[image: image1]Geochemical Composition of Surface Sediments in the Bashang Area, North China and its Environmental Significance

		ORIGINAL RESEARCH
published: 19 May 2022
doi: 10.3389/feart.2022.891032


[image: image2]
Geochemical Composition of Surface Sediments in the Bashang Area, North China and its Environmental Significance
Linjing Liu1,2, Gaolei Jiang1,2*, Xin Mao1,2*, Hongmei Zhao1,2, Yongjie Zhao3, Yuecong Li3, Hua Zhao1,2 and Zhiwei Bi1,2
1Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
2Key Laboratory of Quaternary Chronology and Hydrological Environment Evolution, China Geological Survey, Shijiazhuang, China
3College of Geographical Sciences, Hebei Normal University, Shijiazhuang, China
Edited by:
Zhiwei Xu, Nanjing University, China
Reviewed by:
Mengying He, Nanjing Normal University, China
Hongya Wang, Peking University, China
Xusheng Li, Nanjing University, China
* Correspondence: Gaolei Jiang, jianggl198899@163.com; Xin Mao, maoxin.iheg@cnu.edu.cn
Specialty section: This article was submitted to Quaternary Science, Geomorphology and Paleoenvironment, a section of the journal Frontiers in Earth Science
Received: 07 March 2022
Accepted: 15 April 2022
Published: 19 May 2022
Citation: Liu L, Jiang G, Mao X, Zhao H, Zhao Y, Li Y, Zhao H and Bi Z (2022) Geochemical Composition of Surface Sediments in the Bashang Area, North China and its Environmental Significance. Front. Earth Sci. 10:891032. doi: 10.3389/feart.2022.891032

The geochemical characteristics of sediments are important for reconstructing paleoclimatic and paleoenvironmental conditions in the Asian summer monsoon marginal area. However, robust reconstructions require an understanding of the key factors and mechanisms governing the spatial variations in the composition and ratio of chemical elements in the modern sediments of the Asian summer monsoon marginal area. In this study, 128 surface sediment samples were collected from the Bashang area, which is situated in the Asian summer monsoon marginal area, and examined for their major and trace element compositions and grain size. Principal component analysis (PCA) and redundancy analysis (RDA) were used to analyse the relationship between geochemical data and modern temperature and precipitation data. The results showed that the CIA values of sediments in the Bashang area are mainly affected by temperature rather than precipitation and the Rb/Sr value in the study area reflects the level of precipitation in the corresponding period and the temperature controlling the leaching and weathering. In addition, SiO2/Al2O3 and Zr/Ti ratios have good positive relationships with the coarse-grained fraction of sediments and thus can be used as grain size proxies. We propose that the exact environmental significance indicated by these proxies should be stated explicitly before using them as proxies for paleoenvironmental reconstructions of the Asian summer monsoon marginal area.
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1 INTRODUCTION
The geochemical characteristics of sediments can provide information on provenance and weathering, transport, and sedimentation processes (Wittkop et al., 2020; Yang et al., 2021). Thus, the geochemical characteristics of sediments can help determine the provenance of aeolian deposits, elucidate weathering processes, and further serve as proxies for reconstructing paleoclimatic and paleoenvironmental conditions (Zhao et al., 2019; Skurzyński et al., 2020). For example, the chemical index of alteration (CIA) is often used to evaluate the intensity of chemical weathering (Xiong et al., 2010; Buggle et al., 2011; Dinis et al., 2020), and the Rb/Sr ratios in loess-paleosol sequences can reveal the East Asian winter monsoon intensity (Chen et al., 1999; Jin et al., 2006). In addition, the SiO2/Al2O3 ratio can be used as a grain size proxy (Hatano et al., 2019). Geochemical proxies are influenced by various factors, such as the mineral composition of parent rocks, changes in material sources and sedimentary processes (Borges et al., 2008; Garzanti et al., 2011; Wang et al., 2012; Shang et al., 2013; Hu and Yang, 2016; Peng et al., 2016; Chen et al., 2018; Guo et al., 2018; Li et al., 2019; Chen C. et al., 2021). Borges et al. (2008) found that the continuous cycle of sedimentation and the inheritance of the material from the previous sedimentary cycle greatly influence the application of chemical weathering indicators. Garzanti et al. (2011) suggested that hydraulics, such as suspension screening and selective entraining, greatly impact the elemental composition of sediments, and the CIA and other chemical weathering indicators lose their significance in indicating the degree of chemical weathering during hydraulic processes.
The East Asian summer monsoon (EASM) margin environment, defined as the semiarid zone in northern China, with mean annual precipitation ranging from 400 to 200 mm, is highly vulnerable to climate change (Jiang et al., 2020; Ming et al., 2021). In this region, widespread aeolian deposits, paleosols and lacustrine sediments have recorded a long history of changing environmental conditions under the influence of Asian monsoons (Yang and Ding, 2008; Zhen et al., 2021). Therefore, this region is a focus for historical reconstructions of monsoon changes (Xiao et al., 2006; Fan et al., 2017; Sun et al., 2018; Ding et al., 2019). Elemental compositions and ratios are commonly used reconstruction proxies (Liu B. et al., 2018; Liu J. et al., 2018; Chen Q. et al., 2021; Liu M. et al., 2021). However, robust reconstructions require an understanding of the key factors governing the spatial variations in the compositions and ratios of chemical elements in the modern sediments of the marginal Asian summer monsoon area.
The Bashang area, which connects the southeastern margin of the Inner Mongolia Plateau and the northern part of the Yan Mountains, northern China, is situated in the northeast Asian summer monsoon marginal area. The Asian monsoon margin is the most sensitive region to changes in monsoons. Specifically, environmental changes in northernmost margin of the EASM reflect the advance and retreat of the summer monsoon system and its interaction with the surrounding climate system (Gao et al., 2020). Moreover, this region is a representative agro-pastoral transitional zone and has a fragile ecological environment (Liu X. et al., 2021). Therefore, this region is ideal for studying the spatial variability of the composition and ratio of chemical elements in modern sediments, as well as its influential factors in the Asian summer monsoon marginal area. However, the spatial variability of chemical elements in modern sediments, as well as its influential factors in the Bashang area, remain uncertain.
In this study, 128 surface sediment samples were collected from the Bashang area and examined for their major and trace element contents and grain size. The objectives of this study were to investigate the mechanisms that control the spatial variability of chemical proxies in the surface sediments of the Asian summer monsoon marginal area, such as the CIA, Rb/Sr ratio, and SiO2/Al2O3 ratio, which are commonly used indices for paleoenvironmental reconstruction, and to assess the potential for the use of those chemical proxies as indicators of environmental conditions.
2 STUDY AREA
The Bashang area is situated in the transition zone from the Inner Mongolia Plateau to the mountainous area in the northern mountains of Hebei Province (Figure 1). The area is surrounded by mountain ranges, such as the Yinshan Mountains to the north, the Yanshan Mountains to the south, and the Greater Khingan Range to the east (Figure 1). The Bashang area ranges from 1,350 m to 1,600 m in elevation, and the elevation decreases from south to north.
[image: Figure 1]FIGURE 1 | (A) and (B) Location of the study area (C) Monthly mean temperatures and monthly mean precipitation values in the Bashang area.
Climatologically, the Bashang area is located in the Asian summer monsoon marginal area and is characterized by a continental climate (Liu M. et al., 2021). The wind directions are dominated by northwest winds, which are driven by winter monsoonal winds from the Siberian high-pressure system. The mean annual temperature (MAT) values in this region range from 2 to 5°C, and they increase from east to west. Precipitation is mainly concentrated from July to September. The windy days and frost-free periods are 60–90 days and 80–100 days, respectively. The mean annual precipitation (MAP) gradually increases from 260 in the northwest to 400 mm in the southeast. Moreover, the mean annual potential evaporation values range from 1700 to 1800 mm, which are 4–5 times the MAP. The soil types are mainly chestnut soil and sandy soil. The soil textures are mainly sandy and clayey, and the soil layer is relatively thin (Wu and Zhao, 2017).
3 MATERIALS AND METHODS
3.1 Sample Collection
In this study, 128 surface sediment samples were collected from the Bashang area (Figure 1A). These samples were obtained mainly from areas that are less affected by human activities. The sediment types were mainly alluvial and lacustrine deposits. A representative 10 m × 10 m quadrat was selected, and then surface samples were collected from the top 1–2 cm at the four corners and centre of the quadrat according to the plum blossom point method. The lithology of the samples is mainly fine sand, with small amounts of medium sand and silt.
3.2 Sample Analysis
Approximately 5 g dried samples were ground to less than 200 mesh with an agate mortar and then pressed into tablets using the boric acid pressing method (Ji et al., 2003) at a high pressure of 30 tonnes. The concentrations of major elements and trace elements in our samples were determined by X-ray fluorescence (XRF) spectrometry (Panalytica) at Nanjing Normal University. The instrument used Hongze Lake Sediment GSS-9 (GBW07423) as a standard material for quality control. The analytical uncertainties (relative standard deviations) were less than 10%.
The grain size of the samples was determined using a Malvern Mastersizer 2000 at the Key Laboratory of Quaternary Chronology and Hydrological Environment Evolution, China Geological Survey. This apparatus, with a measurement range of 0.02–2000 μm, was produced by Malvern Instruments Ltd., United Kingdom. Samples were first pretreated with 10% H2O2 and 30% HCl to remove organic matter and carbonates, respectively, and then dispersed by ultrasonication with 10 ml 10% boric acid solution. Then, the samples were analysed. Replicate analyses indicate that the mean particle size measurement error is <2%.
3.3 Meteorological Data
The MAT and MAP were calculated based on meteorological data between 1960 and 2018 from ten meteorological stations in the Bashang area (Table 1). Then, the kriging model data interpolation method was used to obtain the MAT and MAP at each sampling point.
TABLE 1 | Climatic conditions of the Bashang area, including the MAT and MAP, calculated based on meteorological data between 1960 and 2018 from ten meteorological stations in the Bashang area obtained from the China Meteorological Data Sharing Service System.
[image: Table 1]3.4 Data Analysis
Common element proxies, such as the CIA and Rb/Sr and SiO2/Al2O3 ratios, were determined from the surface sediments of this study. The CIA (Nesbitt and Young, 1982) was calculated as follows:
[image: image]
where CaO* refers to the amount of CaO incorporated in the silicate fraction of the samples, which was determined in our study following the method of McLennan (1993).
Principal component analysis (PCA) and redundancy analysis (RDA) were used for ordination of the geochemical data and the temperature, precipitation and mean grain size of the sediment samples. Log(x+1) transformations were applied before ordination analysis. Ordination analysis was used to explore the spatial distribution of element contents and the relation between the element contents and environmental variables. Log(x+1) transformations were applied before ordination analysis. Monte Carlo permutation tests (499 unrestricted permutations) were conducted to test the significance of variables, and forward selection was used to determine the minimum subset of significant variables. The ordinations were performed using the CANOCO program, version 5.0 (Šmilauer and Lepš, 2014).
4 RESULTS
4.1 Major and Trace Element Compositions
SiO2 had the highest mean concentration of 56.28%, and the concentrations ranged from 43.36 to 62.92%. The concentrations of Al2O3 in the surface sediments ranged from 9.25 to 15.31%, with a mean concentration of 12.49%. The concentrations of Fe2O3 ranged from 3.07 to 11.99%, with a mean concentration of 4.89%. The K2O, Na2O, CaO, and MgO concentrations were 1.53% (0.94–2.56%), 2.63% (1.64–3.28%), 2.89% (1.23–12.36%), and 2.21% (1.26–5.31%), respectively. Among the trace elements, the mean concentrations of Rb, Sr, Ti and Zr in the surface sediments were 96.96 ppm (50.50–128.20 ppm), 210.71 ppm (137.00–400.90 ppm), 3892.90 ppm (2479.10–6506.80 ppm) and 387.88 ppm (190–840 ppm), respectively. The concentration of SiO2 showed relatively small spatial variations within the Bashang area (Figure 2), while other major and trace elements showed considerable spatial variations. Higher concentrations of Al2O3 and Rb occurred in the western part of the Bashang area, while higher concentrations of both Zr and Ti were observed in the southern and western parts of the Bashang area (Figure 2).
[image: Figure 2]FIGURE 2 | Spatial distribution of elements in the surface sediments of the Bashang area.
The average CIA value was 61.59, and the values ranged from 51.17 to 69.34, while the average Rb/Sr value was 0.477, and the values ranged from 0.16 to 0.75. Higher CIA values occurred in the western part of the Bashang area, and Rb/Sr values were the highest in the northwestern part of the Bashang area (Figure 2).
The PCA results showed two principal components that accounted for 73.5% of the total variance (Figure 3). The first principal component (PC1) was positively correlated with MgO, CaO, and Sr and negatively correlated with SiO2, K2O, Al2O3 and Rb in the sediments (Figure 3). The second principal component (PC2) had high positive loadings of Zr and Ti and negative correlations with Fe2O3 (Figure 3). The RDA results showed that the first axis of the RDA captured 13% of the total variance, and the second axis captured 8%. The results showed one strong positive relationship between the CIA and Ti, temperature and clay content (Figure 5), and the arrows of the first axis were positioned in the negative direction. Zr and Si/Al and the fine and coarse sand contents had a positive relationship, and the arrows were positioned in the negative direction of the first axis. Rb/Sr had a weak relationship with the environmental parameters.
[image: Figure 3]FIGURE 3 | PCA biplot of different elements in the surface sediments of the Bashang area.
4.2 Grain Size
The grain size analysis revealed that the samples were dominated by fine sand (64–255 µm) and silt (4–63 µm). The mean contents of the clay (<4 μm), silt (4–63 μm), and fine sand (64–255 μm) fractions were 15.80, 44.36 and 28.30%, respectively. Moreover, the mean contents of the medium sand (256–512 μm) and coarse sand (512–2000 μm) fractions were relatively low.
The mean contents of the clay, silt and fine sand fractions showed relatively small spatial variations within the Bashang area (Figure 4). The mean contents of the medium and coarse sand fractions showed considerable spatial variations, and higher medium and coarse sand fractions were identified in the southwestern and northeastern parts of the Bashang area (Figure 4).
[image: Figure 4]FIGURE 4 | Spatial distribution of grain size parameters.
5 DISCUSSION
5.1 Proxy Interpretation
5.1.1 CIA
The CIA was first proposed by Nesbitt and Young (1982) to reconstruct the paleoclimate from the early Proterozoic sediments of the Huronian Supergroup, north of Lake Huron. The CIA has been widely used to quantitatively evaluate the chemical weathering intensity (Guo et al., 2018; Wang et al., 2020) and represents the ratio of mobile soluble elements (i.e., CaO, Na2O, and K2O) to immobile insoluble elements (i.e., Al2O3). Generally, higher CIA values indicate stronger chemical weathering (Xie et al., 2018; Chen C. et al., 2021). CIA values <50 indicate virtually no weathering; CIA values of approximately 50–60 indicate weak chemical weathering; and CIA values >80 indicate strong chemical weathering (Zhao et al., 2018).
Previous studies have suggested that climate, especially precipitation, exerts a dominant control on silicate weathering (White and Blum, 1995; Dinis et al., 2020). However, in this study, the RDA results show that the CIA exhibits better correlations with the MAT values and clay fractions and poorer correlations with the MAP values. The intensity of weathering at the Earth’s surface largely depends on climate, and the weathering intensity is higher in warmer and more humid settings. Based on the Arrhenius equation, the mineral decomposition rate at the watershed scale increases as temperature increases, and the reaction rate can be doubled for each 10 °C increase (White and Blum, 1995; Dessert et al., 2003). The influence of temperature on the weathering rate is dependent on precipitation (White and Blum, 1995). In the study area, precipitation gradually decreased from east to west due to the weakening of the Asian monsoon. However, temperature increased from east to west. The increase in the CIA values from east to west (Figure 2) and the RDA result (Figure 5) indicate that the CIA values of sediments in the Bashang area are mainly affected by temperature rather than precipitation.
[image: Figure 5]FIGURE 5 | RDA plot of environmental indices and factors.
5.1.2 Rb/Sr Ratio
Rb and Sr usually exhibit different geochemical behaviours in sediments during the processes of weathering, denudation, and transport (Amorosi et al., 2021). In comparison to Sr, Rb is relatively insoluble and can be immobilized by adsorption onto clay minerals (Chen et al., 1999; Liu et al., 2014; An et al., 2018). Thus, the Rb/Sr ratio is often considered a good proxy for the chemical weathering intensity in lacustrine sediments (Jin et al., 2001), loess-paleosol sediments (Liang et al., 2013), and aeolian sediments (Liu et al., 2014). Previous studies of weathering crusts and loess-paleosol sediments have suggested that higher Rb/Sr values in the residual component indicate stronger chemical weathering. The higher chemical weathering intensity of lake sediments in catchments corresponds to the low Rb/Sr ratios of lake sediments resulting from more dissolved Sr in the basin (Jin and Zhang, 2002; Jin et al., 2006).
In this study, the RDA results show that the Rb/Sr ratio has a negative correlation with the MAT and MAP values. The studies of loess-paleosol sequences show that the Rb/Sr value of the residual component gradually increases with the strengthening of chemical weathering (Chen et al., 1999; Chen et al., 2001). Accordingly, the Rb/Sr value in lacustrine sediments decreases with increasing chemical weathering rate in the basin (Jin et al., 2001). Therefore, generally, in dry and cold climate environments, chemical weathering is weak and the Rb/Sr value of lacustrine sediments is high. Under warm and humid conditions, chemical weathering is strong and the Rb/Sr value of lacustrine sediments is low. On the other hand, the variation range of Rb content in lacustrine sediments is very small, and the variation of Rb/Sr value mainly depends on the activity of Sr (Chen, et al., 1997). This is because the element Rb and Sr are easy to separate during rainwater leaching, Rb has a strong affinity with clay, and Sr easily enters the solution (Chen et al., 1997). Therefore, the Rb/Sr value in well preserved lacustrine sediments essentially indicates the degree of material leaching in the source area, and further reflects the level of precipitation in the corresponding period in the basin and the temperature controlling the leaching and weathering behavior.
5.1.3 SiO2/Al2O3 Ratio
In general, coarse-grained sediments are enriched in quartz that has a high SiO2 content. In contrast, fine-grained sediments usually tend to be enriched in micaceous and/or clay minerals that have high Al2O3 contents (Liang et al., 2013). Consequently, SiO2/Al2O3 ratios are used as a grain size index (Hatano et al., 2019). In this study, the RDA results show that the mean and median grain sizes have significant positive correlations with the SiO2/Al2O3 ratio. Figure 6 also indicates that grain size exerts a strong influence on the SiO2/Al2O3 ratio.
[image: Figure 6]FIGURE 6 | Relationship between the SiO2/Al2O3 ratio and the mean grain size (A) and median grain size (B) of sediments.
5.1.4 Ti and Zr Contents and Zr/Ti Ratio
Ti and Zr are presumably the least mobile elements during weathering and are mainly found in weathering-resistant silicate minerals, such as zircon and rutile, respectively (Dypvik and Harris, 2001; Kylander et al., 2013). Changes in the Ti and Zr contents can thus be used to qualitatively or semiquantitatively estimate detrital matter abundances (Francke et al., 2020). When the regional precipitation increases, large Ti and Zr abundances are brought into the lake during heavy runoff and heavy precipitation, and vice versa. Therefore, the Ti contents indicate the amounts of detrital sediments brought into the lake by regional precipitation or surface runoff to a certain extent (Shen et al., 2010; Biskaborn et al., 2012). In this study, the RDA results show that Zr exhibits a good correlation with the sand fraction, while Ti is associated with the clay and silt fractions. Thus, increases in the Zr/Ti ratio may be indicative of less clay and silt or more sand and can be used as a proxy for alterations in silicate sources.
5.2 Implications for Paleoenvironmental Reconstruction
As common geochemical proxies, the CIA, Rb/Sr ratio, SiO2/Al2O3 ratio, and Zr/Ti ratio are widely used to assess various sediments (Roy et al., 2013; Francke et al., 2020). The CIA and Rb/Sr ratio are often used to evaluate the chemical weathering intensity (Garzanti et al., 2018). In this study, the CIA values have a good correlation with the clay components of sediments and temperature. The study area is located at the margin of the Asian monsoon, and the precipitation in this area is affected by the advance and retreat of the monsoon. The RDA results indicate that the CIA values of sediments in the Bashang area are mainly affected by temperature rather than precipitation. In the study area, the mean annual precipitation (MAP) gradually increases from 260 in the northwest to 400 mm in the southeast. It is possible that the changes in precipitation have a limited effect on the regional CIA. The Rb/Sr ratio has a negative correlation with the MAT and MAP values. The Rb/Sr ratio is affected by complex factors. Especially for the lacustrine sediments, the source of sediments has a great influence on Rb/Sr ratio (An et al., 2018). These negative correlations suggested that the Rb/Sr value in well preserved lacustrine sediments in the study area reflects the level of precipitation in the corresponding period in the basin and the temperature controlling the leaching and weathering behavior. The negative correlation between Rb/Sr ration and CIA value also indicates this point. The PCA results show that PC1 is positively correlated with MgO, CaO and Sr, which are easily transported elements, and is negatively correlated with SiO2, K2O, Al2O3 and Rb in the sediments, which are not easily transported (Figure 3). PC1 accounts for 48.5% of the total variance. Therefore, the changes in PC1 can be used as a comprehensive proxy of paleoclimate change.
Many studies have suggested that SiO2/Al2O3 and Zr/Ti ratios can be used as grain size indices for aeolian sands (Chen Q. et al., 2021) and lake sediments (Kylander et al., 2013) in semiarid and arid regions. Our findings are consistent with these conclusions. The SiO2/Al2O3 and Zr/Ti ratios in this study have a good positive relationship with the coarse-grained fraction of sediments and thus can be used as proxies for grain size.
6 CONCLUSION
The CIA values of sediments in the Bashang area are mainly affected by temperature. The Rb/Sr value in well preserved lacustrine sediments in the study area reflects the level of precipitation in the corresponding period in the source area and the temperature controlling the leaching and weathering behavior. Therefore, different geochemical proxies in the same sediments have different interpretation. The exact environmental significance indicated by these proxies should be stated explicitly before using them as proxies for paleoenvironmental reconstructions of the Asian summer monsoon marginal area. Statistical analyses of chemical changes may be able to identify more appropriate climate change proxies.
The mean and median grain sizes have significant positive correlations with the SiO2/Al2O3 ratio. The SiO2/Al2O3 ratio can therefore be used as a grain size index. Zr exhibits a good correlation with the sand fraction, while Ti is associated with the clay and silt fractions. Thus, the Zr/Ti ratio can be used as a proxy for alterations in silicate sources.
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