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Proper representations of stochastic processes in tropical cyclone (TC) models are critical
for capturing TC intensity variability in real-time applications. In this study, three different
stochastic parameterization methods, namely, random initial conditions, random
parameters, and random forcing, are used to examine TC intensity variation and
uncertainties. It is shown that random forcing produces the largest variability of TC
intensity at the maximum intensity equilibrium and the fastest intensity error growth
during TC rapid intensification using a fidelity-reduced dynamical model and a cloud-
resolving model (CM1). In contrast, the random initial condition tends to be more effective
during the early stage of TC development but becomes less significant at the mature stage.
For the random parameter method, it is found that this approach depends sensitively on
how the model parameters are randomized. Specifically, randomizing model parameters
at the initial time appears to producemuch larger effects on TC intensity variability and error
growth compared to randomizing model parameters every model time step, regardless of
how large the random noise amplitude is. These results highlight the importance of
choosing a random representation scheme to capture proper TC intensity variability in
practical applications.

Keywords: tropical cyclone development, stochastic parameterization, intensity error growth, intensity error
saturation, random representation

1 INTRODUCTION

The application of stochastic physics parameterizations to weather and climate models is a rapidly
advancing and important topic in current modeling systems (Palmer, 2001; Christensen et al., 2015;
Dorrestijn et al., 2015). Palmer (2012) argued from the theoretical and practical bases that all
comprehensive weather and climate models, no matter how complex they are, should be stochastic in
nature. From this perspective, although the governing equations are formally deterministic, the best
predictions should be based onmodels that could capture the uncertainty of the atmosphere, whether
for climate on long time scales or weather on time scales of days to weeks. Developing practical tools
for estimating such uncertainty of model forecasts would require the knowledge of random error
effects, which then allows us to investigate the relative impacts of different types of uncertainties in
models.

In general, TC intensity forecast errors in any numerical model are caused by several factors,
including model errors, vortex initial uncertainties, global boundary guidance errors, random
environmental forcings, and/or the intrinsic nature of TC intensity variability (Gopalakrishnan
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et al., 2011; Tallapragada et al., 2012; Kieu et al., 2018; Halperin
and Torn, 2018; Trabing and Bell, 2020; Kieu et al., 2021, NKF).
While these factors are technically non-separable in practice due
to the nonlinear nature of TC dynamics and thermodynamics, it
is possible to examine their relative roles under some specific
conditions. For example, real-time verification of TC intensity
forecast shows that model errors tend to be more important at a
longer lead time compared to vortex initial condition errors (Du
et al., 2013; Kieu et al., 2021). Likewise, uncertainties in global
lateral boundary conditions could result in a wrong track forecast,
which can lead to large intensity errors for incorrect landfalling
storms or TCs under rapidly changing environments, even in
perfect regional models with perfect initial conditions as
discussed in Kieu et al. (2021).

Among those sources of intensity errors, the impacts of
different random types on TC intensity variability appear to
be the least examined. Even under the most idealized
conditions with no other sources of model or initial condition
errors, the atmospheric random fluctuation always exists and
introduces uncontrollable uncertainties into TC development.
While these random fluctuations are often small and probably
less important than other types, such as model or initial condition
errors, the nonlinearity of TC dynamics could amplify random
fluctuations during TC development and eventually lead to
noticeable variability in TC intensity that is currently not fully
understood.

Despite such an inherent random nature of the atmosphere,
examining how it affects TC intensity, especially the relative
importance of different stochastic representations during TC
intensification, is still an open question due to how random
noise is parameterized in TC models. Using a low-order TC
model (Nguyen et al., 2020, hereinafter NKF), recently
examined the effects of random noise in terms of the
Wiener process at the maximum intensity equilibrium. By
analyzing the invariant intensity distribution at the mature
stage, they showed that the stochastic forcing associated with
tangential wind and warm-core anomaly has the largest
contribution to TC intensity variability. This theoretical
result is consistent with previous modeling studies, which
captured strong sensitivity of TC intensity to vortex
initialization schemes and warm-core retrieval in TC
models (Kurihara et al., 1995; Liu et al., 2000; Van
Nguyen and Chen, 2011; Rappin et al., 2013; Zou and
Tian, 2018). How the effects of stochastic forcing are
compared to those caused by random parameters or the
vortex initial condition have not been addressed.

In this study, we wish to examine how different methods of
representing atmospheric random noise will affect the variability
of TC intensity and the intensity error growth during TC rapid
intensification. Understanding the relative roles of stochastic
parameterization approaches in TC intensity variability will
help quantify an intensity error limit that one can achieve
with numerical models in the future. Likewise, examining the
error growth during the intensifying stage will help evaluate how
the accuracy of the TC intensity forecast evolves during TC
development for operational applications. For this purpose, we
will use both a fidelity-reduced TC model (Kieu, 2015; Kieu and

Wang, 2017, hereinafter KW17) and the cloud-resolving
(CM1 Bryan and Fritsch, (2002)) model to study the
effectiveness of different stochastic representation methods in
capturing TC intensity fluctuations.

The structure of the article is organized as follows: Section 2.1
presents a brief introduction of the TC-scale dynamical model, its
extension for a stochastic system, and different types of random
representations. Section 2.2 discusses the application of
stochastic parameterization for the CM1 model. A detailed
algorithm to calculate the error growth during the rapid
intensification is provided in Section 2.3. The results from the
fidelity-reduced model are presented in Section 3, while error
saturation at the mature stage and error growth for the CM1
model are discussed in Section 4. Finally, some concluding
remarks are given in Section 5.

2 METHODOLOGY

2.1 Fidelity-Reduced TC Model
Given the complex nature of TC dynamics, a complete
investigation of different stochastic mechanisms in full-physics
TC models is generally not feasible. This is because full-physics
models are highly nonlinear with various parameterization
schemes that not only require a large computational resource
to conduct stochastic simulations but also introduce
insurmountable difficulty in analyzing nonlinear interactions
among different physical components.

As a first step to examine the effects of different stochastic
parameterizations on TC intensity, a simple model for TC
development is needed. Among several existing low-order TC
models, the TC-scale model proposed by Kieu (2015) and
modified further by KW17 (hereinafter referred to as the
modified TC-scale dynamics, or MSD, model) is of specific
interest. Using TC scales as dynamical variables in the
axisymmetric framework, the scale analyses of the governing
equation can be reduced to a set of ordinary differential equations
that contain only a few TC basic scales, including the maximum
tangential wind (v), the maximum radial wind at the surface (u),
and the warm anomaly in the TC central region (b). With the
wind-induced surface heat exchange feedback closure, these non-
dimensional scale equations are given as follows:

_u � pv2 − p + 1( )b − Cdu|v|, (1)
_v � −uv − Cdv|v|, (2)

_b � bu + su + Ts|v| − rb. (3)
This MSD model includes several parameters (p, s, r, Cd, Ts)

that characterize the TC dynamics, where p is a constant
proportional to the squared ratio of the depth of the
troposphere to the depth of the boundary layer, s denotes the
effective tropospheric static stability, r represents the Newtonian
cooling, and Cd and Ts are non-dimensional parameters
representing the surface drag coefficient and sea surface
temperature (SST). Note that, unlike the original MSD system
in KW17, for which Cd and Ts are scaled to have a value of 1, we
retain their explicit role in this study such that the sensitivity of
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TC intensity and the error growth to these parameters can be
explored.

While theMSDmodel is simple, it has some properties that are
attractive for our investigation of random representations in this
study. First, this system is explicitly time-dependent, which is
required to examine the evolution of TC intensity and related
error growth during TC intensification. Second, the model
contains the maximum potential intensity (MPI) limit as its
unique stable point in the phase space of (u, v, b), as
discussed in KW17. The existence of such a stable point is
vital because it allows us to quantify how the variability of TC
intensity at the mature stage depends on different random
parameterization methods, as discussed in NKF.

While the MSD system could describe both cyclonic and
anticyclonic flows as discussed in Kieu and Wang (2018), we
will limit our consideration hereinafter to cyclonic TCs in the
Northern Hemisphere such that the absolute signs in Eqs 1–3 can
be removed. In the next sections, we will describe three different
random mechanisms and how to implement them for the MSD
system. These mechanisms include 1) random forcing, 2) random
initial condition, and 3) random parameters, which are the most
commonly used methods in the current numerical weather
prediction models.

2.1.1 Random Forcing (RF) Representation
We first examine a type of random representation in which the
model forcing is augmented by stochastic processes, often known
also as physical stochastic parameterization (Palmer, 2001;
Christensen et al., 2015; Dorrestijn et al., 2015). According to this
method, random noise is added to prognostic variable tendencies or
model states with different spatial and temporal scales (Palmer, 2001;
Weisheimer et al., 2011; Zhang et al., 2015; Christensen, 2020). This
approach is equivalent to adding random noise to model forcing
(NKF, Fan et al., 2021a), which will be hereinafter referred to as the
random forcing (RF) method.

Following NKF, we introduce additive driving noise in terms
of the Wiener process to the MSD system (1–3) and obtain the
following stochastic differential equations:

dUt � pV2
t − p + 1( )Bt − CdUtVt( ) dt + σudW

u( )
t , (4)

dVt � −UtVt − CdVtVt( ) dt + σvdW
v( )
t , (5)

dBt � BtUt + sUt + TsVt − rBt( ) dt + σbdW
b( )
t , (6)

where {W(u), W(v), W(b)} are independent Wiener processes and
(σu, σv, σb) are the corresponding noise amplitude. While
parameterizing stochastic forcings by the Wiener process
appears to be reasonable, we note that the assumption of
stochastic forcings as state-independent noise requires some
justification because real stochastic forcings may be functions
of atmospheric states instead of having a constant variance.
Because our focus here is on the relative roles of different
stochastic parameterization methods in TC intensity rather
than the physical nature of each forcing term, we will choose
this constant-variance stochastic forcing as a protocol for the RF
method to compare with the other random methods. More
detailed discussion of this assumption can be found in (NKF)
Fan et al. (2021b).

With the RF representation in terms of theWiener process, the
numerical solution of Eqs (4–6) can be easily obtained using
Monte Carlo simulations. In this study particularly, the
Runge–Kutta fourth-order scheme is applied to the
deterministic part of Eqs (4–6) with a discretized time-step Δt,
identical to that used in NKF. The stochastic part is then added to
the model forcing at each time step, using a Gaussian random
variable with variance (Δt)σ2i for each state variable i ∈ {u, v, b}.
Because of the constant variance for the stochastic forcings, this
approach is essentially equivalent to the Euler–Maruyama first-
order scheme. So long as the time step Δt is sufficiently small, this
first-order accuracy suffices for representing the random
processes as expected.

2.1.2 Random Parameter (RP) Representation
The second common method for parameterizing stochastic
processes in numerical models is to randomize model
parameters based on a prior probability distribution of the
parameters. A rationale behind this approach is that model
parameters cannot be known accurately due to measurement
uncertainties, incomplete understanding of physical processes, or
the stochastic nature of phase transitions. For example, Zhang
et al. (2015) implemented a mechanism that allows random
fluctuation in the convective triggering function in an
operational ensemble system, which is simply a numerical flag
in the convection parameterization of the Hurricane Weather
Research and Forecasting (HWRF) model. Similarly, other
studies have applied the RP approach to, for example, the
boundary parameterization to reflect the unknown variations
in the land surface and/or boundary processes (Song et al., 2007;
Plant and Craig, 2008; Doblas-Reyes, 2009; Breil and Schädler,
2017). This RP scheme has been shown to improve the model
overall ensemble spread, thus capturing better the uncertainties of
model physics than deterministic ensembles.

Given these inherent uncertainties of model parameters, we
implement a scheme for the MSD model in which three key
model parameters, including the tropospheric static stability (s),
the sea surface temperature Ts, and the surface drag coefficient
(Cd), are randomized around a given mean value. Generally, such
model parameter randomization can be carried out in two
different ways. In the first approach, random noise is
introduced to model parameters at the beginning of the model
integration and kept unchanged during the entire integration
(hereinafter referred to as the initial RP approach). In the second
approach, random noise is added to model parameters every time
step during the integration to reflect the variability of these model
parameters with time (hereinafter referred to as the time-varying
RP approach).

While both the initial and time-varying RP approaches are
practical and can be compared with each other, their
mathematical and physical interpretations are quite different
and require detailed examinations. For the initial RP
approach, the uncertainties in the model parameters enter the
system only as measurement errors, which prevent one from
determining the model parameters accurately. Thus, model
parameters take random values at the initial time but are fixed
during the course of the model integration. In contrast, the time-
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varying RP method accounts for the fact that model parameters
are itself a random function of time that must have a statistical
distribution. An example of this is the convective triggering
function in cumulus parameterization, which determines if
deep convective plumes can occur or not (Arakawa and
Schubert, 1974; Kain and Fritsch, 1990; Song et al., 2007;
Suhas and Zhang, 2014; Zhang et al., 2015). This triggering
function often depends on vertical motion, CAPE, or some
other ambient variables, so it is inherently a random function
of time. In this regard, the outcome from the initial RP and time-
varying RP representation could bring different insights into the
variability of TC intensity that we wish to explore herein.

To be specific for our implementation in this study, the three
model parameters (s, Ts, Cd) are assumed to be Gaussian random
variables with known means and standard deviations. In non-
dimensional units, the mean and standard deviation values are
�s � 0.1 and σs = 0.01 for the static stability s, �Ts � 1 and σTs � 0.1
for SST Ts, and �Cd � 1 and σCd � 0.1 for the surface drag
coefficient Cd. These mean values are based on their observed
magnitude in real TC-force wind environment (Kieu, 2015;
Zhang, 2010), while the standard deviations are assumed to be
10% of the mean values based on the typical observational errors
for TCs (Zhang, 2010; Richter et al., 2021). Because we wish to
examine the relative importance of RF and RP approaches, no
random noise is added to the model forcings in both the initial
and time-varying RP implementations.

2.1.3 Random Initial Condition (RIC) Representation
The last approach to consider stochastic processes is to
randomize model initial conditions, which is by far the most
common method to account for uncertainties in operational
models (Hamill et al., 2011; Aksoy et al., 2013; Aberson et al.,
2015; Zhang and Weng, 2015; Tong et al., 2018). Often known as
ensemble forecasting, the RIC approach introduces noise with a
given probability distribution to reflect the initial condition
uncertainties. This probability distribution comes from various
pathways such as a prior background covariance matrix (cold-
start), ensemble cycling (breeding), or an analysis covariance
matrix (data assimilation), which are generally given at all model
grid points.

Following the common practice of implementing random
initial uncertainties in previous studies, our RIC method adds
white noise to theMSDmodel initial conditions, using a Gaussian
distribution with a given variance and zero mean. In the non-
dimensional unit, the white noise for the RIC method with the
MSD model has a standard deviation of 0.01 for all (u, v, b)
components. In full physical dimension, this standard deviation
respectively corresponds to ~ 1 m s−1 for wind and ~ 0.5 K for
temperature, which are reasonable for the random wind and
temperature noise in real atmospheric conditions (Zhang, 2010;
Zhang et al., 2010). Note that, unlike the RF or time-varying RP
method for which the randomness is realized at every time step,
the RIC representation introduces random noise only at the
initial time, similar to the initial RP method. Therefore,
conditioned on the realization of the random initial condition,
the MSD model is deterministic at all time for the RIC method.

Given the above approaches to represent stochastic processes
in the MSD model, Monte Carlo simulations of 1,000 members
are then carried out to examine the variability of TC intensity and
the error growth rate for each random representation method. In
our range of Monte Carlo experiments, we observe that an
ensemble of > 100 realizations is generally sufficient for a
stable statistical distribution and significance. Given the cheap
computational cost of the MSD model, a fixed number of 1,000
realizations is therefore used for all the RIC, RP, and RF methods
in this study such that the ensemble-size sensitivity analyses are
not necessary.

2.2 CM1 Model Experiments
While the MSD system could allow detailed examinations of the
relative impacts of different random representations due to its
efficient computation and low order, real TCs are much more
complex, with various nonlinear feedback between different
dynamics and thermodynamics components that are not
accounted for in the MSD model. In addition, TC dynamics
may contain chaotic behaviors at the MPI equilibrium, which can
mask the stochastic effects that the MSDmodel could not capture
(Kieu et al., 2018; Keshavamurthy and Kieu, 2021, NKF).

To further evaluate the relative effects of random
representations on TC intensity, the cloud model (CM1, Bryan
and Fritsch (2002)) is therefore employed in this study. By
implementing different random mechanisms in the CM1
model, one can verify what results obtained from the MSD
system are valid in a more complete full-physics model and
thus applicable to real TCs. For our herein study, the
axisymmetric setting of the CM1 model was used such that
the results from the CM1 model can be used to verify those
obtained from the MSD model under the same axisymmetric
framework. Comparing analyses from the low-order MSD model
and the full-physics CM1 model can therefore provide more
understanding of the impacts of random noise on the variability
and the error growth of TC intensity.

Because of the large computational requirement and the
numerical stability of the CM1 model, it is noted that our
implementation of the RF method for the CM1 model is
slightly different from that for the MSD model. Specifically,
we apply additive white noise to the momentum and
temperature equations with a constant standard deviation of
[0.1–0.5]m s−1 min−1 for wind and [10–3 − 10–2]K min−1 for
temperature, respectively (Zhang, 2010; Zhang et al., 2010). The
constant variance design is to ensure the closest possible
resemblance to the RF implementation for the MSD system
described in the previous section. It also helps maintain the
same order of the finite difference accuracy for the
deterministic part, which is based on the Runge–Kutta scheme
in the CM1 model. However, no random noise is added to the
model moisture state variable due to unknown probability
distributions of moist variables/graupel species. Our attempt to
add random noise to moist variables did not show any significant
difference in terms of model intensity output. However, the noise
decreases the stability of the CM1 model and prevents examining
a range of noise amplitude dependence. Thus, no random
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perturbations are applied to the moist equations in all of our CM1
experiments herein.

Regarding the RIC method, our approach for the CM1 model
is identical to that for theMSDmodel. In other words, white noise
with a range of standard deviations from 0.01 to 0.1ms−1 is added
to the CM1 model’s initial conditions. Likewise, the
implementation of the RP method for the CM1 model is also
identical to that used in theMSDmodel. Nonetheless, it should be
noted that CM1 has many model parameters that can be
randomized. For comparison with the MSD model, two
specific parameters that are directly relevant to the TC
intensity in CM1, including the sea surface temperature (Ts)
and the surface drag (Cd), are chosen in our RP experiments with
the CM1 model. These parameters are assumed to be random
variables with a standard derivation of 1 K for Ts and 10–4 for Cd,
respectively. The mean values for these parameters are then
varied in the range of [298–305 K] for Ts and [10–3 − 3 ×
10–3] for Cd such that the dependence of TC intensity
variability on different mean values of model parameters can
also be studied. Note that tropospheric stratification is a
parameter in the MSD model, but it is a diagnostic variable in
CM1. Therefore, its random parameterization cannot be
implemented in the CM1 model.

Due to the computational limit and a large number of model
output, a fixed number of 100 realizations are conducted for each
random noise amplitude in the CM1 experiments, regardless of
the random representation method. Our ad hoc sensitivity
analyses for ensemble members ranging from 100 to 200 show
again insignificant differences in terms of statistics when the
number of realizations changes. Thus, no ensemble size
sensitivity experiment for CM1 will be provided.

2.3 An Error Growth Algorithm
To evaluate the effects of random noise on TC intensity error
growth, we follow the approach of Kieu et al. (2018) and
introduce small noise along a reference state at different stages
of TC development. This type of state-dependent error growth
rate mimics the real-time forecast cycles by which the TC
intensity forecasts are re-initialized every 6 or 12 h. As TCs

evolve, their intensity changes and TC intensity errors may
therefore evolve differently, even with the same initial error.
Examining how such an intensity error growth rate changes
with time will allow forecasters to estimate how the accuracy
of their intensity forecast varies during TC development.

In quantifying the dependence of intensity error growth on the
stage of TC development, it is important to note that all
environmental conditions must be fixed so that such
dependence can be well-defined because any change in
environmental conditions would cause not only changes in TC
intensity along the trajectory but also a shift in the MPI
equilibrium, which produces an unexpected intensity error
variability. This is a subtle point in studying TC intensity
errors, yet it has not been sufficiently emphasized in previous
studies that we wish to emphasize again here.

With this approach, our algorithm for computing TC
intensity error growth in the MSD model includes the
following steps.

1) Select any initial state x0 = (u0, v0, b0), where v0 > 0 and
generate a reference orbit xf (t) = (uf (t), vf (t), bf (t)) during a
given interval t ∈ [0, T], based on the deterministic MSD
system (1–3) (see the thick black line in Figure 1A);

2) Choose a given time τ and its corresponding reference state
xf(τ) at the time τ to add a random perturbation vector ξ to xτ,
where ξ = (ξu, ξv, ξb) are independent Gaussian variables with
zero mean and standard deviations {σu, σv, σb}, respectively.
This process gives us an initially perturbed state xf (τ) + ξ at
time τ (see the crosses in Figure 1A);

3) Denote the components of the perturbed state at τ as (u′(τ),
v′(τ), b′(τ)) ≡ xf (τ) + ξ; we then choose a lead time Δ and
integrate (u′(τ), v′(τ), b′(τ)) from 0 to Δ, using the same MSD
model as for the reference integration;

4) For each pair (τ, Δ), repeat steps 2–3 several times (e.g., N =
1,000 times) to generate an ensemble of integration from the
initially perturbed state (u′(τ), v′(τ), b′(τ)). Note that different
realizations of the Gaussian distribution will give different ξ,
even with the same values of mean and standard deviation.
Store all of these integrated states and denote their

FIGURE 1 | A schematic diagram illustrating the algorithm for calculating TC intensity error growth at different stages of TC development for (A) a reference orbit
(solid black) and an ensemble of perturbed stages at the beginning time τ and the end of the perturbation integration τ + Δ (crosses); (B) time series for a range of stages
starting from τ and ending at τ + Δ for N = 1,000 realization; and (C) a magnified version of (B) for one specific stage. Note that pluses and asterisks in (B,C) show the
points on the deterministic orbit at time τ when perturbations are added and at time τ + Δ where the error growth rate is computed, respectively.
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corresponding states at t = τ +Δ as (ui (τ +Δ), vi (τ +Δ), bi (τ +
Δ)), i = 1..N (see the triangles in Figure 1B);

5) Compute the root mean square error err (τ, Δ) for the vi (τ +
Δ) component with respect to the reference component vf (τ +
Δ) for each time τ and lead time Δ as follows:

err τ,Δ( ) �

��������������������������
1
N

∑N
i�1

vi τ + Δ( ) − vf τ + Δ( )
Δ( )2

√√
, (7)

which is defined hereafter as the intensity error growth rate
corresponding to the lead time Δ at the forecast cycle τ.

6) Repeat steps 1–5 for different values of τ and Δ to obtain the
distribution of the error growth rate as a function of (τ, Δ).

By varying τ, the error growth calculation as outlined above can
capture the characteristics of TC intensity error at different stages of
TC development. Likewise, varying Δ will allow us to examine how
TC intensity error growth changes with forecast lead times similar to
what is carried out in real-time intensity verification. Note that our
definition of the intensity error growth in Eq. 7 is relative to a given
reference state vf (τ + Δ). If one replaces this reference state with the
corresponding ensemble mean, Eq. 7 would give us an ensemble
spread instead of the absolute intensity errors. As our focus here is on
the growth of the absolute error rather than the ensemble mean,
definition (7) is therefore adopted here.

Although the same steps are carried out for all three random
representation methods, we should mention that different
realizations of ξ are added to the initial state only for the RIC
method because theMSD system (1)–(3) is deterministic. For the RF
method, stochastic forcing varies every time step, so there is no need

to randomize the initial state. For the RP method, whether one
applies different realizations of the initial perturbation ξ would
depend on what RP scheme (i.e., the initial or time-varying) is
used, as discussed in the previous section.

3 FIDELITY-REDUCED MODEL RESULTS

In this section, we present first the analyses of different random
representationmethods for TC intensity in theMSDmodel, using two
key measures, including 1) TC intensity variability at the maximum
equilibrium and 2) intensity error growth. The first measure provides
insights into TC intensity error saturation at long forecast lead times,
which plays a key role in estimating TC intensity predictability, as
discussed byKieu andMoon (2016) andKieu et al. (2018). The second
measure focuses on how the characteristics of TC intensity error
growth change during TC development, relevant to the reliability of
the operational forecast. These two aspects of TC intensity can be
thoroughly examined within the low-orderMSDmodel and compose
the main results of this section.

3.1 Intensity Variability at the Mature Stage
To have a broad picture of TC intensity in our stochastic MSD
model, Figure 2 shows the time series of the v-component in the
MSD system as obtained from the Monte Carlo simulations with
the RF method. These simulations have the same numerical
procedure and settings as in NKF, which are summarized in
Table 1. Note that the v component represents the maximum
tangential wind near the surface in the TC-scale dynamics. Thus,
it can be used as a proxy to examine TC intensity and related
variability in all following analyses.

As shown in Figure 2, the Monte Carlo simulations of Eqs 4–6
overall capture expected TC development, with three distinct
phases in all realizations, including a pre-condition (genesis)
period, rapid intensification, and finally, the maximum intensity
equilibrium stage. While the exact onset moment of rapid
intensification highly varies among realizations (Fan W.-T. et al.
2021), these three stages are well displayed and reflect the inherent
TC development in the MSD model under an idealized
environment, even in the presence of random noise. Despite a
similar intensification rate among all realizations, the stochastic
nature of the MSDmodel is manifested in Figure 2 as non-smooth
fluctuations of TC intensity every time step along any trajectory. So
long as the model parameters are fixed, the random forcing affects
only fluctuations around the main trajectory but not the averaged
state of TC development. As the RF amplitude increases, TC mean
state is no longer maintained and the intensification rate or MPI
will differ. In this regard, these Monte Carlo simulations confirm
not only the main characteristics of TC development but also the
stochastic property of the MSD system (4)–(6) with the RF
representation as expected.

However, of more interest for our analyses is the variability of
TC intensity at the maximum intensity equilibrium due to
stochastic forcing, which dictates the limit in our ability to
reduce TC intensity forecast errors. To examine how this
variability depends on the amplitude of each RF in Eqs 4–6,
Figure 3 shows the standard deviation of v (denoted hereinafter

FIGURE 2 | Time series of the tangential wind component v as obtained
from 1,000 Monte Carlo simulations of the MSD system, using the random
forcing representation with noise amplitude σ = 0.01. Model initial condition is
set as (−0.01, 0.01, 0.01), and other model parameters are p = 200, s =
0.1, r = 0.25, Cd = 1.0, Ts = 1.0.
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TABLE 1 |Configuration of Monte Carlo simulations for the stochastic MSDmodel (4)–(6). Details of physical interpretations and scaling analyses of these parameters can be
found in KW17.

Parameter Value Remark

Δt 0.01 Non-dimensional time step
T 50 Non-dimensional duration of the Monte Carlo simulation
p 200 Non-dimensional square ratio of the PBL depth over the radius of the maximum wind
r 0.1 Non-dimensional parameter representing the radiative cooling
s 0.1 Non-dimensional parameter representing the tropospheric stratification
Cd 1 Non-dimensional parameter representing the surface drag coefficient
Ts 1 Non-dimensional parameter representing the surface temperature
σu 0.01 Non-dimensional variance of the u-wind stochastic forcing component
σv 0.01 Non-dimensional variance of the v-wind stochastic forcing component
σb 0.01 Non-dimensional variance of the buoyancy stochastic forcing component

FIGURE 3 | The standard deviation of the v component for the RF representation method as a function of the stochastic forcing standard deviation added to (A) the
u forcing, (B) the v forcing, (C) and the b forcing in the MSD system.

FIGURE 4 | Similar to Figure 3 but for the RP representation as a function of the random standard deviation for (A–C) initial RP and (D–F) time-varying RPmethod.
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as Γ) as a function of (σu, σv, σb) during the equilibrium stage
(i.e., t = 25–50 in Figure 2). Consistent with the results of Nguyen
et al. (2020) (Figure 4), TC intensity fluctuations increase almost
linearly with σu and σv, so long as these RF amplitudes are
sufficiently small (<0.05 in non-dimensional unit). Such an
asymptotically linear increase of Γ for the small noise can be
proven rigorously based on the stationary distribution, as shown
in NKF.

For the stochastic forcing component σb, we note that Γ differs
somewhat from a linear function because it is possible that TC intensity

deviates far away from the equilibriumwhen σb is sufficiently large, and
the underlying stability assumption for the MSD system is thus no
longer valid. Consistentwith thefinding inNKF,we also notice that the
stochastic forcing for tangential wind or warm-core anomaly has the
most impact on overall TC intensity variability (Figures 3B,C), which
produces intensity fluctuation one order of magnitude larger than that
caused by the radial wind stochastic forcing (Figure 3A).

Relative to the RFmethod, Figure 4 shows a similar dependence
of Γ on each model parameter at the MPI equilibrium obtained
from the initial and time-varying RP methods. Overall, intensity

FIGURE 5 | Time series of tangential wind v for a fixed noise amplitude σu,v,b = 0.001 that is added to initial condition (A) u0, (B) v0, (C) b0, respectively, where the
initial condition (u0, v0, b0) = (−0.01, 0.01, 0.01), and other model parameters are p = 200, s = 0.1, r = 0.25, Cd = 1.0, Ts = 1.0.

FIGURE 6 | The intensity error growth rate err (τ, Δ) for different values of the forecast lead time Δ and the stage of development (τ) as obtained from the RFmethod,
using the same set of model parameters as in Figure 3with σu = σv = σb = 0.01. For (A)Δ = 0.2, (B) Δ = 0.4, (C)Δ = 1.0, and (D) Δ= 1.4. Here, fixed perturbation amplitude
ϵ = 0.001 and N = 1,000 realizations are used for all error growth integration.
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fluctuation increases with the magnitude of the parameter variance
for both the RP implementations, similar to that with the RF
method. However, one notices a fundamental difference between
the RP and RFmethods in terms of themagnitude of Γ. Particularly
in the initial RP method (Figures 4A–C), Γ is of the same order of
magnitude as in the RF method. In contrast, the time-varying RP
method (Figures 4E,F) captures almost one order of magnitude
smaller regardless of model parameters. This is a noteworthy point
because it suggests that the randomness of the model parameters
during TC development plays a less important role in TC intensity
variability than the initial uncertainty in these model parameters.
From a practical standpoint, this non-trivial result implies that our
efforts in improving model parameters at the initial time will have
more effects on TC intensity variability than randomly sampling
model parameters during the course of model integration.

From the mathematical standpoint, such different behaviors of
intensity variation between the initial and the time-varying RP
approaches can be understood if one analyzes the intensity
probability distribution at the equilibrium as in NKF. Indeed,
sensitivity analyses of the intensity variance for the initial RP
method at the MPI limit (Supplementary Appendix S1) show
that the tropospheric static stability parameter s plays a smaller
role in the overall variability of TC intensity when s is small. As s
becomes sufficiently large (> 0.04), the MSD system becomes
bifurcated Kieu and Wang (2018) and the deviation around the
MPI equilibrium becomes much larger, thus resulting in larger Γ as
seen in Figure 4C. On the contrary, the SST and surface drag
coefficient parameters do not possess any bifurcation point.
Therefore, Γ increases almost linearly with the random noise
amplitude for the initial RP representation 1. This result highlights

the critical role of the tropospheric static stability in determining TC
intensity variability compared toCd or SST (KW17, Kieu et al., 2021).

Unlike the initial RP method, for which the MPI may settle
down to different equilibria for different parameters, the time-
varying RPmethod has a muchmore intriguing behavior. Herein,
we study an important property of a linear stochastic system with
time-varying random parameters, for which the fluctuation of the
system around its stable point approaches zero as the numerical
time step becomes finer (see Supplementary Appendix S2). This
counter-intuitive behavior in the presence of pure random
parameters is because a finer time step prevents the model
state from deviating too far from its equilibrium at each
iteration, leading to an overall smaller fluctuation with time
when the time step decreases. While the MSD system is far
from linear, the MSD system, under random forcing, captures
smaller Γ for a smaller time step in our series of experiments,
much like a linear system (not shown). This particular property of
the time-varying RP indicates the subtle dependence of TC
intensity variability on the way one implements the RP
representation in TC models, as shown in Figure 4.

Although the initial and time-varying RP methods result in a
different response of TC intensity to random parameters, it is of
interest to note that Γ is somewhat the same among the three
model parameters for each method in terms of magnitude. This
indicates that the random fluctuation of each parameter could
equally induce TC intensity variability that one has to consider.
Of course, these relative roles among these parameters, as shown
in Figure 4, are very specific to the MSD model. Therefore, it is
necessary to further verify these properties in full physics models,
as shown in Section 4.

Unlike the RF or RP approach, for which the stochasticity can
take place at every time step, the RIC method is different due to
the deterministic nature of the underlying model. We note again
that the MSD model contains a single stable point that
corresponds to the MPI equilibrium, as shown in KW17.
Thus, regardless of initial conditions, all trajectories will
eventually converge to a single MPI point after a sufficiently
long time. In the absence of stochastic forcing or random
parameters, the intensity variability at the MPI equilibrium in
the MSD model must therefore approach zero irrespective of the
initial random components, as confirmed in Figure 5.
Apparently, this deterministic characteristic of the MSD
system prevents it from modeling TC intensity variability at
the MPI limit unless stochastic forcing or random parameters
are used.

We wish to mention at this point that real TC dynamics is far
more complex than a single stable point at the equilibrium
captured by the MSD system, as shown in Figure 5. As
discussed in previous studies (Hakim, 2011; Brown and
Hakim, 2013; Kieu and Moon, 2016), long simulations of any
full-physics TC model always display a quasi-stationary
equilibrium instead of a stable fixed point as in the MSD
system or the theoretical MPI framework. Such intensity
fluctuation at the MPI limit in real TC models could be
attributed to several factors, such as process noises, truncation
errors, or the existence of low-dimensional chaotic dynamics,
none of which is captured by the MSD system. To better compare

FIGURE 7 | Similar to Figure 6 but for the RIC method, assuming the
same set of model parameters as in Figure 6 and a fixed lead time Δ = 1.0.

1Technically, this property is related to the fact that the MSD model can be treated
as an extended Markov system (u, v, b, s, Ts, Cd). For this extended system, one first
obtains the stationary distribution μ by solving the equation Lpμ � 0 for the
stationary distribution μ, where Lp is the adjoint of the generator L of the
Markovian system. Then, the error growth at a large time limit can be
approximated by the standard deviation of the v-component under the
stationary distribution.
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the relative effects of the RIC, RF, and RP methods in
representing random effects on TC intensity, one must
ultimately employ full physics models. For the MSD system,
we could at least conclude that the RF method produces the
largest impact on TC intensity variability at the long lead times,
followed by the initial RP method. To what extent this can be

realized in full-physics CM1 models will be presented in
Section 4.

3.2 Error Growth During RI
Along with the variability of TC intensity at the equilibrium, it is
necessary to examine also how intensity fluctuation varies during
TC development. In this regard, Figure 6 shows the TC intensity
error growth rate err (τ, Δ) as a function of forecast lead time τ for
the RF method. Recall that the error growth rate is computed
along a reference trajectory with a prescribed lead time Δ. Thus,
err (τ, Δ) depends on both the integration time (τ) and the lead
time Δ, as discussed in Section 2.3.

Regardless of the forecast lead time Δ, one can see in Figure 6 a
very specific pattern of err (τ, Δ), with the most rapid growth
during the pre-conditioning stage, followed by a quick decrease
during the intensification period and eventually approaching a
constant growth rate at the MPI equilibrium. err (τ, Δ) as
maximum prior to rapid intensification reflects the fact that
the onset moment of TC rapid intensification highly varies
among different realizations in the MSD system (cf. Figure 2;
see also Fan et al. (2021b) for a rigorous treatment), thus resulting
in large intensity errors. As the vortex enters its intensification
period, TC dynamics becomes more consistent among all
realizations, which explains the decrease in error growth. In
contrast, the growth rate is minimum when the TC vortex
reaches its equilibrium stage because this equilibrium is highly
stable and resilient to random fluctuation (Kieu, 2015, NKF). As a
result, err (τ, Δ) subsides and levels off for τ > 16. These behaviors
of the intensity error growth rate accord with a previous study
using a full-physics model (Kieu et al., 2018) and highlight the
unique properties of TC intensity errors.

Of further significance is that the overall error growth
characteristics of err (τ, Δ) appear to be less sensitive to the

FIGURE 8 | Similar to Figure 6 but for the random parameter approach with (A–C) initial RP method and (D–F) time-varying RP method.

FIGURE 9 | (A) Time series of the maximum tangential wind (VMAX, unit
ms−1) as obtained from 100 20-day simulations of the CM1 model that is
implementedwith the RFmethod; and (B) the standard deviation of VMAX (unit,
ms−1) at the maximum intensity equilibrium (day 9–18 into integration) as
a function of the random forcing standard deviation. Error bars denote 95%
confidence intervals.
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forecast lead time Δ, so long as Δ is not too large. However, note
for the RF method that err (τ, Δ) is smaller for a longer lead time
Δ, as shown in Figure 6. This smaller error growth rate for a
longer lead time is because TC intensity is bounded by the
maximum equilibrium. Therefore, a long forecast lead time Δ
must eventually result in a reduced error growth rate, as seen
from Eq. 7 as TC intensity approaches the MPI limit Kieu et al.
(2018), consistent with what was shown in Figure 6.

For the RIC method, a very similar behavior of err (τ, Δ) is
captured, with the maximum rate during the pre-conditioning
period, followed by a decrease during rapid intensification and a
stable value at the MPI limit (Figure 7). This similar behavior
between the RIC and RF representations suggests that different
error growth rates at different stages of TC development are
inherent to TC dynamics, regardless of the presence of random
noise in the initial condition or forcing.

Regarding the RP method, one notices somewhat different
behaviors of err (τ, Δ) compared to the RIC or RF methods,
depending on which model parameters are used and whether the
RP method employs the initial or time-varying implementation
(Figure 8). For the initial RP approach, the overall properties of err
(τ, Δ) for the static stability parameter s are almost the same as those
with theRForRICmethod. In otherwords, themaximumerror growth
rate occurs during the pre-conditioning period, followed by a decreasing
period and level off at the MPI equilibrium (Figure 8A). In contrast,
both SST and surface drag parameters showaquick increase in the error
growth rate at first but then maintain a large error growth rate during
the entire subsequent stage of TC development, instead of subsiding
over time as for the RF or RIC method. This unique behavior of err (τ,
Δ) for Ts and Cd is because the uncertainty magnitude of these
parameters is much larger than that of s at the equilibrium, even

though the relative percentage is the same. One can see this directly by
looking at the sensitivity analyses for the initial RP method (see
Supplementary Appendix S1). Apparently, the same 10% variability
of each parameter would give a different absolute magnitude in the RP
method. That is, a 10% variability of s would give an absolute
uncertainty magnitude of 0.01, whereas the same 10% variability of
Ts or Cdwould result in an absolute uncertainty magnitude of 0.1. This
explains the difference in the error growth rate at the mature stage, as
shown in Figure 8 for the initial RP implementation.

For the time-varying RP implementation, err (τ, Δ) is about one
order of magnitude smaller than what was obtained from the initial
RP method. Recall that such a large difference of err (τ, Δ) between
the initial and time-varying RP approaches is not unique to the rapid
intensification period. However, it is, in fact, true for the MPI
equilibrium as well (cf. Figure 4). This is noteworthy because it
suggests that both the RF and the initial RP methods produce more
intensity errors than randomizing model parameters during the
course of TC development. Again, this conclusion should be
cautioned because it is drawn from a simple MSD system that
may or may not fully reflect real TC development. Further
verification of these results in the full-physics CM1 model will be
presented in the following section.

4 CM1 MODEL RESULTS

Although the results obtained from the low-order MSD system
are significant, various simplifications in the MSD model
naturally raise the question of how much these results can be
realized in real TCs. In this section, we examine similar properties
of TC intensity error growth and saturation for the CM1 model,

FIGURE 10 |Dependence of VMAX (left panels) and its corresponding standard deviation (right panels) on (A,B) SST and (C,D)Cdwith a fixed noise amplitude in the
time-varying RP method.
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using the same random representation methods as for the MSD
system.Unlike theMSDmodel, it should be emphasized that theCM1
model does not converge to a single MPI equilibrium (Figure 9A),
even with the axisymmetric setting. Instead, CM1 reaches a statistical
quasi-equilibrium state due to the possible existence of low-
dimensional chaos at the MPI limit that the MSD model cannot
capture, as mentioned in Section 2.2 (Kieu and Moon, 2016; Kieu
et al., 2018). Thus, the MPI equilibriummust be now understood in a
statistical sense for all analyses in this section.

4.1 Intensity Variability at the MPI
Equilibrium
Figure 9B shows the standard deviation of TC intensity fluctuation
(hereinafter denoted as ΓMMI to distinguish from Γ obtained from the
MSD system) as a function of noise amplitudes in the RF simulation,
which is averaged during the CM1 quasi-stationary maximum
intensity (MMI2) stage. With more realistic physics, in
Figure 9B, one notices that the intensity variability tends to

increase with the amplitude of stochastic forcing, similar to what
was obtained from the MSD model. This result may seem at first
somewhat trivial, but it is very noteworthy. Indeed, such an increase
in ΓMMI indicates that stochastic forcing can actually introduce
further variability to TC intensity, even in the presence of
possible low-dimensional chaos at the MMI equilibrium. Sugihara
et al. (1994) (NKF) discussed that stochastic and chaotic variability
are generally different because deterministic chaos can exist without
any stochastic forcing. The fact that ΓMMI increases with random
noise amplitude, as shown in Figure 9B, suggests that stochastic
forcing could contribute to intensity errors at long lead times beyond
the chaotic dynamics if the stochastic forcing is sufficiently large.

For the RP method, different intensity variability between Ts
and Cd is captured (Figure 10). For Ts, both MMI and ΓMMI

increase with SST, consistent with previous studies
(Keshavamurthy and Kieu, 2021). While the increase in MMI
with Ts is well understood, the increase in ΓMMI with Ts is of note
here, as it indicates that a warmer SST would also result in higher
uncertainty for intensity forecast (Kieu and Moon, 2016;
Keshavamurthy and Kieu, 2021).

In contrast, the surface drag coefficient shows a decrease of MMI
for a larger Cd as generally expected, yet ΓMMI first decreases and
then increases with Cd (Figure 10D). This unique behavior of
intensity variability in the Cd experiment is due to the dual role
of Cd in determining both the MMI and the uncertainty. In other
words, when Cd increases from a small value, it will reduce both
MMI and the fluctuation around the MMI due to the nature of the
frictional forcing against motion.WhenCd is sufficiently large, MMI
is, however, too weak; it is no longer able to “trap” the intensity

FIGURE 11 | Similar to Figure 9B but for (A) the RIC method, (B) the
initial RP method with a random SST parameter, and (C) the initial RP method
with a random Cd parameter obtained from the CM1 model.

FIGURE 12 | (A) Dependence of the error growth rate (unit ms−1perhr)
on the stage of TC development for the 12 h lead time obtained from the RF
implementation for the CM1 model; and (B) similar to (A) but for the RIC
implementation.

2It should be noted that the actual CM1 model maximum intensity (MMI) is
generally different from the theoretical MPI value.
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fluctuation. Therefore, the fluctuation of intensity around the MMI
equilibrium becomes larger, as discussed in NKF.

Given such dependence of MMI and the variability around
MMI on Ts and Cd in the RP method, Figures 11B–C show how
ΓMMI depends on the random noise amplitude of Ts and Cd in the
CM1 model. Herein, we present results only for the initial RP
approach because the time-varying RP method produces a much
smaller intensity variability compared to the initial RP method in
the CM1 model.

Unlike the MSD model, ΓMMI does not seem to increase with
the noise amplitude for the initial RPmethod. The same is true for
the RIC method when increasing the random noise amplitude of
initial conditions, capturing no change in ΓMMI, as seen in
Figure 11A. Such resilience of the intensity variability at the
MMI equilibrium for both the RIC and RP methods reflects the
fact that this equilibrium is not a point-like equilibrium as in the
MSD model. However, it may contain a chaotic attractor of TC
dynamics that randomizing model parameters or initial
conditions does not help. Consequently, the fluctuation of
MMI at the equilibrium is no longer linearly dependent on
the random fluctuation of initial conditions or model
parameters as in the MSD system. In this regard, the CM1
results shown in Figure 11 imply that long-term intensity
errors in full-physics models may be subject to less of an
impact caused by vortex initialization uncertainties or random
model parameters/truncation errors, compared to the intrinsic
variability of TC dynamics (Du et al., 2013; Kieu et al., 2021).

4.2 Intensity Error Growth
Along with the intensity error saturation, it is important to also
validate the characteristics of the intensity error growth obtained
from the MSD model. Unlike the MSD model, in which one can
add random noise for any representation method in studying
error growth, the CM1model has strong constraints on the model
design and numerical stability that prevent one from adding
random noise arbitrarily. Therefore, we examine in this section
the error growth in the CM1 model only for the RF and RIC
methods.

Figure 12A shows the error growth rate for the RF method
obtained from the CM1 model between 48 and 180 h into
integration (cf. Figure 9). For this RF method, the CM1 error
growth rate confirms what was obtained from the MSD model,
with a larger error growth rate during rapid intensification and
much slower growth during the quasi-stationary stage. Detailed
comparison of Figures 9, 12 shows that the peak in the error
growth rate occurs, however, around t = 72h in the CM1 model,
which is after the onset of TC rapid intensification, whereas the
maximum error growth in the MSDmodel is prior to the onset of
rapid intensification (cf. Figure 7). Although this behavior of
error growth in the CM1 model is difficult to be explained due to
the more complex nature of TC nonlinear dynamics, it could
reflect the fact that the onset of TC rapid intensification in the
full-physics model is generally less well-defined than that in the
MSD model in the presence of stochastic forcing. Thus, any
perturbation introduced into the model may be smoothed out
until the model vortex enters its rapid intensification period. Of
course, this is more or less speculation at this point because there

is no effective way to isolate the smoothing effect in the CM1
model. However, it highlights some difficulty when analyzing
error growth in full-physics models such as CM1, which is absent
in the MSD model.

In contrast to the RF method, the error growth in the RIC
method captures somewhat more consistent growth rate
characteristics compared to the MSD model, with the largest
growth rate prior to the onset of rapid intensification
(Figure 12B). Moreover, the growth rate also subsides over
time and becomes stabilized during the MMI stage. This result
also accords with the idealized experiments and real-time
intensity verification presented in Kieu et al. (2018) and
Keshavamurthy and Kieu (2021), thus supporting 1) larger
uncertainty of intensity forecast during TC rapid
intensification and 2) the existence of chaotic attractor at the
MMI stage.

It should be noted again that the implementation of the RIC
method in the CM1 model, by design, does not include stochastic
forcing as in the RF method. Thus, the error growth in the RIC
experiments with either the CM1 or the MSD model resulted
merely from the spread of perturbations under the TC
deterministic dynamics, which possesses more well-defined
onset of rapid intensification compared to the RF
implementation. In this regard, the intensity error growth in
the RIC experiment shown in Figure 11 could truly reflect the
behaviors of intensity variability related to the initial condition
uncertainty prior to, during, and after TC rapid intensification,
similar to the TC dynamics in the MSD model.

5 CONCLUSION

This study examined different methods to represent stochastic
processes in TC development, using a fidelity-reduced TC model
and a full-physics model. With the focus on TC intensity variability
at the equilibrium and the intensity error growth during TC rapid
intensification, several significant results have been obtained from
both the theoretical and numerical perspectives.

First, our series of Monte Carlo simulations for the fidelity-
reduced model based on the TC-scale dynamics (MSD) showed
that the random forcing method in which the model forcing is
augmented by a stochastic term results in the largest fluctuation
of TC intensity at the maximum potential intensity (MPI) limit
compared to randomizing either initial conditions or model
parameters. In addition, the response of TC intensity to the
random forcing method increases with the random noise
amplitude, and it is dominated by the tangential wind and
warm-core anomaly components, as reported in NKF.

Second, a similar response of TC intensity variability to
random noise was also observed for the random parameter
method, but the response depends sensitively on how one
randomizes model parameters. For the initial random
parameter approach in which the model parameters are
randomized only at the initial time, TC intensity variability at
the MPI limit increases almost linearly with the noise amplitude.
For the time-varying random parameter method in which the
model parameters are randomized every time step, the intensity
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fluctuation is one order of magnitude smaller than the initial
random parameter method. Such behaviors of TC intensity
variability at the MPI limit are consistent with those obtained
from stochastic linear models and reveal the importance of how
one implements random model parameters in TC models.

Regarding the intensity error growth during TC development,
it was found that the error growth rate in the MSD model peaks
right before the onset of rapid intensification and then gradually
subsides during the intensification period before leveling off at the
MPI equilibrium. This characteristic of TC intensity error growth
was captured for all random representation methods, except for
the initial random parameter methods with two specific
parameters Ts (sea surface temperature) and Cd (the surface
drag coefficient), due to their unique role in the MPI
equilibrium. Specifically the random variation of these two
parameters produces an overall larger intensity error growth
rate at the MPI limit, which is not applied to other parameters
or random methods.

Third, to verify the results obtained from the fidelity-reduced
MSD model, cloud-resolving simulations with the CM1 model
were conducted. By implementing the same random
representation methods for the CM1 axisymmetric
configuration, it was confirmed that random forcing plays the
most significant role in the overall variability of TC intensity and
the intensity error growth during TC development. The CM1
model experiments also confirmed that the random initial
condition tends to be more effective during the early stage of
TC development but becomes less significant relative to either the
random parameter or random forcing method at the later stage of
TC development. The findings obtained from both the MSD and
CM1 models highlight the importance of choosing a proper
random forcing method to represent the variability of TC
intensity in operation.

Two major differences between the MSD and the CM1 model
that could strongly affect the analyses of TC intensity variability
should be noted here. First, unlike the MSD model, which
contains a single stable MPI point with no chaos, CM1
possesses some classical chaotic behaviors at the MPI
equilibrium similar to other full-physics models (Kieu and
Moon, 2016; Keshavamurthy and Kieu, 2021, NKF). While the
existence of this chaotic MPI attractor is still elusive, its potential
existence is needed to explain the larger intensity variability in the
CM1 model, even in the absence of all stochastic forcings. The
results shown in Figure 11may therefore display the variability of
TC intensity due mostly to chaotic dynamics rather than purely
random noise as discussed in NKF. The relative contribution
between chaotic and stochastic variability is unknown at present,
as the CM1 model does not allow for large random noise
amplitudes.

The second difference between MSD and CM1 is that the
maximum intensity equilibrium in CM1 is sensitive to model

configuration and physical parameterizations that may or may
not be maintained during arbitrarily long simulation. Unlike the
low-order MSD model for which a fixed environment is always
assumed, CM1 simulates a TC vortex in a finite domain. Without
proper physical schemes such as radiative parameterization or
lateral boundary condition adjustment, the model domain will be
eventually affected by the subsidence warming in the outer
region, thus changing the TC environment and causing the
model to spin down. In this regard, the analyses of TC
intensity at the maximum intensity equilibrium contain some
uncertainty that one has to resolve in future studies before a more
definite conclusion of intrinsic TC intensity variability can be
obtained.
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