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At present, there is still a bottleneck in tropical cyclone (TC) forecasting due to its complex
dynamical mechanisms and various impact factors. Machine learning (ML) methods have
substantial advantages in data processing and image recognition, and the potential of
satellite, radar and surface observation data in TC forecasting has been deeply explored in
recent ML studies, which provides a new strategy to solve the difficulties in TC forecasting.
In this paper, through analyzing the existing problems of TC forecasting, the current
application of MLmethods in TC forecasting is reviewed. In addition, the various predictors
and advanced algorithm models are comprehensively summarized. Moreover, a
preliminary discussion on the challenges of applying ML methods in TC forecasting is
presented. Overall, the ML methods with higher interpretation, intervention and precision
are needed in the future to improve the skill of TC prediction.
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INTRODUCTION

Tropical cyclone generates over the tropical or subtropical oceans, and it is a kind of extreme weather
regime that can cause tremendous loss of human lives and social property through excessive
torrential rainfall, flash flood, huge waves and storm surges. Genesis, track, intensity and disastrous
weather are the key issues in TC operational weather forecast. At present, the numerical model is still
the dominant way to forecast TC, and its ability mainly depends on the parameterization of physical
processes within TCs. However, the performance of TC prediction is restricted by the complex
dynamical mechanisms and the diverse influence factors, and still needs to be improved (Ma, 2014).

In recent years, major advances in TC forecasting have been made in TC track prediction. But,
there still exist challenges in predicting anomalous motions (Dong, 2021) and making long-term
track forecasting (Emanuel, 2018). In order to solve such problems, the application of ML methods
has gradually become a hot spot. For example, they are used to explore the values of satellite data (Hu
et al., 2017; Zhang et al., 2017; Chen et al., 2018; Pradhan et al., 2018; Kim M. et al., 2019; Qian et al.,
2021), radar data (Chen X. P. et al., 2020; Huang et al., 2021) and surface observation data (Mercer
and Grimes, 2015) in TC forecasting.

As the core technology of Artificial Intelligence (AI), the basic principle of ML is to give data to
computers and let them infer rules from it, so that machines can explore the potential values of data and
automatically improve their performances (Zhou, 2006). TheML can be divided into supervised learning
and reinforcement learning according to whether the assignment needs to obtain experience through the
interaction with environment (Cui et al., 2019). ML methods can be used to realize the feature selection
(Kim and Choi, 2007), clustering (Melnykov et al., 2020), and regression/classification (Suykens and
Vandewalle, 1999), which are thought to be beneficial to TC forecasting (Chen R. et al., 2020).
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In this study, we will review the current applications of ML
methods in the forecasting of TC genesis, track, intensity and
disastrous weather and summarize the existing problems. Then,
various predictors and advanced algorithm models are
comprehensively summarized (Figure 1). The remainder of
this paper is organized as follows. The application of ML
methods in the forecasting of TC genesis, track and intensity
is reviewed in sections 2–4, respectively. Section 5 reviews the
forecasting on TC disastrous weather and its impact. Finally, the
conclusions and discussion are given in section 6.

TC GENESIS FORECASTING

TC genesis is referred to as a process through which a tropical
disturbance rapidly develops into a warm-core, cyclonic system
with sustained winds (Gray, 1968, 1998). The TC can be identified
and tracked through the criteria of co-located high values of low-
level vorticity, low surface pressure values, elevated temperatures
aloft, and high 10-m wind speed maintained for a specified
duration of time (Knutson et al., 2007; Ullrich and Zarzycki,

2017). Traditionally, the forecasting procedures are based on a
multi-variable set of physical conditions based on known
properties of TCs. The physical conditions can be predicted by
numerical models. Recently, more advanced numerical models,
such as the Global Environmental Multi-Scale Model, Global
Forecast System, Navy Operational Global Atmospheric
Prediction System and United Kingdom Met Office global
model, have been applied in operational forecasting of TC
genesis (Halperin et al., 2013). Although this prediction
method is based on physical interpretations, it has some
limitations, such as poor understanding of TC genesis and
huge computational costs (Chen R. et al., 2020). The used
statistical relationship between the probability of TC genesis
and large-scale environmental predictors is too simple to
describe the actual situation accurately (Chaudhuri et al.,
2017). At present, TC genesis forecasting can be carried out
by combining ML methods with traditional methods. According
to the forecast leading time, the TC genesis forecasting can be
divided into short-term forecasting and long-term forecasting
(Table 1). Aimed at predicting seasonal generation frequency of
TC, long-term forecasting usually uses large-scale environmental

FIGURE 1 | Overview of the application of machine learning methods in TC forecasting.
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field information to establish the statistical relationship between
environmental factors and the active frequency of TCs, and
further constructs the genesis potential index (GPI) (Chen,
2018). The selection of large-scale environmental factors, such
as low-level vorticity, convective instability, ocean mixed layer
depth/temperature, vertical wind shear, absolute vorticity,
relative humidity, etc. (Gray, 1968; Emanuel and Nolan, 2004;
Camargo et al., 2007; Zhao et al., 2012), plays a key role in long-
term forecasting. For short-term forecasting, there are
preconditions of tropical disturbances or tropical cloud
clusters existing over tropical ocean surface, and then an
algorithm is used to determine whether they will develop into
a TC (Chen, 2018). The existence of tropical disturbances or
tropical cloud clusters is often identified according to the state of
atmospheric variables (wind field, vorticity field, etc.) (Fu et al.,
2012; Peng et al., 2012) and the brightness temperature data of
satellite cloud images (Hennon and Hobgood, 2003; Hennon
et al., 2011).

Short-Term Forecasting
To forecast whether the tropical disturbance can develop into a
TC, many studies have devoted to finding the optimal predictors
and algorithms. For example, Zhang et al. (2015) built a decision
tree (DT) model (Safavian and Landgrebe, 1991) based on the
C4.5 algorithm to classify tropical disturbances in the Northwest
Pacific. They found that the maximum relative vorticity, sea
surface temperature, precipitation rate at 800 hPa, the average
divergence at 1,000–500 hPa and temperature anomaly at
300 hPa are essential predictors to distinguish whether the
tropical disturbance can develop or not. Compared with the
numerical methods with a hit rate of less than 50% (Halperin
et al., 2013), the DT method with a higher hit rate (64%) has
excellent performance in the short-term (24–48 h) TC genesis
forecasting. Wijnands et al. (2016) used the logistic regression
prediction model to select the short-term predictors for TC
genesis. The results showed that 600 hPa potential vorticity,
925 hPa relative vorticity and 200–700 hPa vertical wind shear
are key predictors.

In addition to reanalysis data and simulation data, satellite
data has been used in several studies to forecast TC genesis. With
the aid of the circular variance and a spatial pattern analysis
program tool, Park et al. (2016) used the WindSat remote sensing
images of ocean surface wind and precipitation to quantify the
predictors in the DT algorithm, and then they established a new
forecast model of TC genesis. Moreover, they further pointed out
that the symmetry and intensity of circulations are the most

important parameters that characterize the development of
tropical disturbance.

In recent years, significant advances in prediction algorithms
have also been made. For example, Ahijevych et al. (2016) used
the Random Forest (RF) algorithm to make the probability
forecast of the genesis of mesoscale convective systems. Zhang
et al. (2019) evaluated the performance of the linear, non-linear
and non-linear ensemble classification algorithms on TC genesis
forecasting, and they found that the AdaBoost, a non-linear
ensemble classification algorithm, has significant higher
forecast accuracy than the traditional methods based on the
genesis potential index (Figure 2). Similar to Park et al.
(2016), Kim M. et al. (2019) adopted eight predictors from the
WindSat observed ocean surface wind and precipitation in the
Northwest Pacific, and compared the detection skill for TC
genesis using the models based on three different ML
algorithms i.e., DT, RF and support vector machines (SVM)
(Suykens and Vandewalle, 1999), and a model based on linear
discriminant analysis. They highlight that ML approaches can
provide an improved skill for detecting TC genesis compared
with conventional linear approaches.

Long-Term Forecasting
The long-term forecast aims to predict the seasonal genesis
frequency of TCs. The traditional methods use a set of
interrelated predictors through linear statistics to predict the
TC frequency in the next quarter. However, the relationship
between predictors and TC genesis does not satisfy the
assumption of standard prediction technique. Therefore,
scholars regarded seasonal-scale TC forecasting as a regression
problem and tried to use ML methods to build some newer
model. In particular, the Support Vector Regression (SVR)
algorithm has been widely used. Richman and Leslie (2012)
extended the traditional multiple linear regression method and
introduced the quasi-biennial oscillation (QBO) into the SVR
model to predict the genesis frequency, spatial distribution and
seasonal intensity variation of TCs. The results showed that the
prediction accuracy of the improved SVR model was 40% higher
than that of the traditional multiple linear regression model and
121% higher than that of the SVR without QBO. On this basis,
Wijnands et al. (2014) and Richman et al. (2017) further
improved the SVR model with reduced the seasonal
forecasting errors of TCs. Nath et al. (2016) selected five large-
scale climate variables, namely 500 hPa geopotential height,
500 hPa relative humidity, sea level pressure, and 700 hPa and
200 hPa zonal wind in the previous month, as potential predictors

TABLE 1 | Machine learning in TC genesis forecasting.

Tasks Algorithms References

Short-term forecasting decision tree Zhang et al. (2015); Park et al. (2016)
logistic regression Wijnands et al. (2016)
random forest Ahijevych et al. (2016)
AdaBoost Zhang et al. (2019)
decision tree, random forest and support vector machine Kim et al. (2019a)

Long-term forecasting support vector regression Richman and Leslie (2012); Wijnands et al. (2014); Richman et al. (2017)
multiple linear regression Nath et al. (2016)
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of TC activities. Also, they used the multilayer perceptron, radial
basis function (RBF) and generalized regression neural network
algorithm to predict the seasonal TC activities over the North
Indian Ocean. The results showed that all three algorithms
performed well, and the performance of the multilayer
perceptron model is better than that of the RBF and the
generalized regression neural network model.

TC TRACK FORECASTING

Although there have been decent advances in TC track
forecasting in recent years, difficulties still exist in predicting
anomalous tracks and making longer-term forecasting (Dong,
2021). In early studies, the models for predicting TC tracks were
mainly built by comprehensively using thermal-dynamic

FIGURE 2 | Flow diagram of TC genesis prediction by using machine learning (Zhang et al., 2019).

TABLE 2 | Machine learning algorithms used in TC track forecasting.

Tasks Algorithms References

TC track forecasting based on time series data linear regression algorithm Neumann and Hope (1972)
stepwise regression algorithm Chen et al. (1999a)
neural network Shao et al. (2009)
artificial neural network Wang et al. (2011)
principle component analysis, genetic algorithm and
neural network algorithm

Huang and Jin (2013)

support vector machine Song et al. (2005); Lv et al. (2009)
gradient boosting decision tree Tan et al. (2021)
K-means cluster analysis Camargo et al. (2007); Yu et al. (2017); Wang et al.

(2019)
dynamic fuzzy clustering method Li et al. (2008)
recurrent neural network Dong and Zhang (2016); Alemany et al. (2018);

Kordmahalleh et al. (2016)
long short-term memory neural network Gao et al. (2018)

TC track forecasting based on remote sensing images neural network Lee and Liu (2000); Kovordá and Roy (2009)
convolutional neural networks Sophie et al. (2020)

TC track forecasting based on the fusion of time series data
and remote sensing images

convolutional long short-term memory network Shi et al. (2015); Kim et al. (2019b)
integrated neural network Giffard-Roisin et al. (2020); Dong (2021)
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knowledge and analyzing the characteristics of complex terrain
and coastlines in coastal areas. However, these characteristics
were often extracted subjectively, so the methods are less efficient
and objective, depending on forecasters’ experience. With the
development of ML methods and the enrichment of computing
resources, automatic extraction of the temporal and spatial
characteristics from big data has been realized, and efficient
and accurate prediction of TC track may be achieved (Table 2).

TC Track Forecasting Based on Time Series
Data
The historical TC best track data are typical time series data. As
early as in 1972, for the TC track forecasting in the Atlantic,
Neumann and Hope (1972) used linear regression algorithms to
construct regression equations and built a TC track forecast
model named “Climatology and Persistence” (CLIPER). Chen
et al. (1999) used the stepwise regression algorithm instead of
linear regression algorithm to eliminate independent variables
that are not significant to regression equations. Due to the
complexity and nonlinearity of the physical processes affecting
TC tracks and the interactions among these processes, besides
linear regression and stepwise regression algorithms, many
studies adopted nonlinear algorithms such as the neural
network, SVM and artificial neural network to predict TC
tracks. For instance, Shao et al. (2009) established a TC track
forecast model by selecting the factors with high correlation as the
independent variables of the model based on the forward
feedback back propagation (BP) learning algorithm. The mean
absolute errors of predicted moving distance in BP neural
network model at 24, 48 and 72 h are respectively 40.8, 8.1
and 16.9 km lower than those of the CLIPER model. Wang
et al. (2011) broke the bottleneck of subjectively-constructed
predictors and used the nonlinear characteristics of the
artificial neural network to automatically construct predictors
for TC track forecasting. On this basis, Huang and Jin (2013)
further integrated the Principal Component Analysis (PCA),
genetic algorithm and neural network algorithm to establish a
regional TC track ensemble forecast model, which has good
promotion and application values. Due to fewer predictors and
shorter leading time of TC track forecasting, the SVM algorithm,
which excels in dealing with small samples, high-dimensional
pattern recognition and nonlinear complexity, performs better
than traditional numerical predictions and nonlinear regression
algorithms (Song et al., 2005; Lv et al., 2009). As a new statistical
regression/classification technique, ensemble learning is more
effective than single learning in non-linear regression and
multi-scale approximation problem, and is widely applied in
many fields (e.g., Tian et al., 2012; Huang et al., 2018;
Pradhan et al., 2018). Aiming to improve the level of TC track
forecasting, a novel ensemble learning method based on DT and
boosting skill, called gradient boosting decision tree, was
proposed (Tan et al., 2021). Compared with the CLIPER
model, the TC track predicted by the new model is more
robust and accurate.

TC track forecasting can also be regarded as a classification
issue. In the Northwest Pacific, Camargo et al. (2007) used the

shape and movement parameters of TC tracks to conduct the
K-means cluster analysis (Krishna and Narasimha, 1999), and
they pointed out that TC tracks in this region are mainly
“westward” and “turning” types. Similarly, Yu et al. (2017)
and Wang et al. (2019) also used the K-means cluster analysis
to study the TC recurvature tracks. Their results showed that
frequency of TCs with “western recurvature” tracks had an
increasing trend in the past 2 decades. Before recurvating, the
right-turning TCs tend to move northwestward, while the left-
turning TCs mainly move northward. Li et al. (2008) adopted a
dynamic fuzzy clustering method to investigate the TC tracks in
the South China Sea from 1960 to 2002. Also, they surveyed the
TC-related factors, namely circulation, physical factors and
motion characteristics, and then they established a forecast
model for summer TC tracks in this region based on the
multiple regression algorithm.

Deep Learning (DL) methods, which can efficiently extract the
nonlinear features, are used to investigate the highly nonlinear
atmospheric systems such as TC. For example, the recurrent
neural network (RNN) (Dorffner, 1996) can effectively extract the
temporal features from continuous data, so it has been widely
used in TC track forecasting (Dong and Zhang, 2016; Alemany
et al., 2018). Kordmahalleh et al. (2016) employed a sparse
recurrent neural network based on the dynamic time warping
to forecast TC tracks in the Caribbean Sea and indicated this
network is particularly suitable for modeling of hurricanes which
have complex systems with unknown dynamics. The dynamic
time warping can be used to recognize similar TCs so that the
RNN can extract common features. However, this method is not
suitable for non-single-track TCs. Alemany et al. (2018)
considered all types of TC tracks and used the RNN to
forecast them. Unlike traditional methods which directly
predict latitudes and longitudes, Alemany et al. (2018) divided
the Atlantic Ocean into 1 ° × 1 ° grids and numbered the grid
points. The wind speed, latitudes, longitudes, travel angles and
TC grid numbers were used as inputs, which can effectively
reduce the recursive error transfer caused by direct prediction.
The RNN performs better in short-term forecasting but not very
good for long-term forecasting. Another important method, long
short-term memory neural network (LSTM) (Hochreiter et al.,
1997) was developed in 1997. Gao et al. (2018) used the TC best
track data to train and optimize the LSTM-based deep neural
network (DNN), and the results showed that the LSTM has a
better performance in TC track forecasting with the leading time
of 6–24 h.

TC Track Forecasting Based on Remote
Sensing Images
Forecasting TC tracks using ML methods are not only affected by
the characteristics of historical TCs, but also by spatial factors.
Compared with time-series data, remote sensing images contain
more rich spatial information. Early in 2000, Lee and Liu (2000)
proposed a TC automatic identification and track mining system
based on the neural network, and the forecast errors of this
system were reduced by 30% and 18% compared with the one-
way interactive TC model and track forecast system, respectively.
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Thereafter, Kovordá and Roy (2009) extracted Dvorak features
(Dovorak, 1975) from remote sensing images of meteorological
satellites and input the data, such as TC locations and maximum
wind speed, into the neural network to predict TC tracks. This
method improved the forecast accuracy by about 30% compared
with the numerical model in Guam. In addition, the neural
network represented by the convolutional neural networks
(CNN) (Lecun et al., 1989; Ji et al., 2013) can effectively
extract the spatial features from the data. Sophie et al. (2020)
fused the extracted nonlinear features with latitudes and
longitudes of TCs, wind speed and air pressure based on the
CNN algorithm. The results indicated that the method better
predicted the TC tracks over the Eastern Pacific and the Atlantic
Ocean and well retained the TC three-dimensional features.
Moreover, this method can forecast the genesis of a TC in a
few seconds, which is an important asset for real-time forecasts
compared to traditional forecasts.

TC Track Forecasting Based on Fusion of
Time Series Data and Remote Sensing
Images
Some studies have shown that the TC track sequence is not a
fixed-length vector but the time series data with indefinite length
(Jia et al., 2007). However, the CNN (Zeiler and Fergus, 2014),
which is good at image processing, is unable to characterize the
spatial information in the temporal dimension. Additionally,
LSTMs perform well in time series forecasting (Staudemeyer

and Morris, 2019). However, TC track forecasting requires too
many prediction factors and relies on a long period of past states,
resulting in that the LSTM is also hard to achieve the desired
predictions in terms of temporal-spatial issues (Wang, 2020). Shi
et al. (2015) added convolution operations to extract spatial
features while ensuring the extraction of temporal features,
and they proposed a convolutional long short-term memory
network (ConvLSTM), which successfully combined the time
series analysis capability of the LSTM and the image recognition
capability of the CNN. After that, ConvLSTMwas combined with
atmospheric reanalysis data for TC track forecasting and achieved
relatively better performance (Kim S. et al., 2019). By fusing past
trajectory data and reanalysis atmospheric images (wind and
pressure 3D fields), a neural network model was proposed by
Giffard-Roisin et al. (2020) to estimate the longitude and latitude
displacement of TCs (Figure 3), which is an important asset for
real-time forecasts compared to traditional forecasts. At present,
in order to solve the problems in anomalous track prediction,
such as sudden changes in moving speed, turning and even
stagnation, Dong (2021) built an integrated neural network
prediction model for TC tracks by using TC data with
multiple modes.

TC INTENSITY FORECASTING

Limited by the available observations and technologies, it has
been a long-standing challenge in tropical meteorology to make

FIGURE 3 | General architecture: a neural network model fusing past trajectory data and reanalysis atmospheric images (Giffard-Roisin et al., 2020).
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accurate estimates of TC intensity (e.g., Landsea and Franklin,
2013; Knaff and Sampson, 2015). As early as in the 1970s, Dvorak
(1975) established a TC intensity prediction technology based on
statistical estimation by using satellite cloud images to identify
and detect TCs, which has become a common TC intensity
estimation method used by official meteorological agencies
(Xu et al., 2015). However, it is highly subjective in
determining the cloud feature indexes, so its forecast accuracy
depends on forecasters’ experience. To increase the objectivity
and automation of infrared-based TC intensity analysis,
advanced versions of the Dvorak technique (e.g., Olander and
Velden, 2007, 2019) and many other algorithms (e.g., Kossin
et al., 2007; Ritchie et al., 2012; Fetanat et al., 2013) have been
introduced. However, most of these algorithms have been proven
to be less reliable than the Dvorak technique due to the limited
availability of effective features extracted from satellite data by
these traditional algorithm-based techniques (e.g., Demuth et al.,
2004, 2006; Jiang et al., 2019; Zhou and Tan, 2021). At present,
Satellite Consensus technology, a weighted consensus algorithm,
which is designed to optimize the strengths of multiple infrared-
based and microwave-based technique, is the most accurate
method in TC intensity estimation (Velden and Herndon,
2020). More and more studies have taken advantages of ML
methods in image recognition and classification to conduct TC
intensity estimation (Girshick et al., 2014; Krizhevsky et al., 2017;
Zhong et al., 2017). These studies mainly focus on three aspects:
TC grade judgment, TC intensity forecasting and TC rapid
change forecasting (Table 3).

TC Grade Judgment
ML algorithms mainly use satellite data to judge the grade of TCs.
As early as in 2003, an ML algorithm was applied in the cloud
classification using GOES images, and TC intensity estimations

(Richardson et al., 2003). Chen (2018) treated the prediction of
TC grade as a classification issue. In addition, by using the
multiple logistic regression, SVM and back-propagation neural
network as classifiers, they performed predictions with the
multispectral images captured by the Fengyun-4
meteorological satellite. Wimmers et al. (2019) explored the
possibility of estimating TC intensity from satellite images by
using the CNN-DeepMicroNet. Two-dimensional and three-
dimensional CNNs were used by Lee et al. (2019) to analyze
the relationship between multispectral geosynchronous satellite
images and TC intensity, and this method had better performance
than the existing CNN-based models and the models with single-
channel images. Based on the advanced geosynchronous
radiation imager data from the second-generation
geostationary meteorological satellite (Fengyun-4A), Pradhan
et al. (2018) and Cui et al. (2020) established a multi-layer
deep CNN model with multidimensional nonlinear processing
ability and algorithm stability to conduct TC intensity estimation.
Their results showed higher accuracy and lower root-mean-
square errors.

TC Intensity Forecasting
In 2000, Baik and Paek (2000) used the back-propagation neural
network algorithm to forecast TC intensity based on various data,
such as the TC location and intensity, and NCEP/NCAR
reanalysis data. Zhou (2014) developed a forecast model to
improve the prediction of TC intensity over the Northwestern
Pacific based on the partial least squares regression, which
considers multiple factors such as climate background, water
vapor, environmental airflow and TC structure. Gu et al. (2011)
built an SVM-based TC intensity forecast model and used a
genetic algorithm to optimize the model parameters in order to
achieve desired results at the leading time of 12, 24 and 48 h. Gao

TABLE 3 | Machine learning in TC intensity forecasting.

Tasks Algorithms References

TC grade judgment multiple logistic regression, support vector machine and back-propagation neural
network

Chen et al. (2018)

convolutional neural networks-DeepMicroNet Wimmers et al. (2019)
Two-dimensional and three-dimensional convolutional neural networks Lee et al. (2019)
multi-layer deep convolutional neural network Pradhan et al. (2018); Cui et al.

(2020)
TC intensity forecasting back-propagation neural network Baik and Paek (2000)

partial least squares regression Zhou (2014)
support vector machine and genetic algorithm Gu et al. (2011)
decision tree Gao et al. (2016)
logistic regression and bayesian network Rozoff and Kossin (2011)
deep convolutional neural network Pradhan et al. (2018)
ResNet deep learning Qian et al. (2021)
convolutional neural network-long short-term memory network Chen et al. (2019b)
deep neural network-long short-term memory network Zahera et al. (2019)
shallow learning and DL algorithms Jiang et al. (2018)
DL convolutional neural network- DeepMicroNet Wimmers et al. (2019)
DL-based method augmented- DeepTCNet Zhou and Tan (2021)

Forecasting of the rapid change in TC
intensity

C4.5 Zhang et al. (2013)
recurrent neural network Chandra and Dayal (2015)
support vector machine Mercer and Grimes (2015)
decision tree Gao et al. (2016)
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et al. (2016) introduced the averaged ocean temperature from the
surface down to 100 m to improve the model performance on TC
intensity forecasting at the leading time of 24 h based on the DT
algorithm. The results indicated that suchmethod performed well
in predicting TCs with a rapid intensification (RI) process.

In addition to above regression algorithms, classification
algorithms can be well applied in the operational forecast of
TC intensity. The National Hurricane Center of the United States
used the Statistical Hurricane Intensity Prediction Scheme dataset
to analyze the environment around TCs and their satellite
inversion characteristics based on the linear discriminant
analysis. This method solved the probability of TC sudden
change based on the logistic regression and Bayesian network
algorithms to predict TC intensity (Rozoff and Kossin, 2011).
Pradhan et al. (2018) and Qian et al. (2021) developed a deep
CNN and ResNet DL-based TC intensity prediction model using
satellite cloud images, which could objectively predict the
intensity of TCs with various intensities at different
development stages. The root mean square errors (RMSEs) of
these two models are 5.5 m s−1 and 5.84 m s−1, respectively.
Compared with the traditional statistical method for TC
intensity prediction using cloud images (Lu et al., 2014),
whose RMSE is 7.7 m s−1, the deep CNN and ResNet models
have obvious advantages. The TC intensity prediction is not only
a temporal issue but also a spatial issue. Therefore, numerous
studies have been conducted based on integrated models, such as
the CNN-LSTM (Chen R. et al., 2019) and DNN-LSTM (Zahera
et al., 2019), which can more comprehensively consider the
temporal-spatial relationships of the features of TC formation
and can improve the TC intensity forecast.

To improve TC intensity forecast, we should better resolve the
heat andmomentum exchange at the TC-ocean interface. Themajor
challenge is how to accurately include the effects of ocean in TC
forecast models, which requires information not only from historical
data but also more importantly from the target TC itself. Two
algorithms based onML neural networks are proposed—the shallow
learning and DL algorithms—that can potentially be used in
atmosphere-only TC forecasting models to provide flow-
dependent TC-induced sea surface temperature cooling for
improving TC forecast (Jiang et al., 2018). Furthermore, due to
the successful applications of DL in pattern detection, physical
parameterization and state prediction (e.g., Rasp et al., 2018;
Ham et al., 2019; Reichstein et al., 2019), it is considered to
provide insights into TC intensity forecasting. Pradhan et al.
(2018) applied DL to estimate TC intensity from infrared
imagery. Then, Chen B.-F. et al. (2019) used a larger dataset than
Pradhan et al. (2018) and utilized infrared images and passive
microwave-retrieved precipitation to train DL models. Wimmers
et al. (2019) constructed a DL convolutional neural network model
called “DeepMicroNet” to explore the possibility of estimating TC
intensity from satellite imagery. However, an independent dataset
for evaluation was not used in Pradhan et al. (2018). The optimal
estimates of Chen B.-F. et al. (2019) are not available in real time due
to the intermittent microwave rain-rate data and post-analysis
smoothing required. Therefore, Zhou and Tan (2021) proposed a
DL-based method augmented by prior physical knowledge of TC,
called “DeepTCNet” (Figure 4), to estimate TC intensity from

satellite infrared imagery. Compared with the unaugmented
model, DeepTCNet with auxiliary information of TC fullness
yields a 12% performance improvement in estimating TC
intensity. The evaluation results showed that the DeepTCNet is
in-line with the Satellite Consensus technique but systematically
outperforms the advanced Dvorak technique at all intensity scales
with an averaged 39% enhancement in TC intensity estimation.

Forecasting of the Rapid Change in TC
Intensity
Due to the difficulties in directly forecasting the accurate intensity
values, the evolutionary algorithm, particle swarm optimization
and DT algorithms (such as the Classification and Regression
Trees and the C4.5 algorithm) were used in lots of studies to
forecast the change of TC intensity (Zhang et al., 2013; Geng et al.,
2015, 2016). However, cases such as the RI process exist during
the TC development, making the forecasting of intensity change
into a much more challenging task.

Zhang et al. (2013) and Chandra and Dayal (2015) applied the
C4.5 and RNN algorithms to classify the TC intensity changes
over the Northwestern Pacific and the Southern Pacific,
respectively. Their studies strongly contributed to the
development of operational forecast of TC intensity change.
Similarly, Mercer and Grimes (2015) used the SVM as the
classification algorithm and took the geopotential height,
temperature, u- and v-wind components, vertical velocity and
relative humidity as the predictors to construct a model. The
results suggested that this model was able to distinguish the RI
and non-RI cases. In addition, Gao et al. (2016) believed that the
sea surface temperature is the key factor for predicting RI cases.
Also, they introduced the ocean coupling potential intensity
index into the DT algorithm to improve the RI prediction,
and this method can effectively reduce the intensity
overestimation in the traditional DT model. By combining
satellite products and conventional predictors, Su et al. (2020)
presented a ML framework to demonstrate the prediction
capability of satellite observations of storm internal structures
for TC RI forecasting.

FORECASTING OF TC-INDUCED
DISASTROUS WEATHER AND ITS IMPACT

Given changing climate and continued escalation of coastal
population density, the situation of TC inflicting severe economic
losses and casualties through strongwinds and torrential rainmay be
further complicated (Czajkowski et al., 2011; Rappaport, 2014). The
accurate simulation and forecasting of TC-induced wind and
precipitation, as well as disaster assessment (Table 4), can
provide important guidance for disaster prevention and
mitigation (Lonfat et al., 2007; Needham et al., 2015).

Forecasting of TC-Induced Wind
In 1987, the Joint Typhoon Warning Center (JTWC) used
satellite images, remote sensing data and the Dvorak
technology (Dvorak, 1975) to retrieve the TC low-level wind
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field, while the mid-level and upper-level wind fields were
retrieved by the cloud motion wind (Xu and Zhang, 2006).
However, since it is difficult to specify the height of cloud
motion wind, and the satellite microwave scatterometers are
only suitable for low wind speed and gentle wind-speed
changes, there are great challenges in the observation and
forecast of TC wind field. To forecast the hourly wind speed
over offshore islands during TC processes, Wei (2015) developed
four kernel-based SVR models, including the RBF, linear,
polynomial and Pearson Ⅶ universal kernel models, which
was proved to be the most accurate one among the kernel-
based SVR models. Considering that traditional models based
on simple parametric formulations strongly underestimate the
full range of TC wind field variability (Uhlhorn et al., 2014; Klotz
and Jiang, 2016), Loridan et al. (2017) explored the potential of
ML algorithms (RF and quantile regression) as alternatives to
simulate the trajectory, intensity and spatial distribution of TC-
induced wind.

In particular, with a theorem stating that an artificial neural
networks (ANN) with a single layer of enough hidden units can
approximate any multivariate continuous function with

arbitrary accuracy (Hornik et al., 1989), ANN has been
widely utilized in simulating the wind field inside TCs
(Snaiki and Wu, 2019). By integrating TC wind field model,
Monte Carlo simulation technique, computational fluid
dynamics (CFD) simulation and ANN, a numerical
simulation procedure for predicting directional TC-induced
wind speed and profiles for sites over complex terrain was
proposed (Huang and Xu, 2013). However, limited by the
high demand of high-fidelity training datasets for the
classical neural networks, the ANN model developed by
Huang and Xu (2013) is not comprehensive enough (Snaiki
andWu, 2019). Snaiki and Wu (2019) developed a more general
knowledge-enhanced DL algorithm to simulate the spatial
distribution of TC-induced wind fields (Figure 5). This
algorithm not only efficiently captures the complex dynamics
using small datasets, but also accurately predicts TC-induced
wind. Moreover, ML methods were used to correct the wind
forecasting of numerical weather models. For example, Deng
et al. (2018) used the PCA-RBF algorithm to further correct the
forecasted wind speed by using the simulated meteorological
factors such as temperature, pressure and wind direction. The

FIGURE 4 | The configuration of DeepTCNet in both single-task and multitask learning frameworks (Zhou and Tan, 2021).
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results showed that, compared with the back-propagation
algorithm and the least squares SVM algorithm, the PCA-
RBF algorithm effectively improved the accuracy of wind
speed forecast. Based on the least absolute shrinkage and
selection operator regression, RF and DL algorithms, Sun
et al. (2019) corrected the 10 m wind speed in North China
predicted by the European Centre for Medium-Range Weather
Forecasts. The results indicated that the correction effect of
these 3 ML algorithms is better than that of the model output

statistics method, especially for the future 8–15 days and the
10 m wind speed in the sea areas and coastal areas.

Forecasting of TC-Induced Rainfall
Early in 2005, Lin and Chen (2005) applied the neural network to
forecast TC-induced rainfall. They took TC features and spatial
rainfall information as the input of the model and gave reasonable
predictions at the leading time of 1–2 h. To break the limitations of
single algorithm, Lin and Wu (2009) proposed a hybrid neural

TABLE 4 | Application of machine learning in the forecasting of TC-induced disastrous weather and its impact.

Tasks Algorithms References

Forecasting of TC-induced
wind

support vector regression Wei (2015)
RF and quantile regression Loridan et al. (2017)
artificial neural networks Huang and Xu, (2013)
knowledge-enhanced deep learning algorithm Snaiki and Wu (2019)
principal component analysis-radial basis function Deng et al. (2018)
least absolute shrinkage and selection operator regression, random forest and deep
learning algorithms

Sun et al. (2019)

Forecasting of TC-induced
rainfall

neural network Lin and Chen (2005)
self-organizing map and multilayer perception networks hybrid neural network Lin and Wu (2009)
back-propagation network and support vector machine Lin et al. (2009); Jhong et al. (2016)
support vector machine Lin et al. (2013a)
multi-objective genetic - support vector machine Lin et al. (2013b); Lin and Jhong, (2015)
physical-conceptual models - ML methods Loukas and Vasiliades (2014); Young and Liu

(2015)
conceptual rainfall-runoff model - Bayesian artificial neural networks statistical model Humphrey et al. (2016)
two-stage forecasting approach integrating numerical and ML-based models Huang et al. (2019)

Disaster impact assessment Hopfield neural network Chen and Liu (2011)
support vector machine Lou et al. (2012); Pham et al. (2016)
decision tree Pham et al. (2016)

FIGURE 5 | Schematic of knowledge-enhanced deep learning and algorithm (Snaiki and Wu, 2019).
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network model for TC-induced rainfall forecasting. The model was
composed of the self-organizing map and the multilayer perception
network, and it is proven higher prediction accuracy than the
traditional neural network method (Lin and Chen, 2005). One of
the most important steps in neural network modeling of the TC-
induced rainfall forecast is to identify important input variables. The
capabilities of multi-objective genetic algorithm (MOGA) to explore
and discover Pareto-optimal fronts on multi-objective optimization
problems have been well recognized and increasingly applied (Deb
et al., 2002; Liu, 2009). Meanwhile, by comparing the hourly TC-
induced rainfall forecasting models of back-propagation network
(BPN) and SVM, Lin et al. (2009) pointed out that the SVM-based
model is more accurate, robust and effective and proved that the
SVM has faster training speed and better generalization ability.
Based on the above research, several hybrid methods, especially a
combination between MOGA and SVM, have been implemented to
optimize parameters in TC-induced rainfall forecasting fields (Lin
et al., 2013b; Lin and Jhong, 2015). By integratingMOGA and SVM,
the biggest advantage of this model is that it can automatically
determine the optimal combination of input variables including
precipitation. Specifically, by integratingMOGA and SVM, Lin et al.
(2013b) and Lin and Jhong (2015) proposed two models to yield
accurate forecasts of the spatial distribution of TC-induced rainfall,
and to improve the hourly forecast and long lead-time forecast.
Furthermore, a large number of scholars have combined physical-
conceptual models with ML methods to improve the forecasting of
TC-induced rainfall. For example, Loukas and Vasiliades (2014),
Young and Liu (2015) successively simulated and predicted rainfall-
runoff during TC events by combining physically-based models and
ANNs. Then, Humphrey et al. (2016) explored a hybrid approach
using simulated soil moisture from a conceptual rainfall-runoff
model and a Bayesian ANN statistical model for monthly
streamflow forecasting.

In addition, considering the close relationship between TC-
induced rainfall and flood hazards, Lin et al. (2013b)
established an SVM-based model to forecast the rainfall and
runoff at the leading time of 1–6 h, and it significantly
improved the flood forecasting at the leading time of 4–6 h
(Lin et al., 2013b). On this basis (Lin and Jhong, 2015), a new
type of inundation forecasting model (Figure 6) with effective
TC characteristics was constructed by Jhong et al. (2016). They
compared the model with existing models based on BPN and
the SVM-based model without TC characteristics to highlight
the important role of TC characteristics on the improvement in
inundation forecasting performance. Accurate prediction of
suspended sediment concentration to reduce reservoir
deposition for maintaining the reservoir storage capacity
also plays an important role in reservoir management and
flood disaster prevention (Halbe et al., 2013). The reservoir
sedimentation issue is regarded as the urgent subject in the
forecasting of TC-induced rainfall (Wisser et al., 2013).
Observing the operation of most reservoirs for decades, the
deposition rate was confirmed to be higher than the original
estimation because climate change caused the yielded sediment
to increase during TC periods (Huang et al., 2019). As attractive
method for integrating various sources of information
(Babovic, 2000), neural networks have been widely used in
real-time forecasting of suspended sediment concentration in
the past few years (Zounemat-Kermani et al., 2016; Alizadeh
et al., 2017; Malik et al., 2017), e.g., ANN-based or neuro-fuzzy
models (Lohani et al., 2007; Cobaner et al., 2009; Liu et al., 2013;
Kumar et al., 2016; Ghose and Samantaray, 2018). Huang et al.
(2019) proposed a two-stage forecasting approach integrating
numerical andML-based models (Figure 7) to provide accurate
real-time forecasting of half-hourly suspended sediment
concentration during TC periods.

FIGURE 6 | Flowchart of the inundation forecasting model integrating the support vector machines with multi-objective genetic algorithm (Jhong et al., 2016).
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Disaster Impact Assessment
Recently,ML classification algorithms have also been applied to the
impact assessment of TC disasters. Most studies used historical TC

information and the disaster information in the early stages of TC
to train models and reasonably estimate the grade of current
disaster. Chen and Liu (2011) and Lou et al. (2012) established

FIGURE 7 | Flowchart of the two-stage forecasting approach integrating numerical and machine-learning-based models (Huang et al., 2019).
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the prediction model of TC disaster grade based on the Hopfield
neural network and SVM algorithms, respectively. In addition,
Pham et al. (2016) constructed an assessment model of landslide
vulnerability based on the SVM and DT classification algorithms.
In this model, the geographic location, slope gradient and aspect,
curvature and other landslide factors were taken into account, and
the assessment accuracy was more than 80%.

CONCLUSION AND DISCUSSIONS

Conclusion
Forecasting the genesis, tracks, intensity and disastrous impact of
TCs is a key issue to be addressed in TC early warning and
forecasting, and even disaster prevention and mitigation.
Traditional statistical methods use a set of interrelated
predictors to predict TC through linear statistics. However, the
currently used simple statistical relationship cannot handle the
complex and nonlinear relationship between the TC-related
predictors. Therefore, the actual situation cannot be accurately
described. Advanced numerical models based on a physical
interpretation have been applied to the operational TC
forecast. Although they are the main tools for predicting TC,
they have some limitations. Issues such as insufficient description
of complex physical processes, inaccurate vortex initialization
and coarse resolution degrade the performance of the models.
The numerical model combining kinetics and statistics, as one of
the current TC prediction techniques, not only retains the basic
kinetic mechanism described by the physical equations, but also
uses statistical means to deal with the uncertainties in the kinetic
process, playing an increasingly important role in TC forecast.
The predictors of this model are often extracted subjectively, so
the efficiency and objectivity are low, and the accuracy depends
on the experience of the forecaster. With the explosive growth of
satellite data, surface observation data and reanalysis data, theML
algorithm with high portability and significant advantages in data
processing and image recognition, has provided a brand-new
method for overcoming the bottleneck in traditional of TC
prediction. Its application in TC forecasting was reviewed in
this paper, and main conclusions were shown as follows.

(1) The DT, logistic regression, RF, AdaBoost and SVM
algorithms have shown significant advantages in
predicting whether tropical disturbances can develop into
TCs. And the SVR and multi-layer perceptron algorithms
have been widely used in predicting the occurrence frequency
of TCs in TC-prone areas in different seasons.

(2) Using the best track data with temporal information, the
neural network, SVM, artificial neural network algorithms,
cluster analysis and ensemble learning can be used to predict
TC tracks. Using remote sensing image data with spatial
information, the neural network and CNN can effectively
extract three-dimensional spatial features of TCs and
improve TC track forecasting.

(3) For TC intensity forecasting, the CNN algorithm has a bright
application prospect in the judgment of TC grade. By using
the regression algorithms such as the back-propagation

neural network algorithm, partial least squares regression,
SVM and DT algorithm, and the classification algorithms
such as the deep CNN, logistic regression and Bayesian
Network, the objective forecast accuracy of TC intensity
can be improved. The application of DL models based on
infrared images, passive microwave-retrieved precipitation
and prior physical knowledge augmentation has also greatly
improved the level of TC intensity forecasting.

(4) More refined forecasting of TC wind field can be realized
through correcting the numerical weather forecasting by
the algorithms such as RNN, SVM, PCA-RBF, least
absolute shrinkage and selection operator regression, RF
and DL. In particular, ANN has been widely utilized in
simulating the wind field inside TCs. The application of
single algorithm (neural network) and hybrid algorithm
(such as the hybrid neural network model, MOGA and the
SVM hybrid model) has greatly improved the prediction of
rainfall and runoff. Furthermore, the fusion of physical
conceptual models and ML methods also provides new
horizons for improving the level of TC-induced rainfall
forecast. The algorithms, such as neural network, SVM and
DT, had mature application in the assessment of TC
disaster impact.

Discussions
With the rapid development of satellite remote sensing data
and numerical weather models, it is still challenging to use the
ML for mining efficient, accurate and intelligent meteorological
data to achieve TC forecasting. Firstly, ML algorithms tend to
solve data science problems of optimizing specific target
functions and mining the statistical laws and evolution
trends of various factors only in mathematical expressions,
but the ML algorithms lack a reasonable explanation for the
physical mechanisms of TCs. Secondly, to obtain an excellent
prediction model, a large amount of training data and high-
performance computing equipment are required. However, the
TC observation data are sparse, irregular and uncertain in some
areas, and the observations usually cannot be extracted from
heterogeneous instruments used to compare with the model
data. Thirdly, the parameter optimization of the ML training
process has a greater impact on the simulation results, and
there are interactions and constraints among parameters in
some algorithms. Further research on the ML algorithms, with
more complex structure, higher prediction accuracy, stronger
generalization ability and wider suitability, is needed. It is
imperative to establish a ML method for TC prediction with
higher interpretation, intervention and precision.
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