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The study of deepwater channels is important for the understanding of the sedimentary
evolution mechanism and the sedimentary process of the marginal sea. In 2019, thick
pore-filling gas hydrate with high saturation was firstly discovered in the Quaternary sands
of the Qiongdongnan Basin (QDNB), which expanded the reservoir types of gas hydrates in
the South China Sea. However, the distribution of sand-related channels is not well
characterized, which limits the ability to predict sand reservoirs with gas hydrate. Using
integrated 2D/3D seismic, multi-beam, well logging, and coring data, the current study
documents the distribution characteristics of channel systems in the Quaternary strata and
discusses their controlling factors. The integrated analysis shows that the channel-related
sedimentary facies include channel-filling facies, levee facies, crevasse splay facies, and
lobes facies. A total of six periods of channel systems is identified in the Quaternary strata.
There are obvious distribution differences between the Channel 1 and Channel 3 systems
when comparing the western, middle, and eastern sections: the channels in the western
and eastern sections are mainly dominated by near straight V-shaped channels, while the
middle section mainly consists of large braided channels, where channel-levee
sedimentary facies developed. Compared with the distribution of the Central Canyon
that developed in the Miocene, the Channel 1 and Channel 3 systems in the western
section show southward migration since the Miocene. The distribution and evolution of
Quaternary channels were likely collectively controlled by seafloor morphology, tectonic
movement, sea-level fluctuations, and provenance supply. Tectonic movement controls
seafloor morphology, which directly controls the flow of channels and their distribution
characteristics; provenance supply determines the scale and sedimentary characteristics
of each channel. The periodic changes in sea-level determine the evolution of multi-stage
channel systems. This study has implications for the prediction of gas hydrate–bearing
sands in the Quaternary QDNB and deepens our understanding of the Quaternary tectonic
and sedimentary evolution in the QDNB.
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1 INTRODUCTION

Gas hydrates are crystalline compounds of water and gas
molecules, mainly methane, which form under stable high-
pressure and low-temperature conditions (Sloan, 2003), and
are regarded as a promising new clean energy resource
(Moridis et al., 2013; Collett, 2014; Chong et al., 2016). Being
able to find highly saturated gas hydrate ore is a crucial link in the
gas hydrate exploration and development process. Of the total
quantity of gas hydrate resources available globally, 97% is mainly
distributed in the deep-water sedimentary system, such as mass
transport deposits, deep-water turbidity fans, and channel-levee
facies (Yu and Zhang, 2005; Behseresht and Bryant, 2012; Liang
et al., 2018; Santra et al., 2020). Theoretically, the high deposition
rate of coarse grain deposits not only provides a good fluid
transport pathway for the formation of gas hydrates, but also
acts as the perfect reservoir for its accumulation (Sha et al., 2009;
Egawa et al., 2015). For gas hydrate production, coarse grain
reservoirs have good porosity, high permeability, and high
stability. This reservoir type is the priority target for mining,
as was the case with the great breakthroughs in sandstone gas
hydrate exploration in the Mallik delta and Alaska continental
slope. Many countries, such as Japan, the United States, Canada,
South Korea, and India, are targeting coarse grain reservoirs for
gas hydrate test production. Reservoirs of gas hydrate drilling
areas with high investigation and research levels, such as the
Nankai Trough and the Gulf of Mexico basin (Alaminos Canyon
area, Walker Ridge area, and Green Canyon area) are located in
the channel-levee facies or turbidity deposits (Uchida and Tsuji,
2004; Boswell et al., 2009; 2012; Scholz et al., 2012; Waite et al.,
2019). Therefore, one of the important tasks for gas hydrate
exploration is to find dominant sedimentary facies that might
provide favorable reservoirs.

High saturation diffusion gas hydrates in the Quaternary
sandy sediments were found for the first time during the gas
hydrate drilling expedition of the Qiongdongnan Basin
(hereinafter referred to as QDNB) in 2019. This tremendous
breakthrough enriched the reservoir types of gas hydrate
exploration in China. Finding potential high-quality sandy
reservoirs requires the ability to better predict the distribution
characteristics of sand bodies. Through the interpretation of
high-resolution 3D seismic data of the drilling area in QDNB
in 2019, it has been concluded that sand bodies with highly
saturated gas hydrate belong to channel-levee facies deposition
(Meng et al., 2021). At present, the study of Quaternary sediments
in the QDNB is limited to the submarine shallow surface, because
of its high scientific value in the study of monsoon evolution and
events causing abrupt climate change (Xu et al., 2010; Wang et al.,
2014; Huang et al., 2013; Hu et al., 2014; Liu et al., 2010; Wang
et al., 2014; Yan et al., 2016). With the discovery of hydrate in the
QDNB, the distribution, development, and formationmechanism
of mass transported deposits (hereinafter referred to as MTDs)
and their relationship with gas hydrate have also been studied
(Meng et al., 2021; Cheng et al., 2021). The deepwater channel
system is the main mode of sand transport, and controls the
distribution of sand bodies. Unfortunately, the identification,
controlling factors of sinuous channel in the Pleistocene strata

of the limited 3D area in the southwest margin slope area of the
QDNB has rarely been studied (Yuan et al., 2009; Yuan et al.,
2010a, b; Wang et al., 2015), there has been no research on the
distribution and evolutionary mechanism of channels in the
Quaternary strata of the QDNB.

In addition, deep-sea sediments are the most precious carrier
of information regarding the evolution of the Earth system. The
QDNB in the northern part of the South China Sea (SCS) is a
typical marginal sea basin, and its sediments record the dynamic
processes of climate change, tectonic uplift, and sea-level change,
as well as the sedimentary archives of the dynamic processes of
the deep continental margin lithosphere (Covault et al., 2010; Lin,
et al., 2015; Gong et al., 2016; Romans et al., 2016). Therefore, the
study of Quaternary channel systems in the QDNB will not only
provide guidance for the prediction of sand distribution, which is
important for the prediction of highly saturated gas hydrate
occurrences, but also deepen our current understanding of the
sedimentary processes and evolution mechanism of the marginal
sea (e.g., Matenco et al., 2013; Gong et al., 2016, Gong et al., 2018;
Walsh et al., 2016).

Channel systems can develop on the slope, at the base of slope,
and on the basin floor. channels tend to be shallower and exhibit a
sinuous and distributary pattern on the basin floor (Weimer et al.,
2006). Side-scan sonar image, bathymetry map, and 3D seismic
data are often used to study the morphologies of channel systems
on the seabed surface (Kenyon and Millington, 1995; Mitchum
and Wach, 2002; Fildani and Normark, 2004). Amplitude
extraction map and coherence map from 3D seismic are used
to identify the channel shape and size (Saller et al., 2004). Most of
previous work pay more attention to the channel morphologies,
internal sedimentary characteristic, depositional model,
sedimentary processes within sinuous channels, however, few
work was done on the channel system evolution on basin level.
This is one of the purposes of our study, hoping to bring some
inspiration to similar basins or areas globally.

Therefore, the objectives of this study are to 1) identify the
characteristics of Quaternary channels, 2) clarify the lateral
distribution characteristics and evolution of channel systems in
different periods, and 3) discuss the factors controlling the
distribution of channel systems.

2 GEOLOGICAL SETTING

The QDNB is located in the northwestern slope of the SCS
(Figure 1A). This basin is adjacent to the Yinggehai Basin to
the northwest, the slope of Hainan Island to the north, the Pearl
River Mouth Basin to the northeast, and the Yongle Uplift to the
south (Figure 1B). The QDNB mainly consists of five first-order
tectonic units: the Northern Depression, the Northern Uplift, the
Central Depression, the Southern Low Uplift, and the Southern
Depression. The Quaternary channel systems in our study are
mainly located in the Central Depression.

The QDNB is a Cenozoic passive continental marginal basin,
with a water depth ranging from 300 to 2,600 m and an area of
about 8.3 × 104 km2. The QDNB mainly underwent two stages of
tectonic evolution, the Eocene–Oligocene rifting stage and the
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Early Miocene-Quaternary thermal subsidence stage (Zhao et al.,
2015). The filling sequences in the basin are mainly composed of
Paleocene, Neogene, and Quaternary strata. From bottom to top,
the Paleocene mainly contains Eocene and Oligocene strata (the
Yacheng and Lingshui formations); the Neogene strata include
Miocene (the Sanya, Meishan, and Huangliu formations) and
Pliocene (the Yinggehai Formation) strata; and the Quaternary
strata include the Ledong Formation (Figure 2). The Early
Oligocene Yacheng Formation consists of marsh to coastal
plain facies; the lower Lingshui Formation consists of fan delta
facies; the upper Lingshui–Meishan formations consist of littoral
to neritic facies; and the Huangliu–Ledong formations mainly
consist of bathyal to abyssal facies.

Since the Middle Miocene, this basin as a whole entered the
rapid subsidence stage, and the continental slope system began to
form in the northern margin of the basin under the action of the
depression. In the Late Miocene, the northern margin of the basin
showed obvious shelf-slope break and entered the stage of rapid
subsidence. The northwestern provenance was sufficient, and the
continental slope moved forward rapidly due to the influence of
high-speed sediments. The channel that developed along the shelf
margin reflects the enhancement of sediment transport capacity
to the sea during this period.

From the Pleistocene to the present, the QDNB has been in a
period of highstand systems tract since the sea-level began to
decline gradually. In addition to the large-scale delta depositional
system that developed in the northwest shelf-slope break, the
whole area is in a semi-bathyal sedimentary environment, which

is mainly composed of fine-grained argillaceous rocks. The last
stage of the prograding reflector pushed seaward more than the
previous stages, indicating that the range of sea-level decline was
small and frequent during the late Pleistocene to the late
Holocene, and the range of sea-level decline was large at the
end of the Holocene.

3 DATA AND METHODS

2D/3D seismic, coring, well logging, and multi-beam data were
comprehensively used to study the Quaternary channel
systems in the QDNB. A total of 34,000 km2 of 2D seismic
data and 1,900 km2 of 3D seismic data were acquired by the
Guangzhou Marine Geological Survey from 2005 to 2021
(Figure 1). 3D seismic data in areas A, B, and C offer a
range of visualization and attribute analysis that can
provide specific information on the development of channel
systems. 2D seismic data that cover the whole basin were used
to track the distribution of the channel system in the QDNB.
Two drilling expeditions in 2019 and 2021 acquired a large
quantity of well logging and coring data, which provide a lot of
geological information that is closely related to gas hydrates.
One typical drilling well (W03) and its coring samples were
used to study the vertical channel evolution.

A total of 57,300 km2 of multi-beam data that nearly cover the
entire QDNB were used to identify the seabed channels and the
variation in seabed morphology.

FIGURE 1 | (A) The location of the QDNB. (B) The tectonic units of the QDNB. The gray lines denote 2D seismic lines, and the red rectangles denote 3D seismic
areas.
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Well-seismic correlation was carried out to establish the
corresponding relationship between the lithology of Well W03
and the plane characteristics of seismic attributes. Core
calibration and seismic attribute analysis were used to identify
channels and to study channel-related sedimentary facies. Multi-
layer high-resolution seismic sedimentology research was used to
establish the evolution history of channel systems.

4 RESULTS

4.1 Evidence of Quaternary Channel
Systems
Gas hydrate–bearing sands were found for the first time during
gas hydrate drilling in area B of the QDNB. Three sets of sand
layers were drilled, and the lithology of the sand layer is mainly
silt. The sedimentary facies is characterized by the interactive
deposition of channel-levee facies and MTDs. Three-stage

sedimentary high-frequency cycles were identified, with muds
at the bottom and sands as the top in each cycle (Figure 3), The
cycles show the repetition of sedimentary facies association
(MTD and channel-levee facies). MTD represents the
beginning of an event deposition, while channel -levee facies
represents the relative termination of the event deposition. The
three-stage channels and MTDs were clearly identified in the
seismic profile that crosses Well W03 and these have a good
corresponding relationship with the three sets of sand layers and
MTDs that were encountered in the drilling cores (Figure 4).
Therefore, the comprehensive calibration of seismic drilling and
the cores not only confirms the existence of the Quaternary
channels, but also well identifies the channel stages near the
seabed. At least in area B, the three channel stages exhibit
southeast migration (Figure 4). Because the drilling did not
extend through the Quaternary strata, the 2D/3D seismic data
are the only data that can be used to identify channels deep
beneath the seabed. Through the interpretation of a large quantity
of seismic data in the QDNB, a total of six channel stages were
identified, which are described in detail later.

Several discontinuity seabed channels were observed clearly
from the multi-beam data in the deep-sea area of the central

FIGURE 2 | Tectono-stratigraphic column of the QDNB. Note: the yellow
areas show the Quaternary strata.

FIGURE 3 | Comprehensive sedimentary column of Well W03 in area B.
Note: The dashed lines with arrow show the depth location of core samples.
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QDNB. Combined with the change in topography, the main
direction of channel flow is concluded to be from SE to NE.
Theoretically, the channel should be continuous, however, most
of the area is flat with deep-sea mud, and only a few parts of
remnant channels can be seen from the multi-beam data
(Figure 5). Therefore, the channels are in the extinction stage,
which is the latest period of the channel system in the QDNB.

4.2 Channel-Related Seismic Facies and
Sedimentary Facies Identification
4.2.1 Channel-Related Seismic Facies
The most intuitive seismic facies in the Quaternary QDNB is the
channel-filling seismic facies, which is flat at the top and has a
bulge at the bottom, and its bottom boundary is generally
U-shaped or V-shaped, and the adjacent underlying strata are
usually truncated to varying degrees. A V-shaped bottom
boundary represents high turbidity current scour and rapid
deposition of the channel, while a U-shaped bottom boundary
represents low turbidity current scour and slow deposition of the
channel. The channel-filling seismic facies is mainly characterized
by strong amplitude and low frequency, with parallel or
subparallel internal structures, and with both sides or one side
having in-phase axis overlap above the boundary of the
underlying concave filling boundary.

Based on the internal stacking patterns within the channel,
four filling seismic facies were identified. These facies types were
used to assist in interpreting the extent of the channel facies and
its lateral, upper, and lower boundaries.

1) Parallel filling facies: The internal reflection of the in-phase
axis generally has a parallel or subparallel structure (Figure 6).
This is a typical case of a local erosive channel, usually
indicating submarine canyon or turbidite channel-filling.

2) Progradation filling facies: The internal reflection is parallel to
the underlying denudation reflection, and there is obvious
onlap to the upward-dip direction and truncation to the
downward-dip direction (Figure 6). The internal reflection
wave is inclined with weak accretion, which is similar to the
underwater delta fan.

3) Onlap filling facies: The external shape is similar to that of the
parallel filling facies, and the internal reflection is uniform,
parallel to the gently divergent structure, with high continuity
and variable amplitude at both ends, and slightly higher than
that of the underlying strata (Figure 6). This represents the
late development stage of the channel.

4) Multistage filling facies: The seismic profile is characterized by
multiple filling facies in the same period and vertical
superposition or migration in different periods (Figure 6),
indicating the development of multiple channels and multi-
stage channels.

FIGURE 4 | 2D seismic profile that crosses Well W03 in area B. Three
channels are shown in seismic profiles and three sand layers are verified from
Well W03. Note: The location of seismic profile in Figure 1B.

FIGURE 5 | (A) The seabed channels identified frommulti-beam data and
seismic data in the QDNB. Note: The red lines show the location of seismic
profile in (B), and the grey arrow lines shows the distribution of remnant seabed
channels; (B) The seismic profiles present the channel-filling process.
Note: The gray arrows show the direction of seabed channels, the yellowdashed
lines show the sequence interface during the formation of the latest channel, the
green dashed lines show the sequence interface of seabed.
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4.2.2 Sedimentary Facies Identification
Based on the division of seismic facies, through the
comprehensive interpretation of geological setting, sea-level
changes, drilling data, and seismic attributes, the
hydrodynamic condition, sedimentary environment, and its
specific sedimentation were analyzed, and then the
corresponding sedimentary facies were determined.

Channels with scales greater than the seismic resolution are
easier to identify; for example, the Central Canyon developed
in the Miocene of the QDNB. However, in addition to some
regions or periods where the channel scale is relatively large
and be identified from seismic profiles, many channels are
small in scale that cannot be identified easily from seismic
profiles, and their transverse distribution characteristics are
more difficult to determine. Combined with the identification
of sand layers from drilling, interpretation of seismic data, and
3D seismic horizon attribute analysis, the distribution
characteristics of channels where the sand layer is located
can be well explained. Through the tracing of channels by 2D/
3D data, the sedimentary facies, distribution characteristics,
and scale of Channel 3 system were identified in areas A, B, and
C, respectively (Figure 7).

A mostly channel-levee sedimentary system (Figure 7)
developed in the Quaternary QDNB, which is composed of
channel-filling facies, levee facies, crevasse splay facies, and
channel terminal lobes facies. Channels usually maintain
turbidity current deposition, which represents long-term and
long-distance sediment transport. The levee is formed by
gravity flow out of channel edge and extends laterally, due to
the rapid decrease in gravity flow velocity, the levee near the
channel is very thick, and thin far away from the channel.
Crevasse splay and channel terminal lobes were found in
Channel 3 system of area C (Figure 7).

4.3 TheDistribution ofMulti-Stage Channels
Through the analysis and comparison of the seismic phase axis
contact relationship and seismic attribute characteristics of areas A,
B, andC, it was determined that theQuaternary strata can be divided
into seven sub-sequences (S1–S7) (Figure 8). The seismic
interpretation and attribute analysis found that the distribution of
channels is clearly shown in S1–S6 (Figure 9). The corresponding
channel system for each sequence is named Channel 1 system,
Channel 2 system, and so on. Considering that gas hydrate–bearing
sands are mainly developed in the Channel 3 system, and multi-
beam data can provide sufficient information for the study of near
seabed channels (Channel 1 system), the Channel 3 system and
Channel 1 system were used to study the distribution characteristics
of channel systems in the Quaternary QDNB.

Combined with 2D seismic data, the distribution of channels
in the QDNB was tracked, and the distribution characteristics of
the Channel 3 and Channel 1 systems in the whole QDNB were
obtained. It can be seen that the channel-levee sedimentary
system is widely developed (Figures 7, 8), especially in the
middle of the central depression zone of the QDNB.

There are obvious distribution differences on the Channel 3
and Channel 1 systems between the western, middle, and eastern
sections (Figure 10).

4.3.1 Distribution Characteristics of the Channel 3
System
One nearly straight channel, showing a V-shape in the seismic profile,
is developed in the western section of the central depression of the
QDNB. The channel is located at the lower part of the continental
slope. Therefore, the channel in this area mainly erodes the
continental shelf. The superposition mode is mainly in the lateral
order superposition, reflecting the obvious lateral accumulation due to
the directional action of the bottom current. The downcutting effect of
the channel is slightly weakened eastward, and the restraining effect of
the channel is gradually weakened. Therefore, the channel formed
several branches in the southeast direction (Figure 10).

The channel system in the central section has many branches
and meanders to the east, showing the characteristics of a large
braided channel system. Far extending levees were developed on
both sides of the channel, and the north side was mainly
developed in large areas. The channels in the middle section
are located in the submarine plain, and the erosion of
downcutting is weakened. The single channel identified from
the seismic profile is mainly of a wide U-type, with obvious levees
developed on its flanks. The channel-levee system is mainly
superimposed by vertical disordered superposition. As the
restriction of the channel is further reduced, channels in this
area show vertical disordered superposition erosion or accretion.

Several branch channels in the eastern section converge into one.
There are still deposits of levees, lobes, and crevasses in area C.
Drilling confirms that the thickness of levees is 6–8m. As the eastern
part of the central depression zone of the QDNB is close to the
northwest sub-basin, the seafloor terrain becomes steeper. It inherits
the topographic characteristics of the Central Canyon development
period; therefore, multiple channels converge into one channel. The
channel here presents a V-shaped straight channel.

FIGURE 6 | Seismic facies characteristics classification of channels in
the Quaternary QDNB.
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FIGURE 7 | Attributes and sedimentary facies of the Channel 3 system in areas A, B, and C of the QDNB. (A) Minimum amplitude attribute map of the Channel 3
system in area A; (A9)Sedimentary faciesmap of Channel 3 system in area A; (B)RMS amplitude attributemap of the Channel 3 system in area B; (B9)Sedimentary facies
map of Channel 3 system in area B; (C) RMS amplitude attribute map of the Channel 3 system in area C; (C9) Sedimentary facies map of Channel 3 system in area C.
Note: The red arrows show the flow direction of channels, and the gray arrows shows the direction of MTDs.
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4.3.2 Distribution Characteristics of the Channel 1
System
Similar to the Channel 3 system, three near straight channels are
also apparent in the western section of the Channel 1 system, and
a large braided channel system in the middle section that
converges into a straight channel again in the western section.

The Channel 1 system differs from the Channel 3 system in the
following ways: 1) In the western section, Channel 1 system has
three near straight channels and locates more to the south; 2) In
the middle section, there are fewer branch channels, with two
main channels in the north and south, and a large submarine fan
in area B; 3) In the eastern section, the channel system is similar to
Channel 3, but almost devoid of sandy deposits.

5 DISCUSSION

5.1 What are the Controlling Factors on the
Distribution of Quaternary Channel
Systems?
The direct factors affecting the morphology, evolution, and
sedimentary characteristics of deep-water channels include
submarine topographic slope, sedimentary hydrodynamic
conditions, and sediment grain size. Indirect factors include
tectonic movement, sea-level change, and provenance supply.
The possible controlling factors on channel distributions in the
Quaternary QDNB are discussed below in detail.

5.1.1 Seafloor Morphology
Topography is a prerequisite for the formation of channels, which
determines and influences the location and morphology of
channel development (Armitage, 2009). A profile (Line 1) of

multi-beam data was extracted where the latest period channels
(Channel 1 system) of the QDNB is located (Figure 11A), and the
variations in seabed elevation and slope were obtained. It was
found that the seabed elevation gradually decreases from SW to
NE, with an elevation difference of 1,411 m (Figure 11B). There
are significant slope differences between the western, middle, and
eastern sections. The slope of the western section varies greatly,
ranging from 0.6° to 0.3°; the slope of the middle section is
generally about 0.2°, which is relatively flat; while in the
eastern section, the slope becomes steeper again (Figure 11C).

Combined with the above distribution characteristics of the
Channel 1 system, it was found that there is a good correlation
between slope variation and the development of the channel
system.

In the western section, the slope is steep and the channels are
near straight. With the descending of the slope, the channels form
branches, but are still dominated by near straight form, and the
erosion is mainly below the channel. The sediments are mostly
passing deposits, and the levee-overflow deposits are not
developed, and the channel is completely filled by argillaceous
deposits in the later period (Figure 5).

In the middle section, the slope is relatively gentle, and with
weakened downcutting and strengthened flooding of the
deepwater channel, the curved channel develops, and a large
lobe deposit is developed near the east.

In the eastern section, the slope becomes steeper again, and the two
channels converge into one, and the channel morphology inherits the
characteristics of theCentralCanyon;with insufficientprovenance supply,
the channel is mainly covered by thin layers of pelagic sediment.

5.1.2 Tectonic Movement
The Central Canyon runs across the QDNB from east to west,
which is about 570 km long and 9–39 km wide. The main body of

FIGURE 8 | Sequence stratigraphy and 6 periods of channel systems of the Quaternary strata in area A. Note: The blue arrows show the locations of channels. The
location of this seismic profile is in Figure 1B.

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9025178

Meng et al. Distribution of Quaternary Channel Systems

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 9 | Sequence boundary structure maps of the Quaternary strata in area A (A) Structure map of T1-1 sequence boundary; (B) Structure map of T1-2
sequence boundary; (C) Structure map of T1-3 sequence boundary; (D) Structure map of T1-4 sequence boundary; (E) Structure map of T1-5 sequence boundary; (F)
Structure map of T1-6 sequence boundary. Note: The grey dash lines show the channel systems, and the arrows indicate the channel flow directions.
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the canyon began to develop in the Late Miocene (10 Ma) and
ended in the Pliocene. It is not only an important pathway for
transporting sediments from shallow water to deep water, but also
a site for the deposition of detrital materials. The Central Canyon
plays a pivotal role in the tectonic sedimentary evolution of the
QDNB, and is closely related to hydrocarbon accumulation
(Wang, 2012), so the degree of research on its architecture,
sedimentation process, provenance sources, and controlling
factors is relatively high (Gong et al., 2011; Su et al., 2014;
Wang et al., 2016).

The distribution of the Central Canyon in the Miocene is also
depicted in the distribution map of the Quaternary channel
system in the QDNB (Figure 10). The Quaternary channels in
the eastern section are almost superposed with the Central
Canyon, which can be clearly seen in the seismic profile.
However, in the western section, the development of the
Quaternary channel systems show southward migration, and
the migration amplitude increases westward, up to more than
100 km. This indicates the southward migration of the
provenance system from the Central Canyon and Quaternary
channel system. The question is why was there such a great
migration distance since 10.5 Ma? The immediate factor is most
likely the relative topographic decline to the south, and the

southward migration of the subsidence center. The main
factor that can change the regional subsidence center could be
tectonic movement.

The large faults in the west of the QDNB mainly include the
Red River fault and No. 2 fault. A great deal of research has been
conducted on the tectonic activity of the Red River fault and its
control on the tectonic and sedimentary evolution of the
Yinggehai Basin and QDNB (Xie et al., 2006; Lei et al., 2021;
Xie et al., 2021), with one of the big discoveries being the late
Miocene strike-slip reversal (Sun et al., 2003; Wang et al., 2016;
Zhu et al., 2009). The Red River fault in the western QDNB
shifted from sinistral strike-slip to dextral movement at about
5.5 Ma (Figure 1). The dextral strike-slip movement may have
continued into the Quaternary period, which resulted in the faster
subsidence in the southwest of the QDNB compared with the
northwest, and the subsidence center moved southward. At the
same time, the slope-subparallel basement faults (No.4 fault)
shifted to dextral slip (Graham, 2016). In addition, the No. 2 fault
may have also been active, and all of these slight tectonic activity
contributions have changed the morphology since the Miocene,
as exemplified by the greater subsidence in the south compared to
the north, and the greater subsidence in the east compared to the
west. Finally, these contributed to the southward migration of the

FIGURE 10 | The distribution of the Channel 1 and 3 systems and the Central channel in the QDNB. Note: The purple solid line shows the distribution of Channel 3
system traced from quaternary hydrate-bearing sands in C area; the read solid line shows the distribution Channel 1 system near seabed, which is the latest period of the
Quaternary channel systems; the blue solid line shows the distribution of the Central channel that developed at the Pliocene strata; the black dashed line shows the
boundary of the QDNB.
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channel provenance in the QDNB from the Miocene to the
present (Figure 8). The southward migration of channels
represents the southward migration of the subsidence center,
while the southward migration of the subsidence center is the
joint geological response of the dextral rotation of the Red River
strike-slip fault, No. 4 fault, and No. 2 fault (Figure 1). Due to the
southward migration of subsidence center, as well as the
rapid southward migration of passive continental margin
(Gong et al., 2019; Chen et al., 2020), the northwest
provenance continued to prograde from north to south, and
result to the southward migration of low terrain and channel
systems. Therefore, the southward migration of channel systems
can be considered as the result of the combined action of tectonic
and sedimentation.

5.1.3 Sea-level Fluctuations
Frequent sea-level changes can affect provenance supply and
lead to the development of multi-stage channels. The six

stages of Quaternary channels in the QDNB are often
inter-deposited with MTDs (Figure 3), which may have a
good relationship with sea-level changes. The periodic sea-
level change in the QDNB is controlled by the combined
effect of global sea-level change and regional crustal
subsidence (especially thermal subsidence), therefore, the
sea-level change in the QDNB is different from the global
sea-level rise and fall cycle (Haq et al., 1987; Hao et al., 2000).
At present, there is a lack of information regarding the
continuous period and amplitude of Quaternary sea-
level change in the QDNB (Bintanja et al., 2005; Yu and
Chen, 2009), but the basic consensus is that there are
multiple periods of sea-level change and the overall sea-
level is declining (Chen et al., 2020). However, the multi-
stage channel development can also provide some
enlightenment for the study of Quaternary sea-level change
in the QDNB.

5.1.4 Provenance Supply
The flow direction of channels in the Quaternary QDNB is from
west to east, which is basically consistent with that of the Central
Canyon. Therefore, the provenance of Quaternary channels can
be compared with that of the Central Canyon. Most scholars
believe that the provenance of the Central Canyon mainly
came from the Red River system (Lin et al., 2001; Su et al.,
2019; Lyu et al., 2021) and the Red River submarine fan in the
Yinggehai Basin, which is considered to be the direct source
supplying the Central Canyon (Wang et al., 2011; Xie, 2020; Xu
et al., 2020). However, some researchers believe that it originated
from central and northern Vietnam (Zhang et al., 2017; Su et al.,
2019) and the provenance of Hainan Island (Lin et al., 2001; Cao
et al., 2013).

It should be noted that the western part of the Quaternary
channel system migrated about 100 km southward compared
with the Central Canyon (Figure 8), so the provenance of the
Quaternary may be less contributed by the Red River system and
more influenced by the Vietnamese river system. In addition,
although the channel length of the Quaternary is similar to that of
the Central Canyon, the channel width is significantly
narrower than that of the Central Canyon (Figure 8), which
also indicates a significant decrease in sediment transport, and
could indirectly reflect a significant decrease in sediment
supply in the provenance area. The decrease of provenance
supply is the result of the interaction of Himalayan
movement, sea-level and climate changes. As for how these
factors affect the provenance supply, it is a complex and
synergistic mechanism that has not been solved yet, but it
reflects the disappearance of the channel systems to some
extent. That, in turn, could shed light on tectonic movement,
sea-level and climate changes.

The development of the Quaternary channel system in the
QDNB is the result of multi-factor synthesis: the tectonic
movement controls seafloor morphology, which directly controls
the flow of channels and their distribution characteristics, and the
provenance supply determines the scale of each channel and the
sedimentary characteristics. The periodic changes in sea-level
determine the evolution of the multi-stage channel systems.

FIGURE 11 | (A) The distribution characteristics of the Channel 1 system
and seabed multi-beam data. Note: line 1 is the plan position of elevation and
slope variation maps in (B,C). (B) The elevation variation of line 1 from SW to
NE; (C) The slope variation of line 1 from SW to NW.
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5.2 The Prediction of Gas Hydrate-Bearing
Sand Reservoirs
Deepwater channel system is an important transport pathway for
sand sediments. Sand bodies can be deposited by channel-filling
deposits, levee deposits, crevasse splay and lobes, which are often
regarded as favorable oil and gas reservoirs (Morris, and Busby-
Spera, 1990; Babonneau et al., 2002; Wynn et al., 2002; Abreu et al.,
2003; Beaubouef, 2004).

Under the limit of low temperature and high pressure, the gas
hydrate can only occur in shallow sediments under the seabed.
Taken the QDNB as a case, the lower limit of gas hydrate
occurrence depth confirmed by drilling is about 200 mbsf.
Therefore, it is necessary to study the characteristics of
shallow channel systems. Based on our study, the Quaternary
channels in the QDNB are branching from southwest and
gradually converging toward east. In the western section, few
coarse grain sands may exist in channel-filling facies; in the
middle section, the sea floor morphology is flat and the
braided channel becomes dense. It is speculated that there are
both channel-filling, levees and crevasse splay deposits, with the
possibility of multi-stage superposition of sand bodies. Therefore,
the favorable shallow sand bodies (mainly belonging to channel-
filling deposits, levees, crevasse splay deposits and lobes deposits) in
the QDNB may be developed in the middle section where channel
developed. This study can provide sedimentological basis for the
prediction of gas hydrate-bearing sand reservoirs in the QDNB,
and more 3D seismic, drilling and logging data are necessary to
better predict sand reservoirs in the future. In addition, the
identification and prediction of high saturated gas hydrates in
sand reservoirs also needs comprehensive analysis of gas hydrate
stability zone, sufficient gas source and favorable structure
pathway.

6 CONCLUSION

Using the integrated 2D/3D seismic, multi-beam, well logging,
and coring data, the current study documents the distribution
characteristics of the channel system and its controlling factors in
the Quaternary strata of the QDNB. The integrated analysis
shows the following observation that:

1) The channel-related sedimentary facies include the
channel-filling facies, levee facies, crevasse splay facies,
and lobes facies; six periods of channel systems are
identified in the Quaternary strata.

2) There are obvious distribution differences in the Channel 1
and Channel 3 systems between the western, middle, and
eastern sections: the channels in the western and eastern
sections are mainly dominated by near straight V-shaped
channels, while the middle section mainly consists of large
braided channels, where a channel-levee sedimentary system
developed.

3) Compared with the distribution of the Central Canyon, the
channels in the western section show southward migration since
the Miocene.

4) The distribution and evolution of the Quaternary channels
were likely collectively controlled by the seafloor morphology,
tectonic movement, sea-level fluctuations, and provenance
supply. Tectonic movement controls seafloor morphology,
which directly controls the flow of channels and their
distribution characteristics, and the provenance supply
determines the scale of each channel and their sedimentary
characteristics. The periodic changes in sea-level determine
the evolution of multi-stage channel systems.

5) It is predicted that the favorable shallow sand bodies (mainly
belonging to channel-filling deposits, levees, crevasse splay
deposits and lobes deposits) in the QDNB may be developed
in the middle section where channel developed.
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