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The stability of section coal pillars is one of the most important factors affecting the stability
of coal rock systems in the stope and roadway. This study aimed to develop an artificial
intelligence methodology to predict and evaluate coal pillar stability. Data from 125
published coal pillar historical cases were collected to build a sample dataset.
Meanwhile, a mean impact value-genetic algorithm-back propagation neural network
(MIV-GA-BP) fusion model was established to predict the stability of section coal pillars.
MIV tests indicated that the main factors influencing coal pillar stability are (in order of
decreasing importance): the coal seam buried depth > coal seam thickness >working face
length > coal elastic modulus > cohesion > tensile strength > internal friction angle >
Poisson’s ratio > volume weight > coal seam dip angle. The relative weights of mine design
parameters are generally greater than those of the physical and mechanical parameters of
coal and rock mass. After the BP model was optimized by GA, the relative error, R value,
and mean squared error were 5%, 0.95, and 0.13, respectively. These results confirm that
the machine learning model has significant potential for improving coal pillar stability
evaluations. The developed prediction model was applied to two field cases to verify its
effectiveness, and the results indicated that the innovative method can be extended for use
in similar geological conditions or other mining and geaological engineering fields.
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1 INTRODUCTION

In the context of long-term and large-scale underground mining in Chinese coal mines, the goaf
represents one of the critical factors influencing the safety of mine production. Coal pillars are the
main structural units contributing to the stability of a goaf, and therefore, it is crucial to evaluate the
stability of coal pillars to enable efficient and safe mining in underground mines.

In recent decades, scholars have adopted various methods to understand and predict the stability of
coalmine pillars. Empiricalmethods are usually based on an empirical formula that is used to estimate the
strength of each coal pillar (Hustrulid, 1976; Jawed et al., 2013; Lai et al., 2020). Because it is difficult to
determine the actual stress on an underground mine, the safety factor (FS) of the coal pillar (i.e., the ratio
of its average strength to average stress) is computed to evaluate its stability (Deng et al., 2003). In general,
FS > 1.0 is stable, whereas FS < 1.0 is unstable (Zhou et al., 2011; Wattimena, 2014; Zhou et al., 2022).
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Numerical simulation technology has gradually been applied
for coal pillar stability analysis. Deng et al. combinedMonte Carlo
and FLAC (Fast Lagrangian Analysis of Continua) methods to
analyze the stability of coal pillars. Mortazavi et al. (2009) used
UDEC (Universal Distinct Element Code) software to evaluate
the influence of a pillar’s geometry andmechanical parameters on
its deformation and failure. These studies have significantly
improved our understanding regarding the stability of coal
pillars; however, because of the numerous influencing factors,
these two methods have difficulty considering the impact of
uncertainty, and the limit of the safety factor is not clear.

With recent advances in data mining technology, intelligent
evaluation models have been successfully applied in the field of
mining engineering, which constitutes a key development
direction for the future of coal mining. For example, Deng
et al. (2002) used an improved finite element Monte Carlo
method to analyze the reliability of point pillars in metal
mines. Zhao et al. (2003) and Luo et al. (2007) evaluated the
stability of coal pillars based on dynamic fuzzy reliability. Cauvin
et al. (2009) combined theMonte Carlo and safety factor methods
to analyze the stability of coal pillars Monjezi et al. (2011). used a
neural network algorithm to predict coal pillar stress to guide coal
pillar design strategies Idris et al. (2015). combined the Monte
Carlo method, neural networks, and FLAC3D (Universal Distinct
Element Code 3D) to analyze the stability of coal pillars during
excavation. Wattimena et al. (2013) used multiple logistic
regression model to predict the stability of 89 hard rock coal
pillars. Zhou et al. (2015) compared the performance of six
supervised learning algorithms [i.e., linear discriminant
analysis (LDA), polynomial logic regression (MLR), random
forest (RF), artificial neural network (ANN), support vector
machine (SVM), and gradient hoist (GBM)] for coal pillar
stability identification based on 251 examples of hard rock
coal pillars; they determined that the SVM and RF algorithms
showed superior performance. Ghasemi et al. (2010) used Monte
Carlo simulations to study the influence of various parameters
(e.g., uniaxial compressive strength of coal sample, width of coal
pillar, height of coal pillar, width of entrance, and depth of
covering) on the FS of coal pillars. Zhou et al. (2011)
proposed two models for predicting the stability of coal pillars
by employing support vector machine and Fisher discriminant
analysis. However, the evaluation indicators of each of the
described models are different, and anomaly detection is
particularly important in high-dimensional data analysis. Thus,
it is necessary to develop a reasonable and effective input
parameter database and an intelligent model to evaluate the
stability of coal pillars in Chinese mines.

Considering the limitations of the aforementioned models, the
main contributions of the present study can be summarized as
follows: 1) an energy conservation model of the longwall stope is
introduced to identify the factors influencing coal pillar stability;
2) 125 historical cases of coal pillars in China are collected, and a
large dataset comprising Chinese coal pillar information is
compiled following anomaly detection and treatment; 3) the
mean impact value (MIV) is used to evaluate the sensitivity of
variables, and a genetic algorithm (GA) and back-propagation
(BP) neural network fusion model is established to verify the

prediction performance; 4) two field cases are discussed to
evaluate the model’s prediction performance for coal pillar
stability analysis.

2 FACTORS INFLUENCING COAL PILLAR
STABILITY DURING LONGWALL MINING

Longwall mining induces the fracture of coal and rock mass. The
phenomena of energy storage, energy consumption, and energy
distribution co-exist during this process, which can be regarded as
a gradual failure caused by energy transfer. As shown in
Supplementary Figure S1, as the coal seam is mined out, the
energy inside the system reaches an equilibrium state, resulting in
the generation of an excavation disturbed zone (EDZ) (Lai et al.,
2006), and the coal pillar is the main structural unit affecting the
stability of the EDZ.

As shown in Supplementary Figure S2, the longwall stope
and surrounding rock are regarded as a system wherein the
balance between their energy components should be
maintained. During the mining process of the working face,
the back rock layer is allowed to collapse at a certain distance;
the released energy increases the strain of the roof rock stratum,
which causes the roof rock to fracture and cave, thus relieving the
pressure and producing an area with a certain height above the
stope, namely, the EDZ. The energy conservation model of the
longwall stope was established by Rezaei et al. (2015). The total
stress is determined according to the difference between the
weight of overburden rock and the weight of the failure area.
Then, the vertical component of the mining stress is determined
by calculating the reciprocal angle of the strata collapse. Finally,
the stress concentration coefficient of the coal pillar can be
calculated according to the vertical component of the mining
stress, which can guide the flow of the coal pillar stability analysis,
as shown in Supplementary Figure S3.

The total strain energy consumption is stored in the mined
coal body during roof rock fracture, caving, and pressure relief.
Therefore, the strain energy in the mined coal body should be
equal to that in the collapsed material in the failure area, as
expressed in Eq. 1,

Um � Ud (1)
where Um is the strain energy in the EDZ, and Ud is the strain
energy in the EDZ.

Rezaei et al. (2015) derived the formulas for calculating the
stored strain energy in the coal seam, and the final equations for
calculating the total energy storage of the coal seam are shown in
Eqs 2, 3,

Um � (1 + v)(1 − 2v)γAmδv
2(1 − v)E (h2s

3
+H2 +Hhs) (2)

Ud � UE + Uv � Ee−atAdHdδ
2
c

2(E + bδc
b−1) + ( ξ2

2K
− λξ2

2
)AdHd

� AdHdδ
2
c

2(E + bδc
b−1)2 (2Ee−at + δu1s

Bt2
− λ) (3)
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where v is the Poisson ratio of the rock mass; γ is the volume
density of the overlying strata (N/m3); hs is the height of the coal
seam; Lw is the height of the working face; Am is the cross-
sectional area of the coal seam (such that Am = Lw × hs); σv is the
vertical stress; H is the buried depth of the coal seam; and E is the
elastic modulus of the coal seam. In general, in the failure zone
(Ud), the storage strain energy of the material consists of elastic
strain energy (UE) and viscoplastic strain energy (Uv). Here, Ad is
the unit surface of the goaf (such that Ad = Lw × 1 m); σc is the
uniaxial compressive strength of the goaf material; b is the
expansion coefficient; σs is the stress threshold; B is the
material constant related to viscosity and temperature; t is the
pressure time of the goaf material; λ is the slope of the material
hardening stage; and ω, a, and μ1 are material constants.

By substituting Eqs 2, 3 into Eq. 1, the EDZ height (Hd) under
long-term conditions can be obtained using:

Hd �
(1+v)(1−2v)γAmδv

(1−v)E (h2s
3 +H2 +Hhs)(E + bσc

b−1)2
Adδ

2
c(2Ee−at + δ

u1
s
Btz − λ) (4)

The vertical component of the mining stress (σa(v)) and the
stress concentration coefficient (K) of the load transferred to the
roadway and coal pillar can then be obtained, as shown in Eqs 5,
6, respectively:

σa(v) � σa cos β � γ(H −Hd) cos(tan−1( X

Hd
))

� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣γH
−

(1+v)(1−2v)γAmδv
(1−v)E (h2s

3 +H2 +Hhs)(E + bσc
b−1)2

Adδ
2
c(2Ee−at + δ

u1
s
Btz

− λ) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �������
H2

d

H2
d +X2

√
(5)

K � σs
σv

� σv + σa(v)
σv

�
[σv + (σv − γHd) �����

H2
d

H2
d
+X2

√ ]
σv

(6)

These values enable the design of roadway supports and coal
pillar stability analysis. The load of the overlying strata is
transferred to the coal pillar through the suspended roof,
which reveals different levels of integrity in different sections
of the coal pillar (i.e., a crushing zone, a plastic zone, and an
elastic zone).

Hou and Ma (1989) proposed a method for calculating the
width of the stress limit equilibrium zone, as expressed in Eq. 7,

x � mA

2 tanψ
ln⎡⎢⎣KγH + c

tanψ

c
tanψ + Px

A

⎤⎥⎦ (7)

where φ and c represent the internal friction angle and cohesion
of the coal seam, respectively.

Therefore, the coal pillar stability analysis in longwall mining
involves a multi-factor nonlinear coupling problem, and the

following factors affecting the stability of the coal pillar must
be considered as thoroughly as possible.

1) Static parameters (the static physical and mechanical
parameters of the coal and rock mass): elastic modulus,
Poisson’s ratio, internal friction angle, cohesion, bulk
density, etc.

2) Engineering disturbance parameters (also known as
engineering design parameters): coal seam thickness,
working face length, coal seam burial depth, coal seam dip
angle (θ), coal pillar width (M), etc.

3) Time-varying parameters (parameters of goaf materials that
vary over time): temperature, pressure, etc.

In conclusion, the influencing factors of coal pillar stability
were determined, thereby providing a theoretical basis for
establishing a coal pillar database. Additionally, the analysis
offers reasonable model input factors for predicting coal pillar
multi-factor nonlinear coupling disasters under engineering
disturbance. Moreover, coal pillar stability control measures
can be designed based on stope stress transfer to reduce
mining stress transfer (e.g., via roof cutting and pressure
relief), strengthen the support strength (i.e., roadway support),
and optimize the coal pillar size.

3 DATA ACQUISITION AND ANALYSIS

In mining and geotechnical engineering, it is difficult to
determine reliable input parameters and find effective methods
for accurately describing this nonlinear relationship, and as a
result, it is often challenging to assess reliability. This report aims
to establish a coal pillar database and develop reliable datasets
through data mining technology to improve the calculation
performance of the described prediction model. The coal pillar
data transfer pathway is illustrated in Supplementary Figure S4.

3.1 Sampling and Origin Data Acquisition
Certain coal pillar parameters are needed to establish the
prediction model. To avoid overtraining, three parameter
selection principles are applied. First, the sensitive parameters
reflecting the stability of the coal pillar should be used as the
evaluation index. Second, these parameters should be physically
independent from one another. Finally, the parameter data
should be easy to obtain. Combined with the factors
influencing coal pillar stability, the coal seam thickness,
working face length, coal seam buried depth, coal seam dip
angle, coal elastic modulus, Poisson’s ratio, internal friction
angle, cohesion, and volume weight are selected as
independent variables, and the coal pillar width is taken as the
dependent variable.

Notably, coal pillar stability is also impacted by other
parameters, such as the overburden breaking state, disturbance
characteristics, temperature and pressure of goaf materials, and
monitoring signals. However, these index data are difficult to
obtain (Dai et al., 2020), and without these indicators, the coal
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pillar stability can still be predicted within the allowable range of
engineering measurement error.

The data used in this study were collected using internet
research search engines and academic databases, including
China National Knowledge Infrastructure (CNKI) and Google
Scholar. The compiled data comprises 125 published coal pillar
design history cases, including journal articles (90%) published by
colleges and universities between 2002 and 2019. The missing
items have been added to the original collection from available
sources in other bodies of literature. Some data is based on
existing technical reports and engineering survey data from
research and design institutes.

The statistical distribution of the geographical locations of the
mines is presented in Supplementary Figure S5. The most-
studied geographical regions are Shaanxi (32%) and Shanxi
(56%). Coal mines with section coal pillar widths of 11–20 m
accounted for the highest proportion (60%), and the utilization of
pillars less than 10 m or more than 30 m wide corresponded to 4
and 2.4%, respectively. Supplementary Figure S6 shows the
original coal pillar dataset.

3.2 Data Analysis
3.2.1 Model Inputs and Output
Single-variable empirical formulas are often used in coal pillar
design and stability evaluations; these variables include γ,H, L, or
Hd, and μ (Salamon and Munro, 1967; Bieniawski, 1968; Wilson,
1972). Previous studies (Dai et al., 2020) initially showed that coal
pillar size can be estimated with reasonable accuracy, and it is
more effective to use multiple measurement parameters for such
predictions than to use a single parameter. Therefore, the input
variables of the prediction model are σ, c, E, φ, γ, μ,H, α, h, and L,
while M is the single output variable in this study.

3.2.2 Data Preprocessing
The main tasks of this stage include data cleaning, integration,
transformation, and reduction. This process is illustrated in
Supplementary Figure S7.

As shown in Supplementary Figure S7A, the coal pillar
database cleaning stage deals with missing and abnormal
values. The missing values are filled by interpolation. If there
are excess abnormal values, the data can be deleted directly.
When there are fewer, the data can be added from other sources,
i.e., data for adjacent working faces in the same mine are
collected, and the average value is calculated to correct the
abnormal value. As shown in Supplementary Figure S7B, the
feature attribute expressions from multiple data sources are not
necessarily matching. The main purpose is to detect and handle
conflicts involving different meanings with the same name, same
meanings with different names, and different units. 1) Different
meanings with the same name: attribute ID (coal pillar value) in
data source A1 and attribute ID (coal pillar value) in data source
A2, respectively, describe small coal pillars and wide coal pillars,
i.e., they describe significantly distinct entities. In this study, coal
pillar data sources citing widths of less than 9 m are excluded. 2)
Same meaning with different names: attribute ID (modulus of
elasticity, Poisson’s ratio, bulk density) in data source B1 and
attribute ID (bulk modulus, shear modulus, density) in data

source B2 are related to one another, and they can be
transformed and unified using:

γ � ρg

K � E

3 × (1 − 2])
G � E

2(1 + ])

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(8)

where E is the elastic modulus, v is Poisson’s ratio, K is the bulk
modulus, G is the shear modulus, γ is the bulk density, ρ is the
density, and g is the acceleration of gravity. 3) Units are not
consistent: the same entity is described with different
measurement units.

As shown in Supplementary Figure S7C, the data
transformation stage standardizes the data to meet the
requirements of mining tasks and algorithms. Different coal
pillar attributes often have different dimensions and units.
Therefore, data standardization processing is necessary to
eliminate the influence of different dimensions and sizes
between indicators. This study used minimum-maximum
normalization to map the results between (0,1). The
conversion function is expressed in Eq. 9, (Wang et al., 2013),

Xij � Xij −Xmin

Xmax −Xmin
(9)

where Xmax and Xmin are the maximum and minimum values in
the data series, respectively, and Xij is the actual observed value.

As shown in Supplementary Figure S7D, the data
specification stage merges many data points into attributes,
such as filtering input parameters, which have a greater
impact on weight. This improves modeling accuracy and
reduces data mining time.

3.2.3 Data Preprocessing
Prior to modeling, statistical analysis of the coal pillar database is
very important. The basic descriptive results are shown in
Supplementary Table S1.

The abnormal values in the database negatively impact the
algorithm’s ability to determine the exact relationship between
input and output parameters, thereby reducing the reliability of
the model. In addition, outliers must be identified because they
may create random phenomena with different behaviors in a
single dataset.

Supplementary Figure S8 shows the box diagram of coal
pillar characteristics. The center line of most attributes is in the
center of the corresponding box, which means that the input
parameters have generally symmetrical distributions. Among the
influencing factors, tensile strength, cohesion, bulk density, coal
seam dip angle, and buried depth include some abnormal values,
which need to be processed.

Correlation analysis of the parameters in the coal pillar
database is a fundamental aspect of data mining.
Supplementary Figure S9 shows a scatter plot matrix for the
dataset, where the distribution of each attribute is shown in the
diagonal of the graph. The vertical axis of the diagonal histogram
represents the frequency, the lower triangle area represents the
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scatter distribution of the dataset, and the range of the upper
triangle area (which indicates the standard correlation coefficient
between each pair of attributes) is from –1 to 1. When this
parameter is close to 1 or –1, there is a strong positive or strong
negative correlation, respectively Koo and Li (2016). proposed
that R values < 0.5, between 0.5 and 0.75, between 0.75 and 0.9,
and >0.90 indicate poor, medium, good, and excellent
correlations, respectively. Most parameters have relatively poor
correlations with one another (i.e., R < 0.5), which suggests that
each characteristic attribute is independent from the others. In
addition, the independent datasets essentially follow normal
distributions, with few outliers. This may indicate that,
although the amount of available data is relatively small, it is
true that the distribution is approximately random.

4 MIV-BP-GA MODEL CONSTRUCTION
AND RESULT ANALYSIS

4.1 MIV-GA-BP Modeling
High-dimensional data are difficult to visualize, and therefore, it
is necessary to compress the dataset. Currently, MIV is
considered one of the best indicators for evaluating the
correlations between variables in neural networks (Wang,
2013). Specifically, MIV is used to measure the weight matrix
change for each variable in a neural network; this process can
quantitatively describe the importance of an independent variable
to the dependent variable. Back-propagation neural networks are
widely used because of their simple defining principle and facile
implementation. However, BP also has limitation, i.e., it is easy to
shake, easy to fall into a local minimum, and sensitive to the initial
value in the training process. After the fusion of the genetic
algorithm and BP, the GA can control the convergence of the
model and improve the optimization time performance of the
algorithm (Goldberg, 1989). Supplementary Figure S10 shows
the principle of a MIV-BP-GA model.

4.2 Prediction Process
4.2.1 Data Division
Before modeling, the entire dataset is divided into a training set
and a test set, which are used for training the model and
evaluating the generalization performance of training model,
respectively. Optimization analysis is typically used to
determine how to divide the data into a training set and a test
(Qi et al., 2018a). In this study, the proportions corresponding to
the training set and test set were determined by a trial-and-error
method where the size of the training set was increased between
30 and 90%. This analysis revealed optimal training set and test
set proportions of 80 and 20%, respectively. The test set should be
mutually exclusive relative to the training set as much as possible.
Moreover, the training and test sets should have similar statistical
characteristics because they are randomly extracted from the
same complete dataset.

4.2.2 K-fold Cross-Validation
To improve the evaluation performance of the prediction model,
it is necessary to carefully select an appropriate verification

method for parameter adjustment. K-fold cross-validation
(CV) is the most popular strategy to overcome data scarcity
(Braga-Neto et al., 2004). K-fold CV reduces variance by
averaging the results of different K-folds of the training set. In
this study, the K value was set to 10 based on a previous report
(Rodriguez et al., 2010). The 10-fold CV process applied in this
study is shown in Supplementary Figure S11. The performance
evaluation indices, e.g., mean squared error (MSE) and R, of each
calculation model can be calculated using Eqs 10, 11, respectively:

MSE � 1
n
∑n
i�1
(yi − xi)2 (10)

R �
∑n
i�1
(yi − �y)(xi − �x)������������������∑n

i�1
(yi − �y)2∑n

i�1
(xi − �x)

√ (11)

4.2.3 Evaluating the Results
4.2.3.1 Influential Weights of Coal Pillar Attributes Based
on MIV
Ten characteristic attributes were used as input for 50 iterations
of an MIV test (Koo and Li, 2016), and adjustment rates of 10, 20,
and 30% were used to calculate the MIV of each attribute.
Different input and output variables exhibit positive and
negative correlations, which indicates that MIV can have
positive and negative numbers. To compare the influential
weights of different input parameters, all MIVs were taken as
absolute values, and the weight changes were calculated under
each |MIV| mediation rate. Owing to the similar influential
weight trends under each regulation rate, a rate of 20% was
used for analysis, as shown in Supplementary Figure S12.

Supplementary Figure S12 shows that the factors influencing the
stability of coal pillar have the following relative importance:H > h >
L > E > c > σ > φ > μ > γ > θ. The influence scores of engineering
disturbance parameters (e.g.,H, h, L) are generally greater than those
related to the physical andmechanical parameters of rockmass (e.g.,
c, σ, φ, μ, γ), which indicates that analyzing the mining design and
engineering disturbance factors is crucial for ensuring the stability of
coal pillars. The Shaanxi and Shanxi areas of China have suitable coal
seam geological conditions, and thus, the dip angle of coal seams can
be ignored, although the buried depth, thickness of coal seams, and
length of the working face should be taken into account. In terms of
the physical and mechanical parameters of the rock mass, there is
little difference among the parameters, although it is clear that the
elastic modulus, cohesion, and tensile strength should be obtained
accurately. Of course, the internal friction angle, Poisson’s ratio, and
bulk density are also of analytical significance. To reduce the data
dimension and enhance the prediction time and accuracy of the
model, the coal seam dip angle is eliminated (with an elimination
rate of 10%), and the other nine variables are included in the
prediction model.

4.2.3.2 BP-GA Parameter Optimization
One of the most difficult tasks in modeling is determining the
network training algorithm and network structure. The number
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of hidden layer nodes has a significant impact on the model’s
prediction performance (Mohamad et al., 2016). The upper limit
of hidden layer nodes is 2Ni+1, where Ni is the number of input
parameters. Considering the prepared dataset (whereNi = 9). The
optimal number of hidden layer nodes is 14, which indicates a
three-layer topology structure. Parameter tuning is essential for
successful modeling. In this study, a GA is used to optimize the
network parameters. The model parameters are shown in
Supplementary Table S2.

4.2.3.3 Prediction Results of the MIV-GA-BP Model
MSE and R served as evaluation indicators. Supplementary
Figure S13A compares the predicted and experimental values;
the relative error between the expected value and the value
predicted by the network prediction model is less than 5%.
The regression analysis is shown inSupplementary Figure
S13B. Most points fall near the fitting line, the R value of the
predicted and expected values is 0.83, and theMSE of the model is
0.15, indicating that the prediction effect of the MIV-BP-GA
model is both reasonable and applicable.

5 TWO CASE STUDIES

The Yujing coal mine (YCM) and the Xiaobaodang coal mine
(XCM) were used to validate the engineering applicability of the
developed model for real mines. The location and development
plan of these mines are presented in Supplementary Figure S14.

5.1 Yujing Coal Mine
According to the background of the 90101 fully-mechanized top
coal caving face in the YCM, the 90101 working face length is
151 m, the average buried depth is 180 m, the coal mining
thickness of the working face is 5.6–9.5 m (average thickness =
8.1 m), and the inclination angle is 2. The MIV-GA-BP model
was used to predict the coal pillar width of the typical working
face in this section of the mine (Supplementary Table S3).

The coal pillar width predicted by the MIV-GA-BP model was
16.4742 m. When a 16-m-wide pillar used in the field design, the
surrounding rock deformation of the roadway was small, and the
control effect was good.

5.2 Xiaobaodang Coal Mine
5.2.1 Project Prediction and Field Verification
The coal seam dip angle of the 112202 working face in the XCM is
1–3, with an average coal thickness of 5.5 m and an average
buried depth of 300 m. The coal pillar width of the typical
working face in this section (112202) was predicted using the
developed model (Supplementary Table S4).

The coal pillar of the 112202 working face is predicted to be
22.4652 m, whereas a 20-m-wide coal pillar was used in the field
design. Extensive calculations indicate that the coal pillar on the
XCM site has potential instability, thus highlighting the
important guiding role of coal pillar stability evaluations
before mining.

According to on-site investigations, the 112202 working face
encounters hidden dangers, such as large deformation, a serious

slope, and difficult coal pillar support in the empty section. Under
conditions involving fast advancing speeds (15 m/d) and strong
mining at the super-long working face (350 m), a large area of
roadway roof has fallen in the leading face area (Supplementary
Figure S15). This confirms that the coal pillar stability
identification model applied herein exhibits certain accuracy.

5.2.2 Disaster Control Measures
Stability control technology for “roadway advanced
reinforcement support” was formulated for the 112202
working face by combining the prediction results and mining
process parameters. The reinforcement and support measures
were designed for the advanced area (T1–T6 in Supplementary
Figure S15) with potential safety hazards.

For the roadway roof (Supplementary Figure S16A): 1) the
roof is paved with diamond-shaped metal mesh (mesh = 50 ×
50 mm); 2) the roof anchor cable is a Φ21.6 × 8300 mm steel
strand with four supports in each row (spacing between supports
= 1500 mm, pre-tightening force = 200 kN, anchoring force
≥280 kN), and the double-layer W-shaped steel guard plate (4
× 280 × 5100 mm) is used as a connection; 3) the anchor bolt is
supported with a W-shaped steel guard plate (4 × 280 ×
4300 mm), and a left-hand screw thread steel bolt without
longitudinal reinforcement and an arch prestressed tray (150 ×
150 × 10 mm) are used for support.

For the mining side of roadway (Supplementary Figure
S16B): 1) the mining side is reinforced with a Φ22 ×
2600 mm high-strength glass fiber-reinforced plastic anchor
rod and a pine pallet (400 × 200 × 50 mm) with circular glass
fiber-reinforced plastic mesh; 2) there are four anchors in each
row (spacing between rows = 850 × 900 mm, top anchor bolt =
300 mm away from the roof, elevation angle = 15°) with plastic
steel mesh laid on the upper part (mesh size = 40 × 40 mm), 3)
before the support, the W-shaped tray should be unloaded, and
the failed bolt should be repaired.

For the coal pillar side of roadway (Supplementary Figure
S16C): 1) diamond-shaped metal mesh (mesh = 50 × 50 mm) is
laid on the side; 2) the anchor cable is a Φ21.6 × 4800 mm steel
strand with three supports in each row (spacing between anchor
cables = 1000 mm, row spacing = 900 mm), and each row of the
anchor cable is connected through a W-shaped steel guard plate
(4 × 280 × 2200 mm); 3) one anchor rod (Φ22 × 2600 mm left-
handed screw thread steel bolt without longitudinal
reinforcement) is constructed at the lower part of each row of
anchor cables, 800 mm away from the lowest anchor cable, and
equipped with an arch prestressed tray (150 × 150 × 10 mm).

5.2.3 Evaluation of Disaster Control Measures
The applicability of reinforcement support was evaluated by
monitoring the roadway displacement and coal pillar crack
evolution.

5.2.3.1 Roadway Surface Displacement Observations
A surrounding rock displacement monitoring station was
installed in the roadway reinforcement area to evaluate the
stability of the surrounding rock and to provide a reference
for the subsequent roadway support design or further
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optimization. The statistical results obtained from monitoring
surrounding rock displacement at two representative stations are
presented in Supplementary Figure S17.

As shown in Supplementary Figure S17A, the mining stress
significantly affects the surrounding rock deformation of the
roadway section when the working face advances by 50–60 m.
In particular, the deformation of surrounding rock (~230 mm) is
greater than that of the roof (~100 mm), and the deformation of
the working face is slightly larger than that of the coal pillar. The
deformation of the working face side in the two stations was
1.61 times and 1.75 times that of the coal pillar side owing to the
difference in the support strength of the two sides. To facilitate
mining, an FRP(Fiber Reinforced Polymer) bolt can be used to
support the working face. Under the influence of mining stress,
the ability of an FRP bolt to control surrounding rock
deformation is much weaker than that of a high-strength
screw steel bolt, and therefore, the deformation of working
face side is greater than that of coal pillar side. In general, the
surrounding rock of the roadway is deformed to a certain extent
under the mining stress of the working face; however, the
deformation is very small, and the stability of the surrounding
rock is high. Supplementary Figure S18 shows a real photograph
of the roadway. The reinforcement and support measures have
achieved ideal support effects, which can promote safe mining at
the 112202 working face.

5.2.3.2 Coal Pillar Damage Detection
As shown in Supplementary Figure S19, after implementing the
reinforcement measures, the internal damage to the coal pillar is
detected up to 180 m in front of the working face. Within 0–60 m
in front of the working face, internal fractures have developed in
the coal pillar but not penetrated, thus sufficiently meeting the
requirements of safe mining. Between 60 and −180 m in front of
the working face, the coal pillar is only affected by the disturbance
of the adjacent goaf, which is relatively high inside the coal pillar
on the side of the working face. This shows that the roadway
reinforcement and support measures are effective.

6 CONCLUSION

The results presented herein lead to the following conclusions:

1) Coal pillar instability induced by mining stress transfer was
analyzed, and the main influencing factors are static
parameters (e.g., E, μ, φ, c, γ, σ) and engineering design
parameters (L, h, H, θ, M).

2) The key parameters of 125 coal pillar design cases in China
were collected and used to establish a coal pillar database by
applying a data mining method. The weights of factors

influencing coal pillar stability were determined based on
MIV calculations to fall in the order: H > h > L > E > c >
σ > φ > μ > γ > θ. Meanwhile, a GA-BP prediction model was
formulated. The prediction results indicated that the relative
error rate was controlled within 5%, the R of predicted versus
expected values was 0.95, and the MSE was 0.13; thus, the
developed method provides a new approach for intelligent
coal pillar risk assessments.

3) The applicability of the model was evaluated based on two
field cases. The relative error of the YCM coal pillar was 3%,
and there was no major safety hazard in the field. However,
the designed value in the XCM coal pillar was too small, and
there were some disasters, such as roadway deformation and
spalling in the field. After formulating an “advance area
roadway reinforcement support” strategy, the roadway
stability was improved significantly, thereby confirming the
applicability of the developed prediction model.

4) The model described herein depends on the reliability of the
collected training dataset, and it can be applied for cases with
similar geological conditions (i.e., rock type, geological
conditions, etc.). This method can also be used in other
aspects of mining and geotechnical engineering.
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