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Loess is a ubiquitous, silty aeolian sediment common across the semiarid to subhumid
regions in the Northern Hemisphere. As such, the physical characteristics of loess
sediment, such as modal grain size and quartz crystallinity index, have the potential to
inform us about dust transport pathways and corresponding atmospheric circulation
responsible for entrainment, transport, and deposition. In this article, we combine detailed
granularity analyses and non-parametric end-member modeling with investigations of the
quartz crystallinity index of three loess deposits, extending from East to Central Asia, with
the aim of identifying dust transport processes and the climate subsystems responsible for
them. We find marked differences in the grain size characteristics of Eastern and Central
Asian loess. Given potential linkages of fine particles to the westerly jet stream, here we
focused on the fine-grained end-members in the loess. The fine-grained components of
the Central Asian Bishkek (BSK) and Chashmanigar (CMG) loess may be derived from
individual particles carried at high altitude by major climate subsystems such as the
westerlies. However, similar quartz crystallinity indexes of fine- and coarse-grained
components in the Central Asian loess indicated that surface-level wind strength might
influence the releases from proximal-sourced regions and abundances in the upper
atmosphere for the fine particles. By contrast, the fine-grained component of the East
Asian [Fanshan18 (FS18)] loess seems to yield physical similarities to the Tertiary Red Clays
underlying many loess stratigraphies, and has been interpreted to relate to transport
associated with the East Asian winter monsoon. It was further supported by quartz
crystallinity indexes of the <16 μm fractions in the FS18 loess, basically consistent with
those of the deserts in North China, highlighting the near-surface northwesterly winter
monsoon as the dominant transport dynamics of fine-grained dust. In addition,
comparisons of quartz crystallinity indexes of fine-grained components between the
East and Central Asian loess also suggest that variations in fine particles within the
loess might not be related to transport by the higher-level westerlies, which is in
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disagreement with the previous model. Therefore, our results indicate that variations in
fine-grained end-members in loess are difficult to reliably document the variabilities of
higher-level westerlies.

Keywords: loess, grain size, end-member modeling, quartz crystallinity index, westerlies

1 INTRODUCTION

Aeolian loess deposits cover about 10% of the global land surface
and are extensively distributed in the semiarid to subhumid
regions around the world (Taylor et al., 1983; Liu, 1985; Tsoar
and Pye, 1987; Rousseau and Hatté, 2021). The enhanced
dustiness and the associated climatic effects over Late
Quaternary make it especially important to understand past
dust activity (Claquin et al., 2003; Sun and An, 2005; Antoine
et al., 2009; Rasmussen et al., 2014; Kang et al., 2015; Stevens et al.,
2016; Újvári et al., 2017), which play a key role in reducing the
large uncertainties that exist in Earth system models (Shao et al.,
2011; Choobari et al., 2014; Liu et al., 2018). Loess archives act as a
direct indicator of paleo-dust activity, and its formation generally
occurs in four stages, production, deflation, transport, and
deposition of particles (Smalley, 1966; Pye, 1995; Wright,
2001; Muhs et al., 2014). The latter three stages have
important consequences for landform evolution,
biogeochemical cycles, regional climate, human health, and
desertification (Ravi et al., 2011, and references therein).
Therefore, loess records can serve as the reliable tools to
reconstruct past atmospheric circulation patterns and dynamic
environments (e.g., Qin et al., 2005; Bokhorst et al., 2011;
Vandenberghe, 2013; Obreht et al., 2015; Újvári et al., 2016;
DiPietro et al., 2017).

Loess grain size properties also improved our understanding
of dust source areas (Dong et al., 2016), transportation pathways
(Varga, 2011), and paleo-atmospheric circulation (Bokhorst et al.,
2011; Varga, 2011). Multiple peaks in loess grain size distribution
(GSD) were related to different transport modes (Folk andWard,
1957; Weltje, 1997; Sun et al., 2004; Qin et al., 2005).
Consequently, the analysis of GSD is a promising way to
strengthen the physical basis for interpreting aeolian processes
using loess records. Recent years have seen increasing statistical
analysis of loess grain size to identify subpopulation [grain size
end-member (EM)] within bulk samples (Weltje, 1997; Sun et al.,
2002; Sun et al., 2004; Prins et al., 2007; Prins and Vriend, 2007;
Vriend et al., 2011; Vandenberghe, 2013; Li et al., 2018a;
Vandenberghe et al., 2018; Varga et al., 2019; Jiang et al.,
2020). The different EMs were interpreted to reveal distinct
atmospheric transport mechanisms, modes, and travel
distances (e.g., Újvári et al., 2016; Vandenberghe, 2013, and
references therein). In some cases, the end-member approach
has also been employed to indicate variations in the geological
context or source area (e.g., Prins et al., 2007; Bokhorst et al.,
2011). Therefore, the grain size partitioning model provides a
clearer perspective for identifying the natural processes where
aeolian loess was transported. There have been two different
unmixing methods of grain size spectra: parametric
decomposition and non-parametric decomposition (Prins

et al., 2007; Dietze et al., 2014; Vandenberghe et al., 2018).
The former uses parametric curve-fitting procedures to
disintegrate the polymodal grain size distribution curve of a
single sample into aggregates of unimodal statistical
probability distribution functions with the Weibull function or
normal function (Sun et al., 2002; Sun et al., 2004; Qin et al., 2005;
SunD. H. et al., 2008; Varga, 2011;Wang et al., 2017). The latter is
performed based on the whole grain size database, and a
numerical–statistical inversion technique is employed to
identify fixed sedimentary populations (EMs) from the
measured grain size distribution curves of the samples by
weighting them with an appropriate score (Weltje, 1997;
Varga et al., 2019). Generally, the EMs obtained by non-
parametric decomposition are polymodal, and those of
parametric curve fitting are logically unimodal (Varga et al.,
2019). For interpretations of (sub)populations, non-parametric
decomposition can only provide results of more simultaneous
sedimentation mechanisms, such as seasonal dust signal, yet the
results of parametric curve fitting can indicate process-related
elements of background and dust storm depositional components
for each sample (Varga et al., 2019). Hateren et al. (2017)
reviewed several non-parametric end-member modeling
algorithms and evaluated their accuracies, and Weltje and
Prins (2003) argued that for the parametric end-member
fitting, defects exist in the uniqueness of results and physical
theory on GSDs. While Dietze et al. (2022) also indicated
constraints and limitations of non-parametric end-member
modeling analysis (EMMA). Regardless of those debates,
despite theoretical differences, the two methods can produce
similar results and both have been intensively employed (Sun,
2004; Park et al., 2014; Nottebaum et al., 2015; Újvári et al., 2016;
DiPietro et al., 2017; Li et al., 2018a; Varga et al., 2019; Jiang et al.,
2020).

However, the origin of the fine-grained EMs in loess is
relatively complex: 1) deposition as individual particle, which
is transported by large-scale high-altitude winds in long-term
suspension mode from distant source (Sun et al., 2004; Sun D. H.
et al., 2008; Park et al., 2014); 2) attachment to larger grains from
near-source regions (Pye, 1987); 3) deposition as silt- or sand-
sized aggregates (Derbyshire et al., 1995; Pye, 1995; Falkovich
et al., 2001; Mason et al., 2003; Qiang et al., 2010b; Mason et al.,
2011; Újvári et al., 2016); and 4) production by post-depositional
weathering and pedogenic processes (Xiao et al., 1995; Bland,
1998; Wang et al., 2006; Hao et al., 2008). As a result, the
controversial interpretations for the fine-grained components
in loess have hampered detailed understanding of their
potential links to the westerlies (Sun, 2004; Prins et al., 2007;
Vriend et al., 2011; Nottebaum et al., 2014).

In this article, we carried out non-parametric EMMA to
elucidate aeolian dust dispersal patterns in East and Central
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Asia based on the loess GSDs. Given the complexity of
explanations to finer components (Mason et al., 2011; Újvári
et al., 2016), we separated the bulk samples into two or three size
fractions, and measured crystallinity index (hereafter referred to
as CI) of quartz mineral in size fractions to examine different
origins for the fine- and coarse-grained particles. Quartz is an
ubiquitous and weather-resistant rock-forming mineral. Quartz
CI reflects temperature and crystallization rates during formation
and depends on the types of source rocks (Murata and Norman,
1976). From this, the index has been applied to the identification
of the dust sources in the Chinese Loess Plateau (CLP) and the
Japan Sea (Ono et al., 1998; Toyoda and Naruse, 2002; Nagashima
et al., 2007; Sun et al., 2007; Sun Y. et al., 2008; Nagashima et al.,
2011; Sun et al., 2013). It has benefited from the successful
distinguishment of the major Gobi and sandy deserts in North
and Northwest China (Sun et al., 2013).

This study aims to shed light on the aeolian processes
responsible for loess accumulation in different geographical
provinces of Asia, and in particular to assess the imprint of
the westerlies in the loess records by comparisons of the end-
member subpopulations and the CI results. In addition, this study
contributes toward correcting the deviation in genetic
interpretations of end-members for the loess grain size.

2 MATERIALS AND METHODS

2.1 Study Area
The mid-latitudes of Eurasia is the most important loess area in
the Northern Hemisphere (Muhs, 2013). The Siberian High (SH)
as a semipermanent anticyclone dominates Eurasia, and cold and
dense air masses produced by the SH lead to strong outbreaks of
cold and dry northerly winds in a belt stretching from East Asia
through portions of West Asia and central and northern Europe
(Aizen et al., 2001; Cohen et al., 2001; Gong and Ho, 2002). While
high-altitude atmosphere over Eurasia prevails westerly stream,
and northward and southward migration of the westerly winds
can directly modulate spatial distributions of precipitation in
Europe and Central Asia (Aizen et al., 2001; Luetscher et al., 2015;
Wassenburg et al., 2016; Perşoiu et al., 2019; Lan et al., 2021).
Meanwhile, the intimate relationship between spatial variations
in East Asian summer monsoon precipitation and the westerly jet
path across East Asia during Holocene has also been identified
(Nagashima et al., 2013; Herzschuh et al., 2019).

The study area involves East and Central Asia. In East Asia, the
CLP loess is well known for its vast area of coverage and
continuous deposition during the Quaternary (Liu, 1985; Liu
and Ding, 1998; An, 2000; Guo et al., 2000). The CLP in north-
central China covers an area of ~36 × 104 km2 (Li and Lu, 2010),
extending from ~100 to 115°E to ~35 to 45°N (Maher, 2016).
Loess accumulation on the CLP is driven by winter monsoon
near-surface winds associated with the SH pressure system and/or
westerly circulation of the Northern Hemisphere (Liu, 1985;
Porter et al., 2001; Roe, 2009; Lu et al., 2010; Maher, 2016;
Sun et al., 2020). By contrast, comparatively patchy piedmont
loess deposits of varying thickness are widely distributed along
the high mountains in Central Asia (Song et al., 2021), including

the Pamir and Alai ranges (Dodonov, 1991; Dodonov and
Baiguzina, 1995; Dodonov et al., 1999; Ding et al., 2002), the
Tian Shan (Zhou et al., 1995; Fang et al., 2002; Song et al., 2014;
Youn et al., 2014; Fitzsimmons et al., 2018; Li G. et al., 2020), and
the Altai (Zykin and Zykina, 2015) mountain margins. Since
climate change in Central Asia is mainly controlled by the
dynamics of westerly air masses (Aizen et al., 2001; Chen
et al., 2019; Guan et al., 2019), deposition of the piedmont
loess over the region could respond to the changes of the
westerly (Ding et al., 2002; Vandenberghe et al., 2006; Li et al.,
2016a; Li et al., 2019b; Fan et al., 2021; Jia et al., 2022) despite
strong influences of the SH pressure system and the Asiatic
polar fronts (Sorrel et al., 2007; Machalett et al., 2008; Groll
et al., 2013; Li et al., 2018a). Particularly, our areas of interest
are the Kyrgyz Tian Shan (northern Central Asia), the
Afghan–Tajik Basin (southern Central Asia), and the
Yanqin-Huailai-Zhoulu Basin (East Asia) (Figure 1).
Comparisons of loess records from these sites would
contribute to deciphering potential links between fine-
grained components in loess and westerly airflow in
consideration of the aforementioned descriptions and
position of the Yanqin-Huailai-Zhoulu Basin downwind of
the Kyrgyz Tian Shan and the Afghan–Tajik Basin (Figure 2).

The Kyrgyz Tian Shan is located in the southwestern Central
Asia Orogenic Belt (CAOB) (Yakubchuk, 2004). It mainly
consists of Precambrian continental fragments intruded by
Cambrian to Silurian granitoids (Glorie et al., 2010; Kroner
et al., 2013; Alexeiev et al., 2016), connecting to the Ili Block
in China (Han et al., 2016). This region is mainly influenced by
the mid-latitude westerlies, the SH, northerly polar fronts, and
Asian monsoon systems (Machalett et al., 2008; Cheng et al.,
2012; Sorg et al., 2012; Groll et al., 2013; Karger et al., 2017;
Fitzsimmons et al., 2018; Guan et al., 2019). Maximum rainfall
occurs in spring (March, April, and May) along the loess
piedmonts over the region (Li et al., 2020c) (Figure 1). The
SH expands southward in winter and brings with it cold
temperatures, dry conditions, and strong wind and associated
dust activity to the Kyrgyz Tian Shan (Cheng et al., 2012; Li et al.,
2018a; Shi et al., 2020). The thickness of the outcropped loess in
the Kyrgyz Tian Shan generally ranges from several meters to
20 m according to field observations (Song et al., 2021), while the
thickest loess section already reported in the region is the
80 m-thick Remisowka section near Almaty (Machalett et al.,
2006). The loess section with a thickness of ~20 m in the northern
Krygyz Tian Shan was accumulated since the last glacial period
based on quartz optically stimulated luminescence (OSL) dating
(Youn et al., 2014); by comparison, the preliminary estimate of
the paleomagnetic age of the Remisowka section is older than
800 ka (Song et al., 2021), though needs further chronological
assessment (Machalett et al., 2006; Machalett et al., 2008;
Fitzsimmons et al., 2018). The Moyun-Kum and Taukum
deserts are located in about 180–200 km northwest and north
of the Kyrgyz Tian Shan, respectively; however, a recent study
suggested that the deserts are not the main source of the fine-
grained loess, while piedmont slopes and alluvial–proluvial plains
are common sources for both deserts and loess over the region (Li
et al., 2020b).
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The Afghan–Tajik Basin is bordered by the Tian Shan
Mountains to the north and northeast, by the western Pamir
Mountains to the east, and by the Hindu Kush Mountains to the
south. The SH has a dominant impact on the precipitation
variability during winter season (Feng et al., 2011). In
summer, the subtropical high occupies the basin due to the
onset of the Indian summer monsoon (Li et al., 2016b). The
dust emissions and accumulations maximize during the hot and
dry summer season (Dodonov et al., 1999; Ding et al., 2002; Li
et al., 2019a), and dust activity in the basin are largely controlled
by changes in the intensity of the Caspian Sea–Hindu Kush Index
(CasHKI) (Li et al., 2019a). The loess mantle in the basin is
extremely thick, attaining a thickness of 100–200 m (Dodonov,
1991; Frechen and Dodonov, 1998; Parviz et al., 2020b). The early
magnetostratigraphic correlation estimated that the oldest loess
in Tajikistan started to accumulate since Gauss polarity period
(2.6 Ma) (Dodonov and Penkov, 1977). Ding et al. (2002)
demonstrated the bottom paleomagnetic age of 1.77 Ma for
the Chashmanigar section, and recent paleomagnetic analysis
extended the basal age of this section to 2.13 Ma about the
Reunion subchron (Parviz et al., 2020a). The great deserts
such as Karakum and Kyzylkum are situated to the west and

northwest of the basin (Ding et al., 2002). However, based on
loess trace elements and meteorological reanalysis data, Li et al.
(2019a) suggested that the deserts may have a minor contribution
to loess formation in southern Tajikistan.

The Yanqin-Huailai-Zhoulu Basin is a fault basin, located at
the margins of the NE CLP (Wang et al., 2014; Xiong et al., 2001).
The annual precipitation and the highest temperature in the basin
primarily occur during summer (Figure 1) (Xiong et al., 2001).
The pedostratigraphic properties of the loess in the Yanqin-
Huailai-Zhoulu Basin indicated loess deposition occurred
during glacial periods with strengthened East Asian winter
monsoon, whereas the palaeosols were developed during
interglacial periods with the predominant East Asian summer
monsoon (Xiong et al., 2001). Loess in the basin mainly occurs on
uplands along the piedmonts of the mountains and covers
terraces of different heights; loess over the region is commonly
about 10–20 m thick, with a maximum thickness of about 100 m
in the southern basin (Xiong et al., 2001). According to Xiong
et al. (2001), the thickest loess deposit consists of 14 loess-paleosol
couplets, underlain by fluvial pebbly conglomerates, and its
paleomagnetic age extends back to 1.1 Ma. The present margin
of the Hunshandake desert is about 180–200 km northwest of the

FIGURE 1 | Locations of the studied loess sections and monthly precipitation and temperature at the sampling sites.
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loess regions in the Yanqin-Huailai-Zhoulu Basin (Xiong et al.,
1999a; Xiong et al., 2001), and correspondingly, the loess can
provide essential information on evolution of the desert (Xiong
et al., 1999b).

2.2 Field Sampling
We analyzed GSDs of bulk samples and CI of quartz mineral for
the loess samples from the BSK, CMG, and FS18 sections, which
are located in the Kyrgyz Tian Shan, the Afghan–Tajik Basin, and
Yanqin-Huailai-Zhoulu Basin, respectively (Figure 1). The FS18
section is located downwind of the BSK and CMG sections, with
the westerlies as an important connection (Figure 2). Therefore,
as stated earlier, our results could be used to examine the
significance of the westerlies during the process of loess
transport in the study area.

The BSK loess section (74°46′50.1″E, 42°42′15.5″N, 1,432 m
a.s.l; Figures 3A,D) is located in the Kyrgyz Tian Shan (Figure 1),
near the Norus River in the Chui region, Kyrgyzstan and 24 km
from the southeast part of Bishkek city (Li et al., 2020c). The
section was exposed by road excavation, with a thickness of
~18 m. According to the OSL dating results of Youn et al.
(2014), the BSK section roughly spans MIS1-5. The detailed
lithologic features of the BSK section have been described in
Li et al. (2020c), and its stratigraphy is also shown in Figure 3A.

The CMG loess section (69°49′54.7″E, 38°23′18.9″N, 1,549 m
a.s.l; Figures 3B,D) is almost located in the same position as the
Chashmanigar section studied by Ding et al. (2002). The section
has a thickness of 25 m, which is exposed by gravitational sliding.
The section is assumed to span MIS1-5 based on paleomagnetic

dating and orbitally tuned time scale (Ding et al., 2002; Yang et al.,
2006). In the section, upper 0.2 m is grayish-brown modern soil,
characterized by a loose soil texture, and enriched in modern
plant roots (Figure 3B). The 0.2–17.5 m depth is homogeneous
and yellow loess unit, with a massive, loose, and porous structure
(Figure 3B). Calcareous pseudo mycelium is heavily distributed
from top to bottom of the loess layer. Carbonate concretions with
a diameter of >10 cm occur in the 14.5–15.25 m horizon. The
17.5–24.75 m depth is a reddish brown paleosol unit (Figure 3B),
implying strong pedogenesis. The paleosol layer evenly contains
root-like calcareous channels. The 24.75–25 m depth is a grayish-
yellow loess layer with loose structure. Carbonate concretions of
2–3 cm in diameter occur at depths of 22.8–22.95 m and 24.9 m.

The FS18 loess section (115°23′51.2″ E, 40°11′46.5″ N, 853 m
a.s.l; Figures 3C,D) is located in approximately 90 km northwest
of Beijing. The section is a composite of two vertical subsections
[A (7 m thick) and B (8 m thick), Figure 3D], which are 40 m
apart. Thus, the section has a total thickness of 15 m. The 0–0.4 m
depth is modern surface soil; the 0.4–11.2 m depth is the loess
unit, characterized by grayish-yellow, silt, loose and porous
structure, with uniform texture, vertical joint, and very few
black Fe–Me oxide, and calcareous mycelium. A weak paleosol
unit at 11.2–13.4 m depth is brown, fine silt, or clayey silt, with
compaction structure and abundant calcareous mycelium. The
13.4–15 m depth is the second loess unit, which is grayish-yellow
silt. In addition, calcareous nodules of ϕ = 1–3 cm occur at the
13.1–13.9 cm depth.

We collected some bracketing samples from the FS18 section
for luminescence dating (Supplementary Text S1;

FIGURE 2 |Mean winter and summer streamlines (m s−1) at 500 hPa (~5,000 m.a.s.l.) and 700 hPa (~3,000 m.a.s.l.) for 1980–2016 across East and Central Asia
(URL: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). The orange lines represent the 1,700 m isohypse lines.
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Supplementary Table S1; Supplementary Figure S2), and the
results show that the section also spans MIS1-5. We initially
assumed that the subsections A and B represented a continuous
sequence. However, luminescence dating of key levels
(Supplementary Figure S2) showed substantial temporal
overlap between the subsections. Without additional samples
we were unable to develop a robust age model incorporating
the two subsections in order to integrate our granulometry data
and therefore we treat the two subsections as separate, with a gap
in the depths, but nevertheless discontinuously spanning the last
full glacial cycle. Specifically, the luminescence dating results
indicated a chronological overlap between 0–7 m and 7–10.6 m
depths (Supplementary Text S2). Figure 3C also showed similar
variation trends in grain sizes between them despite of striking
differences shown in the top of the upper 7 m. Therefore,
subsection A (0–7 m) and 10.6–15 m depth in subsection B
were used to conduct the EMMA in the consideration of the
relatively higher sedimentation rate for the upper 7 m
(Supplementary Figure S2).

After removing the superficial weathered sediment from the
three sections, samples were collected at 2-cm resolution. A total
of 900 samples for BSK section, 1,250 samples for CMG section,
and 750 samples for FS18 section were prepared for grain size
tests (Supplementary Table S2). Subsequently, 48 samples (14
from BSK section, 16 from CMG section, and 17 from FS18
section) were selected and separated into two or three size

fractions (BSK and CMG section: <16 μm and >16 μm; FS18
section: <16 μm, 16–63 μm and >63 μm) for measuring the
quartz CI.

2.3 Experimental Methods
2.3.1 Grain Size
Prior to grain size measurements, 0.5 g of dry bulk sample was
pretreated by the removal of organic matter and carbonate using
H2O2 and HCl, respectively (Lu and An, 1997). Samples were
then dispersed for 10 min by ultrasonification with 10 ml 10%
(NaPO3)6 solution. The Mie theory was used to obtain the
relationship between the particles size and the light intensity
distribution pattern (Grehan and Gouesbet, 1979; Wiscombe,
1980). Therefore, the information on both refractive index (RI)
and absorptive index (AI or imaginary refractive index) of
analyzed materials are required (Eshel et al., 2004). In this
study, water was used as the dispersant with a RI = 1.33 at
20°C, and the default setting of RI = 1.52 and AI = 0.1 were
applied, primarily because these parameters are targeted at soil
samples (e.g., loess) (Eshel et al., 2004; Malvern Instruments,
2009). Particle size distribution was calculated for 100 grain size
classes within a measuring range of 0.02–2,000 μm. Replicate
analyses indicated an analytical error of <2%. The grain size
results used in this study can be seen in Supplementary Table S1.
Grain size distribution was analyzed using a Malvern 3000 laser
instrument at the State Key Laboratory of Loess and Quaternary

FIGURE 3 | Stratigraphic logs (A–C), grain size results (A–C) and photos (D) of the BSK, CMG and FS18 loess sections. The red dashed box in (C) indicates the
depth interval [7–10.6 m in FS18-subsection (B)] that is not used for the analyses due to its chronological overlap with the upper 7 m (Supplementary Material).
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Geology, Institute of Earth Environment, Chinese Academy of
Sciences.

2.3.2 Crystallinity Index (CI) of Quartz
A total of 48 CI samples are selected from the three sections
(Figure 7; Supplementary Table S3). Five grams of each sample
were treated with 30% H2O2 and 30% HCl to remove organic
matter and carbonate, respectively (Sun et al., 2007; Zhao et al.,
2012). The fractions of <16 μm and >16 μmwere then isolated by
gravitational settling based on Stokes’ law (Gibbs, 1974). In
addition, the fraction of >63 μm within the FS18 loess was
also extracted by wet sieving due to its higher contents.

CI was measured by followingMa et al. (2013), using an X’pert
ProMPDX-ray diffractometer (XRD) at the State Key Laboratory
of Loess and Quaternary Geology, Institute of Earth
Environment, Chinese Academy of Sciences. Powders of the
aforementioned different fractions were placed in the glass
holder and irradiated with a Cu Kα source with voltage at
40 kV and 40 mA. The scanning angle ranges from 66° to 69°

(2θ), with a scan speed of 0.01 s−1 and a step speed of 25.0 s (Zhao
et al., 2012). The CI was calculated using the following equation
(Murata and Norman, 1976):

CI � F × (a/b), (1)
where the factor F is estimated as 12.24 (Zhao et al., 2012); a refers
to the difference between the crest value at 67.74° (2θ) and the
valley value at 67.84 (2θ); b is the difference between the crest
value at 67.74° (2θ) and the background value. Absolute error of
multiple measurements of CI for standard quartz sample (CI =
10) is ±0.15 (Ma et al., 2013). The XRD spectra for calculating the
CI and the CI values of each fraction are accessible in
Supplementary Table S3.

2.4 End-Member Modeling Analysis (EMMA)
of Grain Size Distributions
As mentioned earlier, non-parametric EMMA is simultaneously
conducted with a whole sequence based on the covariance
structure of the dataset. They use the principles of eigenspace
analysis and different scaling procedures to describe GSDs as a
linear combination of end-members and their weighting scores
(Weltje, 1997; Dietze et al., 2012). After the estimation of
minimum number of EMs required for an appropriate
approximation of the measured data, the size distributions and
weighting scores for every end-members are determined (Varga
et al., 2019), which makes the interpretation of EMs more
statistically and physically descriptive (Paterson and Heslop,
2015). Various numerical techniques have recently become
available, such as AnalySize (Paterson and Heslop, 2015),
BEMMA (Yu et al., 2016), and EMMAgeo (Dietze et al.,
2012). Hateren et al. (2017) suggested that AnalySize can yield
accurate reproductions of artificial grain size datasets. Therefore,
AnalySize was employed in this study. The relevant theories and
calculative processes can be seen in Paterson and Heslop (2015).

The parametric curve-fitting technique is also applied here to
evaluate the explanations of grain size EMs in previous studies.

The parametric EMMA assumes that under steady and known
dynamics of the transport mode and transport agent, the grain
size of sediment displays a single-component distribution, which
is controlled by a single factor (Sun et al., 2002; Sun et al., 2004),
namely, different transport mechanisms produce unique modal
grain sizes in the sediment they deposit (Ashley, 1978; Bagnold
and Barndorff-Nielsen, 1980). The grain size distribution curves
were decomposed using Weibull functions, an approach that is
developed by Sun et al. (2002). Moreover, grain size parameters of
the end-members were calculated from the analytical data with
GRADISTAT (Version 4.0; Blott and Pye, 2001).

3 RESULTS

3.1 Grain Size
The mean particle size distribution and the range of volume
frequency for each size class of the BSK section are similar to
those of the CMG section, both distinctly differing from those of
the FS18 section (Figures 4A–C). The size ranges of the BSK and
CMG sections generally span 0.2–300 μm, with the primary
modes of ~13 μm. The overall mean particle size distributions
of the BSK and CMG sections show a unimodal pattern, with a
slight skewness toward the coarse part of distribution (Figures
4A,B). An additional small peak occurs at 0.4–1.8 μm for the BSK
and CMG loess (Figures 4A,B). The mean particle size
distribution of the FS18 section presents a multimodal pattern,
with peaks centering in 0.6 μm, 7 μm, and 50 μm (Figure 4C). In
addition, the maximum values of each size class for the FS18
section also show obvious peak at 500–2,000 μm, despite lack of
the peak in mean particle size distribution (Figure 4C).

Figures 3A–C shows the variations in clay, silt, and sand fractions
in the BSK, CMG, and FS18 loess. The BSK and CMG loess are
dominated by silt fraction, with mean proportions of 75 and 77%,
respectively. While the silt fraction in the FS18 loess is relatively less,
with an average of 60%. The silt fraction decreases lightly down the
BSK section with significant fluctuations, and the clay fraction
displays a variation trend opposite to the silt fraction (Figure 3A).
The proportions of sand fraction in the BSK section range from 1.1 to
12.8%. The clay and silt fractions in the CMG section show more
significant inverse relationship (Figure 3B). The proportions of clay
fraction are much higher in the paleosol unit than in the loess unit.
The sand fraction of the CMG loess displays the low contents,
compared to that of the BSK section, with gradually decreasing
trend (Figure 3B). In contrast, the proportions of silt fraction in the
FS18 section follows the opposite trend of the sand fraction
(Figure 3C). Notably, the sand-sized contents in the FS18 section
are relatively higher (21.2%) than those in the BSK and CMG
sections. The clay and silt fractions in the FS18 loess
synchronously change; whereas the clay-sized contents vary with
small amplitudes, relative to the silt-sized content.

3.2 Non-Parametric End-Member Modeling
of Grain Size Data
The two criteria used for selecting the number of EM are
parsimony and reproducibility (Prins and Weltje, 1999).
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Specifically, parsimony is the minimum number of EMs, and for
reproducibility, it is generally accepted that the number of EMs
should explain over 95% of the variance of the entire grain size
dataset. The coefficient of determination (R2) and mean angular
deviation (θ) are calculated to identify the minimal numbers of
EMs necessary for a good statistical explanation of the data.
Relatively higher R2 and lower θ suggest a better statistical fit
(Paterson and Heslop, 2015). In the correlation map of the BSK
loess between R2 and end-member quantity (Supplementary
Figure S3a), end-member modeling yields the best results
with 2 EMs; for models with more than 1 EMs, θ is less than
5°. Therefore, two EMs were modeled for the BSK loess, which
yield R2 > 0.98. The same is true for the CMG loess
(Supplementary Figure S3b). However, the 3-EM model
provides a realistic resolution for the FS18 loess

(Supplementary Figure S3c), which meets the requirements of
a minimum EM number andmaximum reproducibility (Paterson
and Heslop, 2015).

Figures 4D–F show the GSD of each EM for the three loess
sections, with the modal sizes being exhibited. The two EMs of
the BSK and CMG loess present a unimodal pattern (Figures
4D,E). The modal size of the EM1s for both sections is
same (11.9 μm); whereas, the mode of the EM2 of the BSK
loess is significantly larger than that of the CMG loess. The
three identified EMs in the FS18 loess display very
different grain size distributions from each other (Figure 4F).
The EM1 and EM3 of the FS18 loess show a bimodal pattern;
the frequencies for the two modes (9.5 and 23.8 μm) of the EM1
are of essential equality; the primary mode of the EM3 is
75.3 μm, and the secondary one is 7.5 μm. The EM2

FIGURE 4 |Mean grain size distribution and range of volume frequency for each size class in loess for the BSK (A), CMG (B), FS18 (C) loess sections, and grain size
partitioned components of the BSK (D), CMG (E), and FS18 (F) loess. The minimum andmaximum values of the GSDs [colored shade in (A), (B), (C)] were found in each
size class and the averages refer to the mean volume frequencies of each size class.
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unmixed in the FS18 loess shows a unimodal pattern
(modal grain size of 42.3 µm), markedly skewed toward the
coarser side.

3.3 Quartz CI
The CI values of quartz for the >16 μm and <16 μm fractions do
not show evident variabilities down the BSK and CMG section
(Figures 5A,B). Overall, both the BSK and CMG sections have
similar CI values for the >16 μm and <16 μm fractions,
respectively. In comparison to the BSK and CMG sections, the
CI differences between fine- and coarse-grained quartz particles
in the FS18 loess are significantly higher (Figure 5C), likely
indicating that different size fractions are probably originated
from different host rocks (Sun et al., 2013). However, the CI
values of the coarse-grained fractions of the FS18 loess (including
16–63 μm and >63 μm fractions) are similar to those of the BSK
and CMG loesses (Figure 5).

4 DISCUSSION

4.1 Likely Processes Responsible for
Fine-Grained EMs in East and Central Asia
Coarse components of the BSK and CMG loesses were deposited
during dust storms and non-dust storm processes, respectively,
while coarse particles in the FS18 loess was also related to seasonal
dust storms, but with higher energies, relative to the BSK loess,
due to relative closeness to the SH pressure center
(Supplementary Text S3). Moreover, the sand-grained EM in
the FS18 loess was affected by availability of sediments
(Supplementary Text S3). As a result, coarse-size fractions are
unlikely to be transported by high-altitude westerly air streams.
Inversely, the size of 20–30 µm is often regarded as the maximum
grain size subjected to long-distance dust transport (Tsoar and
Pye, 1987; Kok et al., 2012; Ryder et al., 2013). Therefore, here we
exclusively discuss physical implications of fine-grained EM, and
their links to the high-altitude westerlies because of the possibility
that westerly jet stream is responsible for fine-grained dust
transportation and deposition processes.

EM1s of both BSK and CMG loess have a modal grain size of
11.9 μm (Figures 4D,E), whereas Vandenberghe (2013) did not
point out a subgroup with such a modal size. Fine-grained
fractions in loess deposits can be produced by post-
depositional weathering and pedogenic processes (Xiao et al.,
1995; Bland, 1998; Wang et al., 2006; Hao et al., 2008). However,
weathering process rarely influence ~2–10 µm fraction of aeolian
sediments (Sun D. H. et al., 2008). Although weathering process
produces a small amount of superfine grains, their sizes are
seldom larger than 1 µm in diameter (Paton, 1978; Bronger
and Heinkele, 1990), and even the chemical mechanism of
grain size variation is unimportant for mineral dust particles
larger than 0.3 µm (Qin et al., 2005). Moreover, we have used the
reasonable pretreatment approach of size measurement (Lu and
An, 1997) to eliminate the soil organic matter (SOM) and
carbonate, which are easily influenced by chemical weathering
and pedogenesis. Consequently, we exclude the influences of
chemical weathering and post-depositional pedogenesis on
the EM1s.

Particle size distributions of modern dust from the Kyrgyz
Tian Shan typically yield a modal peak of approximately 10 µm
(Schettler et al., 2014). Figure 8 also shows that the primary end-

FIGURE 5 | Variations in CI and mean grain size of the BSK (A), CMG
(B), and FS18 (C) sections.
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member components identified from the GSDs of modern eolian
dusts at a height of 100 m have a modal size of ~10 µm (Sun et al.,
2003). Dust particles in the Dunde ice core in the western Qilian
Shan, Northern China, also has a majority of its mass distribution
concentrated within a modal grain size of 4–12 μm (Wu et al.,
2009). Similarly, the modal sizes of long-range transported (LRT)
dust on the glacier surface of the NE-TP range from 9.8 to 12 μm
(Wei et al., 2019). In the eastern Tian Shan, the modal size of dust
at Miaoergou glacier is 13 μm, that at glacier No. 1 is 11.5 μm and
that at glacier No. 51 is 11.0 μm (Dong et al., 2009). Themode size
of the microparticles in Muztagata ice core from the eastern
Pamirs centers at ~10 μm (Wu et al., 2006). The mode of LRT
dust size distribution for the cryoconite particles deposited on the
TP glaciers generally ranges at 5–21 μm (Dong et al., 2020, and
references therein). Thus, observational data from the dust modal
size in glaciers and ice-cores demonstrate that fine particles with a
modal grain size similar to that of EM1 in the BSK and CMG loess
can be transported and deposited in the upper-level troposphere
as individual mineral grains (Sun, 2004).

However, fine particles may also be deposited by attachment to
larger grains from near-source regions (Pye, 1987), or as silt- or
sand-sized aggregates (Derbyshire et al., 1995; Pye, 1995;
Falkovich et al., 2001; Mason et al., 2003; Qiang et al., 2010b;
Mason et al., 2011; Újvári et al., 2016). Based on the observed dust
storms, Qiang et al. (2010b) suggested that the fine-grained
components in the deposits of dust storm were most likely to
settle by forming aggregates and/or adhering to larger grains,
which deciphered the independence of the depositions of fine
particles on the variations in wind strength during the most
severe dust storms. Formation of aggregates that increases
particle mass, and/or attachment to larger particles, enables
fine grains to be deposited during dust storms; as a result,
fine- and coarse-grained dust are transported together by low-
level dust storms from the same adjoining sources (Pye, 1995;
Mctainsh et al., 1997; Qiang et al., 2010b). Therefore, it cannot be
ruled out that the EM1s in Central Asian loess were also possibly
transported as aggregates and/or adhering to larger particles at a
relatively low level in the atmosphere from the proximal
source areas.

EM1 of the FS18 loess is characterized by two distinct modal
sizes (Figure 4F), which is rarely observed for the typical
Quaternary loess in the CLP (Prins and Vriend, 2007). In
contrast, it was found that the GSDs of the EM1 is in good
agreement with those of red clay in the CLP, as a fraction that
cannot be further unmixed (Figure 6). Therefore, the EM1 was
deposited under the very similar depositional environment to that
of the Tertiary Red Clay. The GSDs of the original Red Clay have
been modified by the post-depositional pedogenic process (Sun
et al., 2006; Shang et al., 2016). Inversely, Vandenberghe et al.
(2004) concluded that the clay fraction of the Xifeng Red Clay
may not have a pedogenic origin but was transported by wind.
Regardless of the influence of pedogenesis, Sun et al. (2006)
suggested that the Red Clay deposits revealed significant
fluctuations of the paleo-monsoon climate in East Asia at
since late Miocene time. The size distributions of Red Clay
indicated that its accumulation was most likely controlled by
East Asian monsoon circulation rather than westerlies (Cao et al.,

2001). Based on the mean grain sizes of both bulk samples and
chemically isolated quartz grains of the Late Tertiary Red Clay
deposits from six localities spanning across 550 km on the CLP,
Miao et al. (2004) indicated that the Red Clay was transported
mainly by northerly low-level winds, or the winds at least with a
strong northerly component, associated with East Asian winter
monsoon. In addition, study of the CLP dust source indicated that
the dust source largely remained unchanged across the
Pliocene–Pleistocene boundary, suggesting that the East Asian
Monsoon played an important role in the deposition of the Red
Clay as well as in the Quaternary loess and that the main winds
transporting dust have not drastically changed trajectory since the
Miocene (Bird et al., 2020). Therefore, we considered the FS18
EM1 to be transported by a weaker winter monsoon wind based
on GSD characterizations.

4.2 Assessing the Ability of Loess Grain
Sizes to Track Variabilities of the Westerlies
4.2.1 Evidence From Fine-Grained EM
Optical satellite data showed that the LRT dust in the Kyrgyz Tian
Shan was sourced from a minor part of a dust plume moving
northward from northeastern Afghanistan (Schettler et al., 2014).
Dust in Muztagata ice core from the eastern Pamirs might be
sourced from the Central Asian deserts, such as Kyzylkum and
Karakum(Wu et al., 2006). Dust particles in the glaciers from
eastern Tian Shan were released from the dust sources of Central
Asia (e.g., the Taklimakan and Gobi deserts) (Dong et al., 2009).
The potential sources of LRT dust in TP glaciers include the
northern Chinese deserts (e.g., Gobi deserts, Qaidam deserts,
Badain Jaran, and Tengger deserts) and Taklimakan deserts
(Dong et al., 2020). Therefore, the LRT dust with finer grain
size in the Tian Shan, Muztagata, and TP glaciers also originated
from the nearby Asian dust sources, which were fed by the
surrounding orogenic belts (ultimate provenances). It implies
that dust storms in those sources strongly affected the
concentration of dust deposited to the high mountains, for
example, in eastern Tian Shan (Dong et al., 2009). The
stronger surface winds, producing more frequent and/or
intensive dust storms in the dust source regions, would
enhance the atmospheric dust loadings and vice versa (Ruth
et al., 2007; Qiang et al., 2010a; Xu et al., 2018). Consequently,

FIGURE 6 | Comparisons between GSDs of the EM1 identified in the
FS18 loess (red line) and the red clay in the CLP (black lines, Cao et al., 2001).
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dust on the glacier surface showed significant differences in
concentrations and particle size distributions during the Asian
dust and non-dust seasons, implying aeolian dust activity
changed with seasonality and reached a different glacial
elevation (Dong et al., 2020). Based on the aforementioned
genetic interpretations of the non-parametric EMs of the BSK
and CMG loess, they partially represent the LRT dust. In analogy
to case of the LRT dust, grain sizes, and percentages of the EM1s
in the BSK and CMG loess also depended on changes of near-
surface winds, even if they are transported by the westerly wind
circulations after being lifted to the high elevation. However, that
added more uncertainties to the hypothesis that the fine-grained
EMs are an indicator of change in intensity and pathway of high-
altitude westerly circulation (Sun, 2004). Therefore, variations in
the EM1s did not merely respond to variability in the westerlies,
and thus were not expected to fully indicate changes of the
westerlies. In addition, the revelation of variations in large-
scale westerly circulations using loess deposits is based on the
direct linkages between the dust-bearing wind systems and the
larger atmospheric circulations. However, these linkages are
usually complicated by the overland geomorphological settings.
The Tian Shan, Alai, and Altai mountain ranges and Pamirs in
Central Asia have a huge topographic effect on the mid-latitude
westerlies (Rugenstein and Chamberlain, 2018; Kang et al., 2020;
Wang et al., 2020). Therefore, the complex topography over the
region results in varying wind trajectories and influences
transport of aeolian loess sediments (Fitzsimmons et al., 2018;
Li et al., 2018b; Sprafke et al., 2018; Li et al., 2020b). In this
context, it also implies that large uncertainties exist in the
investigation of the regional westerly circulations based on
sedimentary properties of loess deposits in Central Asia.

The EM1 of the FS18 loess was derived from a transport-
depositionmode similar to the Tertiary Red Clay, as stated earlier.
Thus, it was mainly transported by low-level East Asian winter
monsoon over short distances, rather than high-altitude westerly
(Miao et al., 2004; Bird et al., 2020). Meanwhile, interpretation of
coarser populations (EM2) indicates the FS18 section is close to
the source areas and the SH pressure center (Supplementary
Text S3b), which may also overwhelm the influence of the
westerlies. Therefore, it is not straightforward to examine the
signal of westerlies based on the FS18 loess. Moreover, even for
the loess records from the central and southeastern CLP,
dominant transport dynamics of the fine-grained particles
therein is strongly associated with changes in the intensity of
the near-surface northwesterly winter monsoon (Sun Y. et al.,
2008). In conclusion, the present results, combined with the
previous study of loess provenance, suggest that fine-grained
EMs identified from the CLP loess are still primarily related to
East Asian winter monsoon, rather than the westerly jet.

We also considered the results of parametric EMMA for the
BSK, CMG, and FS18 loesses using Weibull function
(Supplementary Figure S5). The fine-grained EM of the FS18
loess shows a mode size of 7.43 μm. Fine component in the CLP
loess generally has a mode size range of 3–6 µm (Sun et al., 2004)
or 2–8 µm (Sun D. H. et al., 2008). While loess deposits from the
west coast of South Korea displayed a fine component with mode
sizes of 2.7–4.4 µm (Park et al., 2014). Thus, it is plausible that the

downwind of the westerlies yielded finer component with a
smaller modal size than that in the upwind. However, the
finer components in the BSK and CMG loesses showed peaks
around modal particle sizes of 0.86 and 3.32 µm, respectively.
This was also against the transport of fine particles by westerlies.

4.2.2 Evidence From Quartz CI
Supports for the aforementioned conclusions also come from the
analyses of quartz CI. Previous studies indicated that the fine-
grained EMs in Chinese loess obtained by non-parametric
EMMA originated from long-term suspension transport by
high-altitude westerlies (Prins et al., 2007; Vriend et al., 2011;
Nottebaum et al., 2014). It assumes that the fine grains have a
different source area from the coarse grains (Xie et al., 2014).
However, our CI values indicated the similar sources between the
fine- and coarse-grained fractions of the BSK and CMG loesses
(Figures 5A,B), which thereby might not lend support to the
assumption that the fine-grained components of loess deposits
were hypothesized to be transported by the high-altitude
westerlies. Therefore, our CI results and the previous findings
(e.g., Qiang et al., 2010b; Xie et al., 2014) calls for a crucial
problem that whether variations in the finer EMs of loess
sediments were associated with the intensity and pathways of
the westerlies and to what extent the loess grain sizes might
document changes in the westerlies.

Figure 7 shows that most of the <16 μm fractions in the FS18
loess have CI values consistent with those of the deserts in North
China (Tengger, Badain Juran, and Mu Us Deserts). By contrast,
these CI values evidently differ from those of Taklamakan Desert
(>2,000 km away from the CLP) (Figure 7). Therefore, based on
the observations, fine-grained components in the CLP loess were
still dominated by proximal sources (such as the deserts in North
China) (Sun Y. et al., 2008), which were largely affected by dust
input of the weak low-level winds (Miao et al., 2004), instead of
the high-altitude westerlies in a long-distance transport. On the
other hand, the EM2 of the FS18 loess was interpreted to indicate
frequency and intensity of dust storm (Supplementart Text S3).
When the percentage of the EM2 increased (frequent, strong dust
storm), the CI values of the fine (<16 μm) fractions were similar
to those of Mongolia Gobi (Figures 5C, 7), suggesting increased
contributions of fine-grained dust from the distant Gobi Desert in
southern Mongolia to the CLP due to the intensified
northwesterly winter monsoon. When the percentage of the
EM2 decreased (weaker winds), the CI values of the fine
fractions were consistent with those of deserts in North China
(Figures 5C, 7), seemingly indicating that the westerlies were
responsible for dust transportation and deposition processes in
the FS18 section (Figure 7) due to the weakened near-surface
northwesterly winter monsoon. However, the notably different CI
values of the fine-grained components between the FS18 loess and
Taklamakan Desert demonstrated less input of fine particles from
the distant dust source in long-term suspension. While dust from
the Taklamakan Desert can be transported by the westerly jet
stream for long distance, once entrained to elevations >5,000 m
(Sun, 2002a, b). Consequently, the high-altitude westerly jet did
not act as a major dynamics of fine-grained dust transportation
for the FS18 loess. Although more research is required to reveal
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the aeolian processes for the supply of fine particles from deserts
in North China to the FS18 section during interglacial, the present
provenance-tracing results emphasized the near-surface

northwesterly winter monsoon as the dominant transport
dynamics of fine-grained dust (Zhang et al., 1999; Sun Y.
et al., 2008).

FIGURE 7 | Upper panel: locations of the involved sites. Lower panel: crystallinity indices of quartz for <16 μm and >16 μm fractions from the five deserts in North
and Northwest China (Sun et al., 2013), and for <16 μm, 16–63 μm and >63 μm fractions from the FS18 loess.

FIGURE 8 | DUFLUXU dust emission flux (kg m−1 s−1) of winter (DJF), spring (MAM), summer (JJA), autumn (SON), and for the year 1980–2016. Particle size of the
dust is 0.1–1.8 μm, and the positive/negative flux value represents eastbound/westbound direction. Data are collected fromMERRA2 reanalysis data (https://disc.gsfc.
nasa.gov/daac-bin/FTPSubset2.pl, Gelaro et al., 2017), with spatial resolution of 0.625° × 0.5° (longitude × latitude). The yellow line represents 1,700 m isohypse line.
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Although Taklamakan dust can be easily transported eastward
by high-altitude westerly airflow (Sun, 2002a; Sun, 2002b),
particularly in spring (Yuan et al., 2019), it is expected that
deposition of fine particles decreases when wind speed
increases for their Uf/u* ratio of <0.1 (Uf: the settling velocity
of particle; u*: the drag velocity of wind current) (Tsoar and Pye,
1987; Qiang et al., 2010b). Conversely, finer dust particles can be
emitted from the deserts in the north or northwest of the CLP
(e.g., Tengger and Badain Juran Deserts) (Figure 8) by strong
saltation bombardment in the low-level atmosphere (Shao et al.,
2020) that is supported by the consistent εNd isotopic values
between those deserts and the CLP loess (Zhao, 2015). Thus, it is
possible that the fine dust particles were transported by the

northwesterly winter monsoon winds in short suspension from
the nearby source areas, in agreement with our earlier mentioned
argument.

Figure 9 shows that near-surface air streams can be lifted into
the upper westerly jet due to block of the Tian Shan ranges, and
the higher-level westerlies have the capacity to carry mineral
aerosols from Central Asia to East Asia. Subsequently, we
compared the CI values of the <16 μm fractions of BSK and
CMG loess with the FS18 loess. The differences in CI (Figures 5C,
7) indicates that the fine grains at FS18 located at northeastern
margins of the CLP are different from those observed in the BSK
and CMG sections, suggesting that the fine-grained component
observed at FS18 is unlikely to be sourced from Central Asia,

FIGURE 9 | Longitude pressure cross section of wind vectors (horizontal unit: m s−1, vector unit: −10−2 Pa s−1) and air temperature (colored, unit: K) in the Modern-
Era Retrospective Analysis for Research and Applications, version 2 (MERRA2), dataset (Gelaro et al., 2017), along 40°N for climatological mean. DJF: winter; MAM:
spring; JJA: summer; SON: fall.
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consequently raising caution on previous assumptions that fine
particles of loess in the CLP were transported by westerlies.

4.2.3 Evidence From Previous Studies
Once off the ground, the fine-grained fraction can be dispersed
for thousands of kilometers from the source areas at a much
higher atmospheric level (Glaccum and Prospero, 1980; Rea et al.,
1985; Pye, 1987; Tsoar and Pye, 1987), and the grain sizes of the
uplifted fine-grained dust changes very little with increasing
transport distance (Rea et al., 1985; Rea and Hovan, 1995;
Nilson and Lehmkuhl, 2001; Sun D. H. et al., 2008). However,
Sun (2004) observed the temporal and spatial variations in the
modal size of the fine components for both glacial loess and
interglacial paleosol across the CLP. Therefore, the model size
changes possibly provided an evidence for the delivery of fine
components in loess deposits by northwesterly winter monsoon
from relatively nearby sources, such as deserts in northern China,
instead of high-altitude westerlies. Furthermore, orbital- and
suborbital-scale meridional movements of the pathway of the
westerlies may reach ~10° in latitude (Toggweiler and Russell,
2008), significantly larger than that shown by Sun (2004), which
also appeared not to support the links between fine components
in the CLP loess and the westerly jet stream. Therefore, whether
grain sizes of the CLP loess were imprinted with signs of the
westerlies is worth revisiting. Based on the comparisons of the
quartz CI values and analyses of the fine-grained EMs, as
discussed earlier, this study suggested that variations in fine-
grained fractions in loess are difficult to reliably document the
variabilities of higher-level westerlies.

5 CONCLUSION

With the loess records from East (FS18 section) and Central (BSK
and CMG sections) Asia, non-parametric EMMAs of grain size
data and quartz CI tests were carried out to examine signals of the
westerlies in the loess grain size records. Three EMs are
distinguished in the FS18 loess, and two EMs in the BSK and
CMG sections, respectively, which are able to characterize the
dust transportation and deposition processes over the regions. In
this study, we focused on the fine EMs in the loess in
consideration of their potential linkages to the westerly jet
stream. However, complicated origins and transportation and
deposition processes of the fine-grained components in the BSK
and CMG loess introduced some uncertainties in the model that
variations in fine-grained EM of the loess were related to
variations in high-altitude westerlies. While the fine
component of the FS18 loess was derived from the transport-
deposition mode controlled by the East Asian winter monsoon as
the case of the Tertiary Red Clay, rather than the high-altitude
westerlies. These interpretations were strengthened by the

provenance-tracing results of coarse- and fine fractions in the
loess based on quartz CI. Comparisons of the quartz CI values
suggested that the fine-grained particles were characterized by
relatively nearby sources, and that their transport-deposition
mode might not be associated with the high-altitude
westerlies. Consequently, it is suggested that variations in fine-
grained fractions in loess are difficult to reliably document the
variabilities of higher-level westerlies.
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