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Frequency-magnitude relationships are a fundamental aspect of volcanic hazard and risk
analysis. Typically, frequencies of previously recorded eruptions are used to identify such
relationships. This works well for volcanoes that are well-studied, but it can take a long,
sustained, and resource intensive research effort to compile complete eruption records.
Further, the level of completeness that can be achieved will vary around the world as a
function of climatic conditions, eruption style, and duration of written records. Given the
importance of understanding hazard and risk for disaster risk reduction, how can
frequency-magnitude relationships be determined for volcanoes with little or no
eruption records? Analogue models have been used to supplement the eruption
records of volcanoes with limited or no recorded eruptions. However, there has been
little effort undertaken to compare the agreeability of different approaches to estimating
frequency-magnitude relationships using these analogue models. This has implications for
volcanic hazard and risk assessment, if different approaches are considered credible, yet
yield vastly different estimates. In this work we compare frequency-magnitude
relationships for volcanoes in Southeast Asia, a region where eruption records are
known to be very incomplete. We do this by first reviewing published frequency-
magnitude relationships to evaluate the agreeability between different approaches, and
then develop a top-down multi-model Bayesian updating approach to deriving frequency-
magnitude relationships for a wide variety of volcanoes in Southeast Asia (n = 176). Our
review of published estimates found that there is considerable variability between
published eruption probabilities for volcanoes in Southeast Asia. We also found that
using different analogue models in the Bayesian analysis can lead to considerably different
frequency-magnitude relationships (over an order of magnitude in some cases),
highlighting the importance of using multiple models to ensure robust probability
estimations are obtained. Sensitivity analysis demonstrated that the choice of model
averaging or model combination method can influence the resulting frequency-magnitude
estimations, whilst the choice to incorporate or remove uncertain eruption records had
modest or no effect. Our findings provide important considerations for estimating
frequency-magnitude relationships in volcanic hazard and risk assessments, and a
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method to combine multiple frequency-magnitude models whilst accounting for
uncertainty in our estimations.

Keywords: annual probability, volcanic hazard, volcanic risk, eruptions, Bayesian analysis

1 INTRODUCTION

Estimating long-term frequency-magnitude relationships for
volcanic eruptions is a fundamental component of quantifying
volcanic hazard and risk. These estimates provide an indication of
how likely different styles and sizes of eruptions are to occur at
individual volcanoes (Newhall and Hoblitt 2002; Connor et al.,
2003; Marzocchi et al., 2004). This information can then be used
to stochastically sample eruption scenarios when conducting
probabilistic hazard and risk assessments. The eruptive history
for a volcano of interest is typically used to estimate the long-term
(averaged) eruption recurrence rate by dividing the volcano
record length by the number of recorded eruptions. The long-
term recurrence rate can then be used to estimate the probabilities
of eruptions, commonly at an annual time scale (i.e., annual
probability of an eruption) (Jenkins et al., 2012; Jenkins et al.,
2018; Bebbington 2014; Bear-Crozier et al., 2016; Miller et al.,
2016). Frequency-magnitude relationships, which define the
conditional (i.e., given an eruption occurs) or absolute
probability of an eruption of a certain size occurring, can then
be derived by evaluating the relative frequency of different
eruption sizes. However, there are numerous sources of
uncertainty and error associated with this approach. For
example, many volcanoes around the world have poorly
characterised and incomplete eruption histories (Loughlin
et al., 2015). Work at relatively well-studied volcanoes
demonstrates that it can take a long, sustained, and resource
intensive research effort to build high quality eruption catalogues
at the individual volcano scale (Turner et al., 2008; Damaschke
et al., 2017; Crummy et al., 2019); however, the level of
completeness that can be achieved will vary around the world
as a function of climatic conditions, eruption style, and duration
of written records (Brown et al., 2014; Rougier et al., 2016;
Rougier et al., 2018b; Wang et al., 2020). This raises the
question: how can eruption probabilities be derived for
volcanoes with little or no eruption records? Analogue models
help address this question by sharing eruption frequencies
between volcanoes that have similar characteristics (Solow
2001; Rodado et al., 2011; Jenkins et al., 2012; Jenkins et al.,
2018; Sheldrake 2014; Whelley et al., 2015; Sheldrake and
Caricchi 2017). Analogue volcanoes are volcanoes that are
considered to share similarities with respect to characteristics
of interest (e.g., magma composition, repose period, volcano
type) (Newhall et al., 2017; Tierz et al., 2019). Analogue
classification models typically use one or more of the
following to assign analogue sets: volcano morphology, recent
volcanic activity (e.g., eruption and degassing within the last
10 years), tectonic and/or geological setting (Hone et al., 2007;
Jenkins et al., 2012; Bebbington 2014; Sheldrake 2014; Whelley
et al., 2015; Tierz et al., 2019). However, as yet, there has been
little consideration of how agreeable the subsequently derived

frequency-magnitude relationships are between different
approaches. The variability between different approaches and
underlying data is reflective of the uncertainty associated with our
understanding of modelling frequency-magnitude relationships
for volcanoes, particularly those with limited or no recorded
eruption histories. This has implications for volcanic risk
assessment studies and risk reduction if each approach is
considered reasonable but yield vastly different frequency-
magnitude estimates from one another. Thus, comparing
estimates and quantifying the uncertainty associated with each
is of importance to volcanic hazard and risk assessment.

The use of multiple models helps to prevent biased predictions
through clear presentation of the aleatoric and epistemic
uncertainty. Many fields have found that multi-model
ensembles perform better at reproducing observations than
individual models (Kristiansen et al., 2012; Marzocchi et al.,
2012; Martell et al., 2020). Multi-modelling requires using an
ensemble of distinct candidate models to simulate a given event
and/or phenomenon (Burnham and Anderson, 2002). Multi-
modelling can involve model comparison and selection of an
optimal model, and/or combining/averaging models into a single
meta-model. Model comparison can be achieved using formal
mathematical procedures and information criteria (e.g., Akaike
information criterion, Bayes factor, Cross-validation). Such
analyses have been undertaken to compare different models in
long-term (i.e., millennial time scales) eruption frequency
estimations (Bebbington 2014). However, in some instances,
choosing a single model that provides optimal performance
can lead to potentially useful information being unnecessarily
discarded (Piironen and Vehtari 2017). This consideration has
led to a proliferation of model averaging and model combination
approaches, from the simplest approach of equal weighting of
models to more sophisticated approaches that assign weightings
based on individual model performance [e.g., Bayesian Model
Averaging (BMA), pseudo Bayesian Model Averaging, and model
stacking] (Fragoso et al., 2018; Yao et al., 2018). As a result, multi-
model combination and averaging approaches have been
gathering interest for a variety of natural hazard applications
(Marzocchi et al., 2012; Marzocchi et al., 2015; Yan and
Moradkhani 2014; Song et al., 2018). However, to date, there
has not been any consideration of how such approaches may be
applied to frequency-magnitude estimation for volcanoes.

In this work, we evaluate the uncertainty within long-term
frequency-magnitude relationships for 176 volcanoes in
Southeast Asia, where volcanoes were chosen by their presence
in Smithsonian Institution’s Global Volcanism Program (GVP)
Volcanoes of the World database (version 4.8.5) (Global
Volcanism Program, 2013) and provide a detailed analysis of
24 of these volcanoes with a high Population Exposure Index
(PEI) value of 7 (equivalent to a fatality-weighted population
exposure of 300,000 people) (Brown et al., 2015). We focus our
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effort on Southeast Asia due to the region being subjected to
exceptionally high population exposure to volcanic hazards
(Brown et al., 2015) and being a region with volcanoes with
relatively poor recorded eruption histories (Jenkins et al., 2012;
Whelley et al., 2015; De Maisonneuve and Bergal-Kuvikas 2020).
We begin by reviewing published estimates from the literature to
examine the variability between different approaches. We then
develop and apply a Bayesian updating method to derive
frequency-magnitude relationships using different analogue
classification frameworks. Bayesian modelling is chosen here
instead of frequentist approaches due to the limited or non-
existent eruption records for many volcanoes in the region.
Multi-modelling approaches are then used to combine these
different analogue classification models into a single
frequency-magnitude estimation, with uncertainty. We
compare our model outputs with published estimates from the
literature to cross-reference how agreeable existing estimates are
with each other and with our Bayesian model. Finally, we conduct
a sensitivity analysis to examine how common assumptions and
data sources can influence frequency-magnitude relationships.

2 METHODS

2.1 Comparing Published
Frequency-Magnitude Estimates
We reviewed existing eruption frequency estimates published
within the academic literature for volcanoes in Southeast Asia.
The purpose of this was to identify how published estimates vary
across different methodological approaches. Our primary focus
was to identify frequency-magnitude estimations at the individual
volcano scale. The PEI (Brown et al., 2015) was used to focus our
efforts on volcanoes that might affect the most people in a future
eruption; we thus restricted our detailed examination of
published estimates to volcanoes with the highest PEI value of
seven (n = 24), equivalent to a fatality-weighted threshold of at
least 300,000 people exposed to volcanic hazards (Aspinall et al.,
2011; Brown et al., 2015). Google Scholar was used identify
studies of interest for each of these volcanoes using the
following English text search query: [Volcano name] +
[“eruption”] + [“frequency”, “probability”, “recurrence”,
“return period”, “repose”]. Google Scholar was used because it
provides results that includes grey literature, which we thought
might contain frequency-magnitude relationships that have not
been published in the academic literature. This initial search was
conducted on 10 December 2020. Search results were filtered to
include only results with “volcano”, “volcanic”, or “eruption” in
the title. This yielded 286 unique results. Results that were
focussed on regions or volcanoes outside of Southeast Asia
were identified by title, abstract, and/or contents page and
removed from further consideration (n = 184), leaving 102
unique results. These were then filtered again by manually
reviewing each to identify those that contained quantitative
estimates of the frequency of eruptions either as annual
probabilities, recurrence intervals and/or frequency-magnitude
relationships, either in the main body of the article or within
Supplementary Material. This left just 12 results. We then used

the reference lists of selected studies to identify potentially
relevant studies not captured by our initial search queries (n =
3). Once studies were identified for inclusion in our analysis, we
converted the figures reported into annual probabilities for
consistent comparison between published studies. A total of 15
references were considered, and are described in Section 3.1.

2.2 Deriving Frequency-Magnitudes
Relationships for Southeast Asian
Volcanoes
2.2.1 Conceptual Overview
We derive frequency-magnitude relationships for 176 volcanoes
in Southeast Asia, but we only use the 24 volcanoes with PEI = 7
as case studies for detailed examination in this manuscript. This
limits the diversity of volcano types under consideration, but we
wanted to focus on high threat volcanoes as case studies in this
paper. The entire dataset of n = 176 are made available as
Supplementary Material. The conceptual process used in this
work to derive frequency-magnitude relationships is outlined in
Figure 1. We first filter the global eruption catalogue to only
include eruptions within the record considered complete. The
reason for this is to ensure that the eruption record is not biased
towards either small or large eruptions. For example, if we
considered the entire record within the global eruption
catalogue, we would undoubtedly underestimate the eruption
probability due to missing eruption records, with smaller
eruptions overwhelmingly under-represented; conversely a too
short record would not capture the larger eruptions with lower
frequency. To consider only the complete portion of the record,
we used the complete record change points reported in Mead and
Magill (2014), which define the year for each region for smaller
and larger eruptions separately, whereafter it is assumed the
recording probability is 100%. We use regions for this instead
of assessing at the individual volcano scale because the eruption

FIGURE 1 | Conceptual overview of the process taken in this paper to
derive frequency-magnitude relationships in Southeast Asia.
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records in Southeast Asia are not complete enough for
meaningful estimations at the individual volcano scale.

Next, we formulated sets of initial frequency-magnitude
relationships for volcanoes in each of the two different
analogue classification systems used in this study (discussed in
Section 2.2.2); these relationships provide the frequency of
eruption and relative proportion of eruptions within each
Volcanic Explosivity Index (VEI) class, averaged from the
eruption records of volcanoes in that class. We apply two
different published analogue classification systems to establish
priors for our frequency-magnitude relationships. One approach
uses the average across analogue classes globally (Jenkins et al.,
2012), whilst the other does this for Southeast Asia and Japan only
(Whelley et al., 2015). These averaged frequency-magnitude
relationships form the basis of our prior models, which are
then updated by the volcano-specific record where possible. If
the individual volcano has one or less records with an assigned
VEI within the eruption record considered complete, no Bayesian
update is conducted as there is insufficient information to update
our prior model (16 volcanoes in our subset, 102 volcanoes across
the entire dataset). If the volcano under investigation has more
than one eruption with an assigned VEI within the record
considered complete (8 volcanoes in our subset, 74 volcanoes
in the entire dataset), that volcano’s eruption record is used to
update the prior model and produce a frequency-magnitude
estimate, which is detailed in Section 2.2.3. Since two
analogue classification systems are used, two frequency-
magnitude estimates are produced for a single volcano
(i.e., each volcano will have multiple prior models associated
with it). Therefore, we used model comparison methods to
evaluate the performance of each analogue classification
system’s prior model with the volcano specific eruption record,
which produces a weighted score that is used to merge the
different frequency-magnitude relationships into a single
weighted average frequency-magnitude relationship. We detail
this process in Section 2.2.4. Throughout the entire process, we
examine the sensitivity of different assumptions by repeating the
above process multiple times and changing each assumption
appropriately, which we outline in Section 2.2.5.

2.2.2 Assigning Volcano Analogue Sets
To assign a prior model to each volcano, we use the average
activity of similar volcanoes as defined by analogue classification
systems. Through the process of our systematic literature review
we identified just four studies that have used formal analogue
classification systems when estimating frequency-magnitude
relationships in Southeast Asia (Jenkins et al., 2012; Jenkins
et al.,2018; Whelley et al., 2015; Bear-Crozier et al., 2016).
Two broad approaches emerged from this, both resulting in
five analogue categories. One approach uses the “Primary
Volcano Type” field within the GVP database to classify
analogue volcano sets (henceforth referred to as A1) (Jenkins
et al., 2012; Jenkins et al.,2018; Bear-Crozier et al., 2016). The
other approach uses a combination of geomorphological analysis
(using digital elevation models, radar scenes, and satellite
imagery) and an examination of recent volcanic activity from
six eruption databases (see Whelley et al., 2015 for details)

(henceforth referred to as A2) (Whelley et al., 2015). Both
approaches are summarised in Figure 2. For the A2 approach,
we adopted the classifications as reported in the supplementary
material associated with Whelley et al. (2015) and assume no
change in volcano analogue classification has occurred since
publication (i.e., we use their results but do not repeat their
analysis for volcanoes in Southeast Asia). However, there is one
exception to this: Merbabu volcano (GVP number = 263,240,
Indonesia) was classified as an open-vent volcano (as defined by
Whelley et al. (2015)—see Figure 2 for definition) within the
supplementary material of Whelley et al. (2015), but this volcano
does not match the criteria of an open-vent stratovolcano
(i.e., must have small eruptions within the last decade),
consequently we decided to change the classification to a
Semi-plugged stratovolcano (as defined by Whelley et al.
(2015)—see Figure 2 for definition). In keeping with the
methodologies presented in their respective publications, the
A1 analogue set includes all volcanoes in the GVP Holocene
volcano list, whilst the A2 approach considers only those within
the GVP regions of Indonesia, Philippines and Southeast Asia,
and Japan.

2.2.3 Bayesian Model
Our aim is to obtain an annualised probability of occurrence for
each VEI class for any given volcano. To do so, we split the
Bayesian model into two subsequent nodes in a similar manner to
the event tree approach commonly undertaken in volcanic hazard
assessments: 1) annualised probability of an eruption of any VEI,
and 2) relative probability for an eruption of a given VEI class,
conditional on an eruption already having taken place. The joint
probability of these two nodes is then determined to obtain an
annualised probability of an eruption of a given VEI for a given
volcano. Using the Bayesian updating framework, we make two
estimates of these probabilities: the first provides the prior
distribution, which is based on the averaged behaviour of the
analogue class of volcanoes. The prior distribution is then
updated using the volcano-specific eruption record of the
volcano under consideration. We outline the approach taken
to characterise the annualised probability of an eruption and the
relative probability of each VEI in Sections 2.2.3.1 and 2.2.3.2,
respectively.

We use the Global Volcanism Program Volcanoes of the
World (GVPVotW) database version 4.8.5 (downloaded 27
January 2020) in this study (Global Volcanism Program,
2013). All Bayesian analysis is conducted using the PyMC3
version 3.8 probabilistic programming package for python
(Salvatier et al., 2016). PyMC3 uses the No-U-Turn Sampler
(NUTS), which is a self-tuning variant of the Hamiltonian Monte
Carlo algorithm (Hoffman and Gelman, 2014; Salvatier et al.,
2016). The full code to our analysis including an annotated
example within a Jupyter Notebook for Merapi volcano is
available at: https://github.com/vharg/FreqMagSEA.

2.2.3.1 Bayesian Model for Annualised Probability of an
Eruption
Bayesian inference is the process of updating a prior probability
distribution based on new data (the “likelihood”) to provide a
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posterior probability distribution. We use the Beta-Binomial
model, as proposed by Marzocchi et al. (2008), to conduct
Bayesian inference for the annualised probability of an
eruption of any VEI at a given volcano. The Beta distribution
has a range of 0–1, making it a convenient and useful way to
represent the annual probability of an eruption because: 1) beta
distribution is the conjugate prior for the binomial distribution,
meaning that the posterior distribution is also a beta distribution,
and 2) keeps the posterior distribution in the 0–1 form.We set the
prior model for the estimated annualised probability for an
eruption of any VEI as:

p(ΘAEPx | αx, βx) � 1
Beta(αx, βx)Θαx−1

AEPx
(1 − ΘAEPx)βx−1 (1)

Where: θAEPx is the prior probability of an annualised probability
of an eruption of any VEI for analogue class, x, and αx and βx are
the shape parameters of the Beta distribution for each analogue
class, x. The shape parameters are determined using the mean
(μx) and standard deviation (σx) of the annual eruption
probability for each analogue class, x:

αx � μ2x ⎛⎝1 − µx
σ2x − 1

µx

⎞⎠ (2)

βx � αx ( 1
µx − 1

) (3)

The mean and standard deviation are determined for each
analogue class by Eq. 4, 5 respectively.

FIGURE 2 | Analogue classification system, and the number of eruptions and volcanoes in each analogue subset, for (A) A1 approach (Jenkins et al., 2012), and (B)
A2 approach (Whelley et al., 2015).

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 8957565

Hayes et al. Frequency-Magnitude Volcanoes Southeast Asia

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


µx �
∑j�Volcanoesx

j�1 (Eruptionsjx
nr,s

)
Volcanoesx

(4)

σx �

∑j� Volcanoesx
j�1 ((Eruptionsjx

nr,s
) − µx)2

Volcanoesx − 1

√√
(5)

Where: Eruptionsjx is the total number of eruptions that
occurred at each individual volcano, j, within a given
analogue class, x, and within the eruption catalogue
considered complete for the region the volcano is located
within. Volcanoesx equals the total number of volcanoes
within the analogue class (volcanoes are defined by each
unique GVP number). Record length, nr,s, is equal to number
of years within the complete record as a function of the region the
volcano is located within, r, and VEI size class, s. For VEI < 4 and
VEI ≥ 4 the corresponding change points from Table 1 and
Table 2 of Mead and Magill (2014) were used to calculate nr,s, by
finding the difference between the change point and the year 2019
(the year of the eruption catalogue used). This results in two µx
estimates, one for small eruptions (VEI < 4) and one for large
eruptions (VEI ≥ 4). These two annual probabilities are then
summed to combine into a single estimate for any VEI.

A binomial likelihood function is used Eq. 6 for any individual
volcanoes with > 1 eruption with an assigned VEI in the record
considered complete (Figure 1).

p(nr,s, yj|ΘAEPx) � nr,s!

yj!(n − yj)!θyjAEPx
(1 − θAEPx)n−yj (6)

Where: yj is the number of years that eruptions occurred for
an individual volcano, j, and n equals the number of years
considered. To determine the number of years that eruptions
occurred, we first determined the annual rate of eruptions
within the two complete records for small and large VEI
eruptions. Then we determine the annual rate of unknown
VEI eruptions (no VEI assigned) for any given volcano over
the entire record. We did this by counting the number of
unknown VEI eruptions in the entire record and dividing by
the number of years between the earliest occurring unknown
VEI eruption in the volcano’s record and 2019 (the year of the
GVP database used in this study). These three estimates were
then summed into a single value for the long-term average rate
of eruptions per year. Then, this number is multiplied by
10,000 to indicate the assumed number of volcano-specific
eruptions over a 10,000-year time-frame, under the
assumption of stationarity over time [average rate of future
activity assumed to be equal to average of past activity:
Bebbington (2013)].

The posterior distribution is then proportional to the product
of the prior and likelihood function, which is a Beta distribution
Eq. 7. Samples are drawn using PyMC3, with 20,000 samples
drawn using two chains with tuning of 10,000 and a target
acceptance rate of 0.99.

p(ΘAEPx

∣∣∣∣∣nr,s, yj)∝ Beta(αx + yj, βx + nr,s − yj) (7)

2.2.3.2 Bayesian Model for Relative Probability of Each VEI
Class
We use a Dirichlet prior and Multinomial likelihood to
estimate the relative probability of different VEI eruptions
occurring for a given volcano. The Dirichlet-Multinomial
model allows for the estimation of probabilities associated
with categorical data and multiple mutually exclusive events
(i.e., if an eruption occurs it cannot be two different VEIs at
the same time). Strictly speaking VEI are not categorical, but
rather ordinal data. For the purposes of our analysis, we treat
VEI as categorical within the equations to calculate frequency-
magnitude at each VEI and the appropriate ordering is
maintained when presenting the results. The Dirichlet prior
is characterised by a random vector of k dimensions (k � 5 in
our case, one for each VEI category: ≤3, 4, 5, 6, 7) of positive
alpha parameters that define the relative proportion of each
VEI for the analogue class under consideration Eq. 8. We
chose to pool VEI 0-3 into a single VEI ≤ 3 category to avoid
the issues associated with the default assignment of VEI 2 for
some eruptions within the GVP database when VEI was
unknown (Siebert et al., 2015). The Dirichlet-Multinomial
model much like the Beta-Binomial is convenient to use as it
enables stability between the prior and the posterior.

p(θVEIx|αi) � Γ(∑k
i�1αi)∏k

i�1 Γ(αi)
∏k
i�1

θαi−1VEIi
(8)

Where αi is the vector: (αVEI≤ 3, αVEI4, αVEI5, αVEI6, αVEI7). This
vector is obtained by counting the relative proportion of
eruptions at each VEI class for each analogue class within the
record considered complete. The level of confidence one has in
the prior can be adjusted by changing the magnitude of the
pseudo counts by multiplying by a concentration parameter that
controls overdispersion of the data (a larger value puts more
importance on the prior model) (Marzocchi et al., 2008;
Sheldrake 2014). The magnitude of the pseudo counts was
determined in this work by multiplying the pseudo counts by
10,000 to ensure good convergence is possible. The prior is then
updated to provide a posterior distribution using theMultinomial
likelihood function Eq. 9.

p(ej, vj|θVEIx) � ej!

vj1! . . . vjk!
θ
vj1
VEIx1 . . . θ

vjk
VEIxk

(9)

Where: ej is the total number of eruptions in the complete record
at an individual volcano, j; k is the number of VEI classes; vj is the
number of recorded eruptions within each VEI class within the
complete record at individual volcano, j. The prior is then
updated using the likelihood function to obtain the posterior
distribution Eq. 10. Samples are drawn from the posterior
distribution by calling the “sample” function within PyMC3,
with 10,000 samples drawn using two chains with tuning of
5,000 and a target acceptance rate of 0.99.

p(θVEIx|αik, vjk) ∝ Dirichlet(αVEI1 + vj1, . . . , αVEIk + vjk)
(10)
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2.2.4 Model Comparison, Model Combination, and
Model Averaging
We use PyMC3 to conduct model comparison, which computes
the Widely-Applicable Information Criterion (WAIC)
(Watanabe 2010) and the Leave-One-Out (LOO) cross
validation (Vehtari et al., 2017), and transforms the raw
WAIC/LOO values into weighted values for the set of models
(Wagenmakers and Farrell 2004). We then generate combined,
weighted estimates of eruption probability using PyMC3. There
are three methods of model comparison and averaging that can be
used within PyMCS: Stacking, Pseudo Bayesian Model Averaging
(referred to as “Pseudo BMA” from here on), and Pseudo
Bayesian Model Averaging with Bayesian Bootstrapping
(referred to as “BB-Pseudo BMA” from here on). We use all
three of these approaches to the test sensitivity of each on the
output estimates. We elaborate on the appropriateness of each
approach in the discussion section.

Stacking combines each base model into a single meta-
model that minimises the divergence between the meta-
model and the observed data (Yao et al., 2018). The
stacking within the PyMC3 python package uses a
logarithmic scoring system to evaluate how well a given
prior probability distribution performs when compared with
the observed data. The model is fitted n times, with one data

point left out each time. This is approximated by using the
LOO statistic within PyMC3, which estimates the expected log
point-wise predictive density using Pareto-smoothed
importance sampling LOO cross validation (Vehtari et al.,
2017; Vehtari et al.,2019).

Bayesian model averaging weights models by their marginal
likelihood. However, it is challenging to compute the marginal
likelihood, which is why PyMC3 applies an alternative approach
(called Pseudo BMA) using the WAIC or the LOO to estimate
weights by assessing the relative probability of each model.
Whilst this provides a simple approach to obtaining model
weights, it does not take into account the uncertainty associated
with the information criterion. Thus, the third approach within
PyMC3 uses Bayesian Bootstrapping within the Pseudo BMA
process (simulates the posterior distribution of the information
criterion) to estimate and incorporate this uncertainty into the
analysis.

Additional information on the process of model averaging
used within PyMC3 can be found in library documentation
(https://docs.pymc.io/notebooks/model_averaging.html).

2.2.5 Sensitivity Analysis
Sensitivity analysis is useful to understand how model
parameters and components might influence the eventual
results. We run the sensitivity analysis across volcanoes that
are able to undergo Bayesian updating (n = 74). We test the
sensitivity of our approach to the following assumptions: 1)
model averaging/combination method, 2) change point date,
and 3) eruption certainty included in the catalogue (Figure 3).
We use both the Bayesian update estimates and the analogue
prior estimates for these volcanoes, giving a total of 30
individual frequency-magnitude estimates for each volcano:
18 for when Bayesian updating and model averaging is
conducted and 12 for the analogue prior estimates. Hence,
we do not include the volcanoes that do not undergo
Bayesian updating within the sensitivity analysis because
these same estimates are already included within the prior
estimates for each of the analogue classes. Note, we do not
include the analogue classification system within this sensitivity
analysis, as it is addressed separately within our Bayesian
updating results (Section 3.2.2).

As outlined in the above section, PyMC3 contains three
different model averaging approaches that can be applied. To
test the sensitivity of the resulting frequency-magnitude
relationships, we repeat the analysis using each of the three
approaches, whilst keeping all other conditions constant.

The underlying data have the potential to influence both the
priors and the likelihoods used in this analysis. There are two
elements of this that we test for sensitivity: choice of change point,
and choice of eruption certainty (as classified within the GVP
catalogue). We vary the change point by using the 5th, 50th, and
95th percentile change points reported inMead andMagill (2014)
to test the sensitivity of our frequency-magnitude estimates to
these parameters. There are a number of eruptions included
within the global eruption catalogue that are classified as
uncertain within the GVP eruption catalogue. Thus, we test
the sensitivity of using or not using uncertain eruptions by

FIGURE 3 | Variations used in the sensitivity analysis for the 74
volcanoes that undergo Bayesian updating. Diamonds denote branches that
clone adjacent branches, but are not displayed on the figure for clarity
purposes.
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conducting the analysis with and without uncertain eruptions
included.

Each of the above assumptions are systematically swapped
in and out one at a time. The sensitivity of each assumption is
assessed by dividing the mean annual probability for each VEI
across all parameters by the mean value for the specific
assumption being examined. If the resulting value is greater
than one, it means the assumption has the effect of
decreasing the annual probability estimate and if it is less
than one it has the effect of increasing the annual probability
estimation.

3 RESULTS

3.1 Previous Published Estimates
We identified 24 individual volcanoes that met our criteria for
detailed analysis in this study, which are located across Indonesia
and the Philippines (Figure 4; Supplementary Material 1).
Comparing the eruption probabilities for volcanoes with
multiple published sources shows that, for any one volcano, in
some cases annual eruption probabilities can vary by over an
order of magnitude, both for eruptions of any VEI and for
individual VEIs (Figures 4, 5). Most of the estimates have
come from studies that investigate multiple volcanoes. The
only volcano that has estimates from studies specifically
focussing on that volcano is Merapi, and eruption probability
estimates are predominantly based on studies focussed on the
stratigraphic record of the volcano.

3.2 Assessing Frequency-Magnitude
Relationships
3.2.1 Complete Eruption Records for Subset of
Southeast Asian Volcanoes
There are 15 volcanoes in the case study set of 24 that do not
have any confirmed eruptions recorded within the record
considered complete using the 50th percentile change
point, including 11 that did not have any recorded
eruptions within the entire Holocene eruption record
(Figure 6). Of the 15 volcanoes with no confirmed
eruptions in the complete record, two have confirmed
eruptions outside the complete record (Sumbing and
Merbabu), and one (Penanggungan) has an uncertain
eruption outside the complete record. One additional
volcano (Hainan Volcanic Field) has confirmed eruptions
recorded, but no assigned VEI (Figure 7). This means that
out of our subset of volcanoes of PEI 7 (n = 24), eight are able
to undergo Bayesian updating. None of the volcanoes in our
subset have any eruptions of VEI 5+ within the complete and
confirmed eruption record (Figure 7). We also found that
only Merapi and Taal lose a VEI 4 and VEI ≤ 3, respectively,
when using the 95th percentile change point compared to the
50th percentile change point. Taal gains an additional VEI ≤ 3
when using the 5th percentile change point. Including
uncertain eruptions within the complete record (regardless
of change point used) also yields minimal changes, with an
extra VEI ≤ 3 for Merapi, Tangkuban Parahu, and Dieng
Volcanic Complex, two extra VEI ≤ 3 for Batur, and three
extra VEI ≤ 3 for Gede-Pangrango (Figure 7).

FIGURE 4 | Published annual probability of eruption for subset of volcanoes in Southeast Asia (ordered by number of published estimates). Volcano-specific
includes those studies that uses data only from the volcano of interest, whilst analogue-informed means that the study incorporated some form of analogue approach to
attain the frequency/probability estimate. Data from: Andreastuti et al. (2000); Sagala (2009); Gertisser et al. (2012); Surono et al. (2012); Jenkins et al. (2012); Bebbington
(2014); Purwadi et al. (2016) citing Newhall et al. (2000); Jenkins et al. (2015); Bear-Crozier et al. (2016); Miller et al. (2016); Napsiah et al. (2017). See
Supplementary Material for detailed values.
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3.2.2 Bayesian Update Results
The priors used in our analysis are presented in Figure 7. All
priors exhibit monotonic behaviour, with the exception of the
“Large Calderas” analogue class within the A2 classification
system, which shows non-monotonic V-shaped behaviour
(Figure 8). The A2 priors, which source eruption data from
Southeast Asia and Japan, appear to show have slightly higher
annual probabilities than comparable A1 priors, which source
global eruption data. For example, comparing “Calderas” of
the A1 classification system with “Large calderas” of the A2
classification system indicates that the latter has about an 85%
higher probability of eruption. A similar comparison can be
made with the “Small cones” of the A1 classification system
and the “Distributed cones and fields” of the A2 classification
system. For “Small cones” and “Distributed cones and fields”
analogue classes, the probability of a VEI 5+ is 0 unless we add
a power law distribution where we assume the probability of
VEI 5 is one order of magnitude less than the probability of a
VEI 4, and similarly for VEI 6 and 7, respectively. We have

explored both rationales here, but given that there are no
instances of VEI 5+ for these volcano types in the entire global
volcanic record we use in this study and scientific
understanding of the magmatic processes that drive
eruptions at these volcanoes, a zero value is reasonable.

Both the A1 and A2 priors show large credible interval bands
in general, but particularly large credible interval bands are
evident for small cones, shield volcanoes, and lava domes of
the A1 analogue classification system, and well-plugged
stratocones for the A2 analogue classification system. This
indicates that this approach for analogue classification is
rather coarse. The A1 classification system has larger credible
interval bands compared to the A2 analogue classification system,
which is probably related to the greater variability and more
volcanoes included at the global level than at a regional level.

Upon updating these priors with the volcano-specific data, the
uncertainty in the credible interval range reduces substantially
when we apply both analogue systems separately (i.e., no model
averaging or combination) (Figure 9). We also note that

FIGURE 5 |Maximum andminimum published annual probabilities of each VEI for volcanoes with at least two different published estimates. Note: not all x-axes are
the same scale.
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considering each analogue system separately when undertaking
Bayesian updating (i.e., no model combination/averaging), can
lead to frequency-magnitude estimates that have different shapes
(e.g., Taal) and median probability values that in some cases vary
between the two approaches by an order of magnitude (e.g., Batur
VEI 4+) (Figure 9).

We present our frequency-magnitude estimates combining each
of the analogue classification systems for the same subset of volcanoes
in Figure 9. Comparing our estimates with those in the published
literature, Whelley et al. (2015) and Jenkins et al. (2015) estimates
broadly fall within the 5th–95th credible interval range (but not
always), but the Bear-Crozier et al. (2016), Miller et al. (2016)
estimates often fall outside of this range with much higher
probabilities. We discuss possible reasons for this in the discussion
section. The 5th–95th credible interval ranges are larger than when
each individual analogue classification system is used, indicating the
combined model uncertainty (epistemic uncertainty) being
incorporated into the frequency-magnitude relationship. Of note,

the non-monotonic behaviour that Taal exhibited for theA2Bayesian
update shown in Figure 8 is not evident when model combination/
averaging is undertaken (Figure 10).

See Supplementary Material 2 for a full catalogue of
frequency-magnitude relationships for 176 volcanoes in
Southeast Asia. Note that 102 volcanoes within the catalogue
do not have sufficient eruption records to conduct the Bayesian
updating process undertaken in this work.

3.2.3 Model Comparison for Volcanoes with Limited/
No Eruption Records
There is considerable uncertainty associated with both analogue
models’ frequency-magnitude estimates for volcanoes that do not
undergo Bayesian updating (Figure 11). Conceptually, this is not
unexpected given these are volcanoes with 1 or less eruptions within
the entire Holocene eruption catalogue, which is known to be
incomplete. Thus, it is difficult to determine whether these specific
volcanoes are: 1) genuinely less active, or 2) whether they have

FIGURE 6 | The number of recorded eruptions and the relative proportion of small (VEI < 4), large (VEI 4+), and unknown VEI eruptions within the record considered
complete using the 50th percentile change point for the 24 volcanoes with PEI 7 considered in this study. Bolded volcano name indicates that we used the Bayesian
updating method to update frequency-magnitude estimates. Analogue classification used by Jenkins et al. (2012), Whelley et al. (2015) in square brackets: LCA1, Large
cone, LD, Lava Dome, SC, Small cone, C, Caldera, DC, Distributed cones and fields; LCA2, Large caldera, SPS, Semi-plugged stratocone, OVS, Open-vent
stratocone. Volcanoes with no recorded eruption in the entire Holocene GVP eruption record are denoted by *. Note: Merbabu A2 classification was changed from OVS
(Whelley et al., 2015) to SPS (this study) as it does not meet the criteria outlined in Whelley et al. (2015).
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received less attention to compile their eruptive histories, or 3) some
combination of both.

The 5th–95th credible interval bands using the A1 models
are generally much larger than those of the A2 models. This is
possibly an indication of heightened dispersion of volcano
behaviour when using a global dataset (i.e., A1 model)
compared to a more regionalised dataset (i.e., A2 model).
Indeed, using a regionally constrained dataset (i.e., only the
volcanoes used in the A2 model) for the A1 model leads to less
dispersion across each analogue class as some of the volcanoes
at the extreme high and low frequencies are removed
(Figure 12). However, it also becomes difficult to use only
regional level data in the A1 classification system because of
limited number of volcanoes in some of the analogue classes
(e.g., small cones). Volcanoes that are classified as “small
cones” have a particularly large uncertainty for the A1
model that spans several orders of magnitude, potentially
indicating that assigning frequency-magnitude in this
manner may not be advantageous. Interestingly, for the A2
model, an inflection point occurs at VEI 5 for volcanoes
classified as “Large Calderas”, indicating that this class of
volcano demonstrates enhanced frequency of eruptions at
VEI 7 compared to VEI 5 (Figure 8), or that the
preservation, recording and/or study of the differently sized
eruptions is not equal.

3.3 Bayesian Updating Sensitivity Analysis
In this section we examine the sensitivity of model assumptions
on the resulting frequency-magnitude estimation for the 74
volcanoes that underwent Bayesian updating. We plot the
mean for all model runs relative to the mean of the subset for
each parameter as a proportion (Figure 13). Thus, values close to
one indicate no or minor sensitivity, above one means the
parameter is relatively lower than the average, and lower than
one means the parameter is relatively higher probability than the
average. We tested the effect of three main assumptions
(Figure 3): 1) change point date (n = 3), 2) eruption certainty
(n = 2), and 3) the Bayesian model averaging method (n = 3).

Overall, our approach appears to have relatively low sensitivity
to changes in model parameters for VEI ≤ 3–5, with increasing
sensitivity at VEI 6–7. Of the three parameters we test for
sensitivity, including unconfirmed eruptions within the record
has the least effect on the resulting frequency-magnitude
estimates. Frequency-magnitude estimates are sensitive to the
choice of Bayesian model combination/averaging, with model
stacking having the effect of producing relatively higher
probability of VEI 3–4 eruptions relative to BB-Pseudo-BMA
and Pseudo-BMA, but at above VEI 4 these appear to switch
although the effect is relatively modest (see inset of Figure 13).
However, for several volcanoes (Colo, Ijen, Kelimutu, Parker,
Pinatubo, Semeru, Tambora, Tengger Caldera) there is a large

FIGURE 7 | Volcanic eruption records for volcanoes with eruptions within the Holocene volcano catalogue. (A) underlying data type used to inform the eruption
record as assigned by GVP, (B) the eruption certainty classification as assigned by GVP, and (C) VEI classification. All eruption data from GVP (2013), Complete record
data for all VEI eruptions from Mead and Magill (2014).
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shift at VEI 6–7, where stacking produces relatively lower
eruption probabilities compared to the BMA approaches.

The change point date is also sensitive, with the 5th
percentile (earlier change point and longer complete
record) and the 95th percentile (more recent change point
and shorter complete record) systematically decreasing and
increasing the eruption probabilities, respectively. However,
the magnitude of this effect is volcano-specific, with some
volcanoes exhibiting little effect, whilst others are more

FIGURE 8 | Prior models for each analogue classification system, with
the number of volcanoes and eruptions for each analogue class (A1 system
based on criteria from Jenkins et al., 2012 & A2 system from Whelley et al.,
2015). Large uncertainty can be observed across many of the analogue
classes, especially for those with limited data (i.e., lava dome, well-plugged
stratocone, small cone). Note: VEI are discrete data presented as continuous
data to emphasize the relationship between VEI and annual probability. See
Supplementary Material 3 for the Alpha and Beta parameters.

FIGURE 9 | Comparing Bayesian update frequency-magnitude
estimates using two different analogue models. Considerable differences
between the two analogue systems can be observed. Note: VEI are discrete
data presented as continuous data to emphasize the relationship
between VEI and annual probability.
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substantive. For example, the most extreme example is
Sinabung, where the 95th percentile change point results
in an eruption probability for a VEI ≤ 3 that is ~80%
higher than the corresponding probability using the 5th
percentile change point. The difference between using the
95th and 5th percentile change points increases to ~90% at
VEI 7.

4 DISCUSSION

4.1 Agreeability Between Published
Frequency-Magnitude Estimations for
Southeast Asian Volcanoes
The discrepancy between published frequency-magnitude
estimates presents a challenge for hazard and risk assessments
as they may make resource allocation more challenging and are
likely to considerably influence risk metrics such as expected
losses (e.g., life or financial) per unit time, and stochastic
catalogues. Most of the published frequency-magnitude
probabilities for Southeast Asian volcanoes are presented as
point estimates, which means that the uncertainty associated
with each is unknown. Frequency-magnitude estimates may be
influenced by different aspects of the methodologies such as the
underlying data (e.g., combining multiple databases vs. using a
solitary database), how data completeness is dealt with, and how
analogues are defined.

We attribute the relatively high Bear-Crozier (2016), Miller
et al. (2016) frequency-magnitude estimates to a potential
probability miscalculation in the supplementary files: the
conditional probability for each VEI eruption appears to have
been calculated conditional upon whether an eruption is small
(VEI 2–3) or large (VEI 4–7), rather than as a condition of an
eruption of any VEI. As a result, some volcanoes show
unexpectedly high probabilities in the supplementary files; for
example, summing the annual probability for each VEI within
supplementary for Gede-Pangrango gives 1.27 × 10−1, whilst the
corresponding value in Table 1 is 9.58 × 10−2 (Bear-Crozier et al.,
2016), which is closer to the estimates of Jenkins and Whelley.

4.2 Model Combination/Averaging for
Deriving Frequency-Magnitude
Relationships for Volcanoes
Selecting only one specific model of frequency-magnitude limits
our ability to robustly evaluate any subsequent hazard or risk
(Marulanda et al., 2021). For example, using only the A1
classification system would lead to higher probabilities than if
we only used the A2 classification system. In addition, using
either classification approach in isolation yields less uncertainty
(Figure 9), presenting an overly confident projection. Model
combination and averaging allows one to integrate different
conceptual models and evaluate the combined uncertainties in
a more robust manner, making them particularly useful for
integrating different analogue classification systems. In this
paper we have demonstrated how multiple models that
capture different conceptual elements of uncertainty (in this
case analogue classification) can be combined to produce
frequency-magnitude estimates for volcanoes. This is a
concept that has been applied within other natural hazard risk
assessment methodologies, but is still relatively new to the
volcanological risk assessment community (Kristiansen et al.,
2012; Sandri et al., 2018; Holland et al., 2020; Plu et al., 2021), and
as far as we are aware has not been applied for large scale multi-

FIGURE 10 | Frequency-magnitude relationships from each of the
iterations for case study volcanoes undergoing the Bayesian update
compared to published point estimates from the literature (see
Supplementary Material 1 for full reporting of published frequency-
magnitude estimates for these volcanoes). Note: VEI are discrete data
presented as continuous data to emphasize the relationship between VEI and
annual probability.
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source hazards across a region or country for risk and catastrophe
modelling. We suggest that further development of multi-
modelling approaches will facilitate a greater understanding of
the inherent uncertainties and reduce potential for bias in
volcanic hazard and risk assessments.

We found that the Bayesian updating model we applied was
sensitive to the selection of model combination/averaging
method. In particular, the distinction between using model
stacking or the Bayesian model averaging approaches (BB-
Pseudo-BMA and Pseudo-BMA). This is not an entirely
unexpected finding, as these different methods have different
considerations for their use. What this does highlight is the
importance of considering the philosophical underpinning of
the selection choice. In order to understand the appropriate
choice, we must consider how to conceptually describe the
relationship between the model set (e.g., different analogue
models used to define the priors) and the true data
generating model (i.e., the physical processes defining
frequency-magnitude relationships). There are three ways to
classify the relationship between the true data generator model
and the model set in Bayesian model comparison (Bernardo
et al., 2000):

FIGURE 11 | Analogue frequency-magnitude distributions compared to published point estimates from the literature for volcanoes that could not undergo
Bayesian updating due to little/no eruption record. Note: VEI is discrete data that are presented as continuous data to emphasize the relationship between VEI and annual
probability.

FIGURE 12 | Comparison of dispersion within the A1 volcano
classification system when using a global dataset compared to a regionally
constrained dataset. Few underlying data at the regional level for shield, lava
dome, and small cone makes developing analogue sets with robust
statistical relationships challenging.
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1) M-closed—the true data generator is included within the
model set, but it is unknown;

2) M-complete—a true data generator model exists, but it is not
included within the model set; and

3) M-open—the true data generator model is not included
within the model set and we are unable to specify its form.

Bayesian model averaging is appropriate in for the M-closed
case, but is considered inappropriate for the M-complete and
M-open cases (Yao et al., 2018). This is because the true data
generating model is not considered to be included in the
M-complete and M-open cases, and so using posterior model
probabilities to obtain a model average is not applicable. Thus,
consideration should be undertaken as to whether the analogues
are likely to be representative of the true data-generating model or
whether they are broad approximations.

4.3 Uncertainty in Frequency-Magnitude
Estimates for Southeast Asian Volcanoes
and Implications for Volcanic Hazard and
Risk Assessments
In this paper, we have provided a generalised and systematic
approach that facilitates stochastic sampling of frequency-
magnitude estimates that will enhance the robustness of future
hazard and risk assessments for these volcanoes. The use of freely
available datasets means the approach taken in this paper may

also be applicable in other volcanically active regions where
considerable gaps in the volcano record exist. A feature of this
is that as new information becomes available (e.g., updates to the
eruption catalogue), the estimates can be easily updated to ensure
that the newest information is captured within volcanic hazard
and risk assessments. Over half of our study volcanoes in the
region did not have sufficient eruption records to allow for
Bayesian updating, including volcanoes that have a very high
population exposure index (PEI 7), for example Malabar,
Tampomas, and Penanggungan. Thus, a priority research area
would be to obtain a broad understanding of the eruption history
of high exposure/low data volcanoes (Jenkins et al., 2021). This is
particularly important as recent history has examples of major
eruptions affecting communities from volcanoes that had not
previously erupted during historical times or had underestimated
frequencies of eruption. For example, following the 2008 eruption
of Chaitén volcano, Chile, dedicated geological studies found that
this volcano erupted much more regularly than previously
anticipated (Lara et al., 2013; Watt et al., 2013). Thus,
differentiating between volcanoes that genuinely have a low
eruption frequency from those that just have a limited
eruption record or are in a period of relatively low eruption
frequency within the eruptive cycle would improve future
frequency-magnitude estimates.

Clustering of volcanic eruptions in time can influence the
long-term frequency-magnitude relationship. For example, if a
clustering of eruptions in a short time span occurs just outside the

FIGURE 13 | Sensitivity of frequency-magnitude estimates for volcanoes that undergo Bayesian updating. The top plot shows the influence of the model averaging
method. Inset on the top plot is to show the change between VEI 6 and 7 where stacking produces relatively lower eruption probabilities compared to the BMA
approaches. The middle plot shows the influence of change point selection. The bottom plot shows the influence of including only confirmed eruptions or adding
unconfirmed eruptions into the eruption catalogue Values close to one indicate no or minor sensitivity, above one means the parameter is relatively lower than the
average, and lower than one means the parameter is relatively higher probability than the average.
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record considered complete, these eruptions would not be
incorporated into the analysis and potentially result in a lower
probability of eruption being estimated than the true long-term
average. The opposite would be true if a clustering of eruptions
occurs within the relatively short complete record, but does not
consider a long period of quiescence that preceded it. Examples
include Guntur, which was a relatively active volcano during the
first half of the 19th century (21 eruptions between 1,800 and
1,847), but has no confirmed eruptions since 1847. However, it
can be difficult to differentiate between a genuine lull in volcanic
activity or just an incomplete volcanic record (or some
combination of the two). For example, Andreastuti et al.
(2000) reported an eruption frequency at Merapi volcano of
one eruption every 80 years for the time period of
3,000–250 years before present and note that this frequency is
much lower than the frequency seen at Merapi since that time
period (~one eruption every 4 years). They attributed this to
different eruptive behaviour (less instances of dome collapse
eruptions) during that earlier period than the present. The
tropical climate with relatively high rates of precipitation
means that lahars and landslides are frequent, lowering the
preservation potential for volcanic deposits, which makes
common approaches to categorising eruption histories using
tephrachronological and tephrastratigraphy studies particularly
challenging (De Maisonneuve and Bergal-Kuvikas 2020).
Therefore, incomplete records should not be discounted as an
explanation for the lower eruption frequency, particularly for
smaller eruption sizes.

Another issue is how to deal with long-lived eruptions within
long-term frequency-magnitude estimation. First, VEI for pre-
historic eruptions has often been assigned based on erupted
volume, which occurs over the entire duration of an eruption
and can be subjected to considerable syn and post-eruption
processes (e.g., welding and compaction, weathering) (Papale
2018). The alternative measure of eruption magnitude (M) (Pyle
2015) is often estimated using volume as a starting point and so is
subjected to many of the same uncertainties as VEI (Papale 2018).
Second, some volcanoes may intermittently erupt several times a
year, but each eruption may be considered to be part of a single
eruption period. For example, Dukono volcano in Indonesia
regularly has small ash producing eruptions and degassing (Carn
et al., 2017; Bani et al., 2018; Engwell et al., 2021), but the record
within the GVP database is a single eruption that has been
continuing since 1933, and would be counted as a single
eruption within our analysis. Therefore, an important
consideration when interpreting our frequency-magnitude results
is they are a probability of an eruption period beginning in a year,
rather than the probability of any individual explosive eruption.

We found that the prior models for volcanoes assigned a
“small cone” analogue class within the A1 classification system
have relatively very large uncertainty compared to other analogue
classes. Whilst we did not see the same uncertainty with the
Distributed Cones and Fields class within the A2 classification
system, there are far fewer volcanoes within the A2 system (n =
341 vs. n = 19) and so this may explain why there is less
variability. It should also be noted that reduced diversity of
volcanoes at a regional level compared to the global level may

mean that mixing across relatively few volcanoes is not sufficient
to support a Poisson approximation (Bebbington and Lai 1996;
Bebbington 2007; Rougier et al., 2018a; Wang et al., 2020). This
may suggest that the transferability of characteristics between
volcano analogue classifications that have few numbers of
individual volcanoes may require a more considered approach
than the relatively simple schemas used in this work. It may also
reflect an issue with the underlying data in that the GVP
assignation for volcano type may group diverse volcanoes at
different stages in their eruptive cycle together and therefore the
averaged behaviour from the complete portion of the record may
not be truly representative for individual volcanoes within the
group. Investigating relationships across volcanoes when
secondary volcano types assigned by GVP are used, and
ongoing work on how best to define an “analogue” (Hone
et al., 2007; Rodado et al., 2011; Whelley et al., 2015; Tierz
et al., 2019), will help to improve our estimates of frequency-
magnitude derived at data-poor volcanoes.

5 CONCLUSION

One of the major challenges associated with deriving frequency-
magnitude relationships for Southeast Asian volcanoes is that
volcano records in the region have variable completeness across
volcanoes. All volcanoes investigated in this paper have very high
population exposure index values, andmost also have limited or no
data associated with them. This has meant that for volcanoes that
may present a risk for society, it has been necessary to use analogue
models of volcanism where it would be expected that certain
volcanoes share common eruption characteristics. However,
there are different ways to choose analogue models and the
published frequency-magnitude estimates for Southeast Asian
volcanoes shows considerable variation between different
studies, sometimes over an order of magnitude. This is
problematic if such figures are used within volcanic hazard or
risk assessment applications as using one model alone may present
an overly-confident assessment of the uncertainty. This problem is
exacerbated as these figures have to date been reported as point
estimates in the literature for many volcanoes in Southeast Asia. In
this study we have developed a top-down Bayesian approach to
assessing frequency-magnitude relationships for volcanoes in
Southeast Asia. The approach uses multiple different analogue
models to construct prior models, which are then updated using
the volcano-specific eruption record and combined using different
model combination and averaging approaches. We found that
volcanoes that undergo the Bayesian updating and model
averaging/combination have relatively low uncertainty at VEI ≤
3, but this progressively increases to an order of magnitude at VEI
6-7 and sometimes exceeds an order of magnitude at these high
VEI classes, because of the smaller amount of underlying data. Our
approach allows for estimation of the uncertainty associated with
frequency-magnitude relationships for Southeast Asian volcanoes,
which is the first time such uncertainty has been included in
published frequency-magnitude estimations for such a large
number of volcanoes in Southeast Asia. However, over half of
the volcanoes in Southeast Asia do not have sufficient eruption
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records to update from the prior models, which are highly
uncertain. Given the scale of uncertainty associated with
frequency-magnitude estimation for volcanoes in Southeast
Asia, our results have implications for undertaking probabilistic
volcanic hazard and risk modelling within the region, and
uncertainty assessments are necessary to enhance the robustness
of such analyses. We suggest that using multi-modelling
frameworks that include models that “think differently”
provides a beneficial method for deriving robust frequency-
magnitude estimations for volcanoes.
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