates the time if both thresholds are

correctly predicted (Figure 15).

It is clear that no matter whether the threshold is 8 or 30, the

number of correct predictions of earthquake occurrence far

exceeds the number of incorrect predictions (Figures 13–15).

This also reflects that LCT anomalies indeed predict earthquakes

much more accurately, and there is definitely a greater

correlation between them and earthquakes.

To verify whether there will be an earthquake prediction next

week, we may get four results (Asencio-Cortés et al., 2015). In

this article, we treat earthquakes as positive samples and no

earthquakes as negative samples. TP and TNmean the prediction

is correct. The results are shown (Table 3, Table 4 and Figure 16).

In this article, we propose the metrics to measure the quality

of the forecast results.

P � TP/ TP + FP( ), (11)
R � TP/ TP + FN( ), (12)

A � TP + TN( )/ TP + TN + FN + FP( ), (13)
F � FP/ TN + FP( ). (14)

By calculating P=0.85, A=0.73, R=0.69, and F=0.23, where TP

is a true positive or hit, FN is a false negative or the miss, FP is a

false positive or false alarm, and TN is a true negative or correct

rejection. Meanwhile, Pre is the precision, Rec is the recall, Acc is

the accuracy, and Fpr is the false positive rate.

FIGURE 15
Prediction result for 91 weeks.

TABLE 3 TP/FN/FP/TN sample table.

Forecast

Actual Yes No

Yes TP FN

No FP TN

TABLE 4 Prediction result for 91 weeks.

Prediction

Actual Yes No

Yes 41 18

No 7 25

FIGURE 16
Prediction result for 91 weeks.

TABLE 5 Prediction result for 30 weeks announced in real time.

Prediction

Actual Yes No

Yes 11 4

No 7 8
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The earthquake prediction results in real time for a total of

30 weeks from1April2021to31October2021canalsobecalculated

and published on the AETA prediction platform website, open to

visitors from all over the world. During the 30 weeks, there were

15 weeks of actual earthquakes in the Sichuan-Yunnan area and

15 weeks without earthquakes. The system gives 18 earthquake

predictions and 12 earthquake-free predictions. The prediction

results are shown in Table 5 and Figure 17.

Conclusion

Our work is designing and developing AETA systems based on

the deployed stations first. Since January 2017, we have started

creating an observation network in China. Up to now, more than

300 stations have been deployed. Most of them are located in the

Sichuan-Yunnan region in China, with more than 200 stations,

whichcollect ahugeamountof low-frequencyelectromagneticdata.

Second, based on the low-frequency electromagnetic signals

observed by using the AETA system, the LCT method is applied

to analyze, calculate, and process the correlation between the

local covariance matrices corresponding to each time window of

the two streaming data. The daily anomalies by using the LCT

method can be calculated. By counting the number of abnormal

values below the threshold of 0.08 and conducting a weekly

review every Sunday, an earthquake can be predicted to occur in

the region next week.

Finally, based on the LCT abnormal analysis from the

electromagnetic disturbance data of AETA, the ROC curve is

employed to analyze the prediction outcomes of the LCT model

in 91 weeks. Keymetrics such as hit rate, false alarm rate, and AUC

value are proposed. The ROC curve for earthquake prediction of

eachclassifierwasdrawn,andthedataofearthquakeswereanalyzed.

It proves that the LCT anomaly and the earthquake have a

considerable correlation, the optimal threshold was found, and

the classification results were evaluated, respectively. Finally, four

metrics are introduced to measure the LCT method based on

earthquake prediction classification, which proves its excellent

performance for classification.
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FIGURE 17
Prediction result for 30 weeks announced in real time.
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