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Porosity and saturation are the basis for describing reservoir properties and formation
characteristics. The traditional, empirical, and formulaic methods are unable to accurately
capture the nonlinear mapping relationship between log data and reservoir physical
parameters. To solve this problem, in this study, a novel hybrid model (NRF)
combining neural network (NN) and random forest (RF) was proposed based on well
logging data to predict the porosity and saturation of shale gas reservoirs. The database
includes six horizontal wells, and the input logs include borehole diameter, neutron,
density, gamma-ray, and acoustic and deep investigate double lateral resistivity log.
The porosity and saturation were chosen as outputs. The NRF model with
independent and joint training was designed to extract key features from well log data
and physical parameters. It provides a promising method for forecasting the porosity and
saturation with R2 above 0.94 and 0.82 separately. Compared with baseline models (NN
and RF), the NRFmodel with joint training obtains the unsurpassed performance to predict
porosity with R2 above 0.95, which is 1.1% higher than that of the NRF model with
independent training, 3.9% higher than RF, and superiorly greater than NN. For the
prediction of saturation, the NRF model with joint training is still superior to other
algorithms, with R2 above 0.84, which is 2.1% higher than that of the NRF model with
independent training and 7.0% higher than RF. Furthermore, the NRF model has a similar
data distribution with measured porosity and saturation, which demonstrates the NRF
model can achieve greater stability. It was proven that the proposed NRF model can
capture the complex relationship between the logging data and physical parameters more
accurately, and can serve as an economical and reliable alternative tool to give a reliable
prediction.
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1 INTRODUCTION

Logging curves can reflect different lithology and formation characteristics. In recent years, the
prediction of reservoir parameters using log curve data has become a focus of research.

Reservoir physical parameters, which mainly include porosity, permeability, water saturation, and
oil saturation, are the basis for describing reservoir properties and reservoir modeling (Li et al., 2016;
Wang et al., 2019; Song et al., 2021a). Specifically, the pore space of a reservoir is an important space
for the accumulation and transport of hydrocarbons. It is also a fundamental requirement for the
formation of hydrocarbon reservoirs. The size of porosity directly reflects the ability of the rock to
store hydrocarbons. It is an important part of reservoir evaluation and occupies a very important
position in the exploration and development of oil and gas fields. The oil, gas, and water saturation in
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a reservoir is also a fundamental parameter for estimating oil
reserves and judging the characteristics of the reservoir.

At present, there are two major approaches used for the
measurement of porosity and saturation (Song et al., 2020;
Wang et al., 2020; Song et al., 2021b). The first method is a
direct estimation, namely, obtaining the actual physical
parameter data using rock slices or cores. This method is
often performed in the laboratory and is more accurate, but it
is time-consuming and costly. The second method is the indirect
measurement, namely, estimating the porosity and saturation
based on the geological and statistical methods as well as function
approximation (Wyllie et al., 1956; Raymer et al., 1980). Early
logging methods for predicting reservoir parameters are mainly
aimed at linear data. The physical parameters are calculated using
linear equations and empirical formulas, which is a purely
mathematical method without considering the actual
reservoirs’ environment.

However, some reservoirs are highly heterogeneous, and the
geological environment is complex. In addition, the relationship
between the logging data and reservoir parameters is nonlinear.
The traditional regression analysis methods are difficult to
achieve satisfactory results. Therefore, exploring a novel
method for reservoir parameter prediction is particularly
necessary for the development of unconventional and complex
oil and gas fields.

With the rise of the emergence of big data and artificial
intelligence, machine learning has been rapidly developed and
applied. Some researchers have obtained the reservoir parameters
such as permeability, porosity, and saturation. Akande et al.
(2015) proposed an artificial neural network (ANN) based on
the correlation feature selection to predict permeability. The
results show that this method can predict permeability with
fewer features. Komarialaei and Salahshoor (2012) also used
the ANN model with the principal component analysis (PCA)
to predict permeability. The experimental results show that the
method has certain practicality. Hadi and Sadegh (2016)
predicted the porosity using an intelligent method based on
seismic attribute data. J. Song et al. (2016) introduced the
random forest method to predict seismic reservoirs, and it is
found that the method is less affected by noisy data and has
certain stability and accuracy.

Predicting the porosity and saturation based on well logs using
machine learning algorithms is a feasible and alternative method.
However, the accuracy cannot fully meet the requirement.
Therefore, the complex nonlinear relationship is still needed to
be further explored.

2 METHODOLOGY

In this section, the methodologies of the neural random forest
algorithm are introduced systematically. As the basis of the
neural random forests, the principle of neural network and
random forests are presented at the first, and the ensemble of
neural network and random forests is introduced later. Finally,
the evaluation criteria of the machine learning model are
presented.

2.1 Model Establishing
2.1.1 Neural Network
The neural network (NN) is a robust and effective computational
tool for establishing nonlinear patterns between the complex
nonlinear data. In particular, supervised learning is adopted for
most applications (Rolon et al., 2009; Khandelwal and Singh,
2010; Saputro et al., 2016). The typical NN contains an input
layer, an output layer, and more than one hidden layer (Gardner
and Dorling, 1998; Basheer and Hajmeer, 2000; Schmidhuber,
2015; Prieto et al., 2016).

In the training process, the weight and threshold between each
neuron of the neural network are adjusted continuously.

Suppose the training data are
D � {(x(1), y(1)), (x(2), y(2)),/, (x(r), y(r)),/, (x(m), y(m))},
w(l) is the weight matrix from the l − 1 layer to l,w(l)

jk is the weight
from the k-th neuron in the l − 1 layer to the j-th neuron in the l
layer. b(l)j is the bias of the j-th neuron in the l layer. z(l)j is the
input of the j-th neuron in the l layer. Then the input of each
neuron in each layer is expressed as Eq. 1.
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(1)

Namely,

z(l) � w(l)a(l−1) + b(l). (2)
Among them, a(l) � σ(z(l)), where σ(x) is the activation

function. Then,

a(l) � σ(w(l)a(l−1) + b(l)). (3)
Finally, in the forward propagation, the output of the neural

network is expressed as

f(x; θ) � σ(w(L)/σ(w(2)σ(w(1)x + b(1)) + b(2))/ + b(L)), (4)
where L represents the output layer of the neural network, and

θ � {w(1), b(1), w(2), b(2),/, w(L), b(L)}. (5)
The loss function C(θ) is defined as

C(i)(θ) � 1
m
∑m
r�1

����f(x(r); θ) − y(r)����, (6)

C(θ) � 1
N(L) ∑N(L)

r�1
C(i)(θ). (7)

In addition, in this article, we adopt the particle swarm
optimization (PSO) to optimize the weight and bias. The PSO
is performed to solve the global optimization problems by
simulating the biological population (Kennedy and Eberhart,
1995; Eberhart and Shi, 2001). It has received extensive
attention because of its few parameters and easy implementation.

It is noticed that the interpretability of the machine learning
model is necessary to assist to make decisions. Although the
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neural network can obtain nonlinear relationships among data, it
is uneasy to clarify how it works, which is called the “black box.”
In addition, the neural network has plenty of hyperparameters to
tune, which is time-consuming.

2.1.2 Random Forest Algorithm
Random forest (RF) is an ensemble machine learning approach
proposed by Breiman (2001), which has the advantages of
interpretability, convenience, and fast calculating speed. RF is
independently built by several decision trees. Decision trees are
the basic classifier in the RF algorithm. Compared with the neural
networks, the decision trees are interpretable. It starts from the
root node and constructs the tree nodes one by one based on the
rule for prediction or classification.

The standard RF is built upon the bootstrap datasets and
splitting with the classification and regression tree (CART)
(Breiman et al., 1984) methodology. This method works on
the bagging principle. Bagging algorithms randomly select
samples from the raw data so that the training of each basic
classifier in the ensemble is independent of the others.
Specifically, the flow of the construction of RF is as follows:

First, at each node of the decision tree, the predictor variables
are sampled randomly. Then, the algorithm finds the minimal
residual sum of squares (RSS) for regression or categorization.
Furthermore, data are divided into the “in-bag” subset for
training and the “out-of-bag (OOB)” subset for validation.
Finally, the decision trees are combined through the majority
(categorization) or the average (regression) vote to form the final
prediction result (Despoina et al., 2021).

Compared with the neural network, RF has fewer parameters
to tune. However, on some classification or regression problems,
it is prone to overfit with the noisy data.

2.1.3 Proposed Neural Random Forests
With respect to the shortcomings of both the neural network
framework and random forests, Welbl (2014) and Richmond
et al. (2015) had demonstrated the importance of casting the RF
algorithm into a neural network framework. To exploit the
benefits of both algorithms, Biau et al. (2019) proposed two
new hybrid procedures to reformulate the RF method into a
neural network which is called neural random forests (NRF). The
NRF method exploits prior knowledge of regression trees and
provides interpretability. In addition, this method has more
excellent performance than the RF method and neural networks.

NRF has two different ways to combine the individual
networks: one is the independent training and the other is the
joint training.

Assume a random forest is a predictor consisting of a
collection of M (large) regression trees: the training sample is
Dn � ((X1, Y1), . . . , (Xn, Yn)), n≥ 2, where X is the feature data
and Y is the corresponding label.

For independent training, the parameters of each tree-type
network are fitted network by network. The prediction value is
defined as

r(x; θ1, . . . , θM,Dn) � 1
M

∑M
m�1

r(x; θm,Dn), (8)

where θ1, . . . , θM are random variables and r(x; θ1, . . . , θM,Dn)
is the predicted value at the point x for the m-th tree. The
structure of NRF with independent training is shown in Figure 1.

For the joint training, the individual tree networks are
concatenated into one network and then fitted based on the

FIGURE 1 | NRF model structure with independent training.

FIGURE 2 | NRF model structure with joint training.
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whole model. The final estimate is obtained by minimizing the
empirical error.

Jn(f) � 1
n
∑n
i�1

∣∣∣∣Yi − f(Xi)
∣∣∣∣2, (9)

where f(Xi) is the neural network implementing functions, Yi is
the actual data, and n is the number of samples.

The structure of NRF with joint training is shown in Figure 2.
The activation function in this model is the hyperbolic tangent

activation function. This function can provide better
generalization and favor smoother decision boundaries. The
hyperbolic tangent activation function is defined as

tanh(x) � ex − e−x

ex + e−x
� e2x − 1
e2x + 1

. (10)

2.2 Model Evaluation Criteria
In our experiments, four predictive metrics are calculated to
assess the performance of the prediction results of well logs,
namely, the coefficient of determination (R2), mean absolute
error (MAE), mean squared error (MSE), and root mean
square error (RMSE).

The R2 demonstrates the prediction accuracy of the proposed
method. The MAE describes an average difference between the
predicted and actual measurements. RMSE denotes the standard
deviation between the predictions of the model and actual data.

The three criteria are defined below:

R2 �
∑n
i�1
(y�i − �y)2

∑n
i�1
(yi − �y)2 , (11)

MAE � 1
N

∑n
i�1

∣∣∣∣∣y�i − �yi

∣∣∣∣∣, (12)

RMSE �
������������
1
n
∑n
i�1
(y�i − yi)2

√
, (13)

where n is the number of samples, yi is the i-th actual value, y
�
i is

the i-th predicted value, and �yi is the average of n.

3 EXPERIMENTS AND DISCUSSION

In this section, the experiments are conducted for shale gas
reservoirs. The proposed model is to search the complex
nonlinear relationship between the well logs and physical
parameters, and efficiently predict the porosity and saturation
of blind wells.

All experimental studies were carried out in the Python 3.6
compiling environment using Anaconda. All artificial intelligence
models were developed using TensorFlow (Abadi et al., 2016).

3.1 Dataset
To evaluate the performance of the proposed approach, we selected
the logging data of six classic wells (Well-1, Well-2, Well-3, Well-4,

Well-5, andWell-6) from the study area, and the shale gas reservoirs
at the Chongqing oilfield in China comprise the dataset for the
prediction of porosity and saturation. We selected six logging curves
from each well, namely depth (DEPTH), borehole diameter (CAL),
neutron (CNL), gamma ray (GR), density (DEN), acoustic (AC), and
deep investigate double lateral resistivity log (RD). The depth of six
wells is 2000–3000m. The sampling interval is 0.125 m. In addition,
the porosity and saturation data are calculated using the
petrophysical volume model. To validate the accuracy of the
calculated results, we compared them with the core test results,
and they matched very well. Therefore, we regard the calculated
porosity and saturation results as the “actual” data. For the machine
learning model to learn the best permutation sequence between the
input and target vectors, the well log data are subdivided into a
training set and a test set. To improve the accuracy of prediction, it is
necessary to carry out data preprocessing.

The research area of six wells is first determined by manual
selection. Then, the null data from six wells are discarded.
Furthermore, the noise data are filtered using the wavelet
transform technique. The wavelet transform technique can
decompose a signal into multiple lower resolution levels by
controlling the scaling and shifting factors of a single wavelet
function (Foufoula-Georgiou et al., 1994; Lau and Weng, 1995;
Torrence and Compo, 1998; Percival, 2000). After the wavelet
transform technique, the noise data are filtered, and high quality
data are obtained.

In our experiments, CAL, CNL, GR, DEN AC, and RD logging
curves are denoised using the wavelet transform technique taking
the CNL logging curve from Well-1 as an example. The
comparisons of the logging curves before and after denoising
are depicted in Figure 3. It can be seen that the data are smoother
after wavelet denoising and the denoising effect is more
pronounced in the red circle marked in the picture.

3.2 NRF Architecture and Procedure
In this study, we built a porosity and saturation prediction model
separately based on the NRF algorithm and designed the model’s

FIGURE 3 | Effect of denoising for the CNL logging curve.
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framework. The overall structure of this work is illustrated in
Figure 4.

The neural network in the NRF model has four layers which
use a backpropagation algorithm. The hyperbolic tangent
function is used on the hidden layers, and Adam optimizer is
used during the training process to avoid overfitting. In addition,
the trees number of RF included in the NRF model is 30 and the
max depth is 6.

The steps used to develop and implement the proposed model
are summarized in the following text:

Step 1. Well log selection: The input and output vector for the
proposed model are determined and specified.

Step 2. Data preprocessing: This involves discarding invalid data
and denoising data using the wavelet transform technique.

Step 3. Data division: The processed data are split into the
training set and testing set.

Step 4. NRF architecture construction: This consists of
collaborating the neural network and RF. The related
parameters should also be set at this stage.

Step 5. NRF model training: The relationship between the input
and output vectors is obtained through the NRF model.

Step 6. Physical parameters prediction: Based on the trained NRF
model in Step 5, the porosity and saturation of the blind well are
predicted.

Step 7. Result comparison: To evaluate the performance of the
proposed model, the baseline models, NN and RF, were
compared.

3.3 Experiment Results and Discussion
In our experiments, the NRF model was trained in two ways:
independent training and joint training. For simplicity, the NRF
model with independent training is named NRF1, and the NRF
model with joint training is named NRF2. We first validate the
performance of denoising based on the wavelet transforms. The
predictive performance of saturation is taken as an example, and
the results are shown in Table 1.

It is demonstrated in Table 1 that the NRF models can achieve
better results with lower error after denoising technique.
Therefore, it is necessary and significant to denoise to obtain
high-quality data.

Based on the processed data, the performance of different
prediction models are compared. As the proposed NRF model
makes up of the neural network and random forest, the standard
neural network and random forest are compared together. These
four models (NRF1, NRF2, NN, and RF) are used for forecasting
porosity and saturation of the study reservoir. To represent the fit
of the logging curve more visually, the predicted and actual
logging data with depth are depicted in Figure 5. The red line
denotes the measured data, the blue line means the predicted
data, and the dots indicate the core test values.

It was found that most of the predicted values using the NN
model did not fall on the perfect linear trend line and have the
worst performance, while other three methods fit well.

To compare the results further, part of the well logs is selected
to be analyzed specifically (the red box in Figure 5). The selected
part is from the middle of the logging with a depth of
3210–3330 m (Figure 6). This part is 120 m, which contains
960 samples.

From Figure 6, it is demonstrated that the forecast accuracy of
porosity obtained by the NN has a large error zone, while the
prediction using the RF model has been enhanced. Using the
combination of the NN and RF algorithms, the prediction
accuracy has been further improved evidently. Therefore, the
NRF model can be a powerful tool for predicting the porosity
based on well logging data.

The predicted results for saturation are also depicted in
Figure 7. Similarly, the red line denotes the measured
saturation value, and the blue line means the predicted data. It
was found that the predictions of four models fluctuate greatly
around the standard measured values, and the prediction of
saturation is not as good as the prediction of porosity.

FIGURE 4 | Structure of this work.

TABLE 1 | Comparison of predictive results of saturation before and after
denoising using wavelet transforms.

Method MAE MSE RMSE

NRF1-before-denoise 19.754 2.280 4.444
NRF1-after-denoise 9.068 2.195 3.011
NRF2-before-denoise 17.522 1.902 4.185
NRF2-after-denoise 7.470 1.836 2.733
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To compare the results further, the well logging curves with a
depth of 3650–4100 m are selected (the red box in Figure 7). This
part is 450 m, which contains 3,600 sample. The details are
depicted in Figure 8.

It can be drawn from Figure 8 that the forecast accuracy of
saturation obtained by the NN has a large error zone. The
prediction using the RF model is competitive to the NRF1
model, while the prediction accuracy has been further

FIGURE 5 | Comparison between actual and predicted porosity data in different models (Well-6).
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improved using the NRF2 model. Therefore, the NRF2 model is
chosen to predict saturation based on well logging data.

To provide a qualitative analysis of the model prediction, the
R2, MAE, MSE, and RMSE are calculated for porosity and
saturation prediction models, respectively.

The qualitative analysis results of the predicted porosity and
saturation from four models are shown in Table 2. For the
prediction of porosity, it is demonstrated that among the
classic machine learning algorithms (NN and RF), RF works
much better due to the majority voting mechanism, with the R2 of

FIGURE 6 | Comparison results of different models for porosity (depth: 3210–3330 m).
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0.913, MAE of 0.066, MSE of 0.201, and RMSE of 0.226. The
NRF1 model whose R2 is 0.941 performs very close to the NRF2
model. Comparingly, the NRF2 model is superior, and it yields
the best R2, which is 1.1% higher than the NRF1 model, 3.9%
higher than the RF, and greatly higher than the NN. It is worth
noting that our proposed NRF model significantly outperforms
the baseline models, resulting in at least 3% improvement in the
prediction accuracy.

It can be noticed that all the four models have a poorer
capability of predicting saturation than porosity. This is

attributed to the strong correlation of the logging curves
applied with porosity and the weak mapping to saturation.
Nevertheless, the proposed NRF model, especially the NRF2
model, provides high accuracy prediction for saturation, with
R2 above 80%.

Moreover, we generated the histograms of porosity and
saturation in the target well and predicted the values using
four algorithms (Figures 9, 10). The horizontal coordinates
denote the range of data and the longitudinal coordinates
means the amount of data in different range, presented as a

FIGURE 7 | Comparison between actual and predicted saturation data in different models (Well-6).
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percent format. The histograms can obviously reflect the
distribution, the center, and dispersion of data.

It can be drawn from Figure 9 that the porosity data ofWell-6 are
consistent with normal distribution and the center of data is 5, which
is named the standard center point. As for the predicted results from
the neural network, the data are roughly in accordance with normal
distribution, but the center of data is about 3, which is far away from
the standard center point. The predicted results of the RFmodel have
a large dispersion and the center point is around 4.5, which is still far
away from the standard center point. In comparison, the NRF with

the independent and joint training is similar with the distribution of
actual porosity data, and the center of the data is near the standard
center point.

As can be seen in Figure 10, the saturation value for Well-6
conforms to a normal distribution, while the distribution of
predicted values for the NN, RF, and NRF1 models does not
fit. In comparison, the results from the NRF2 model have a
normal distribution, and the center point is the same with the
standard center point. Consequently, the NRF2 model can be
employed to predict the saturation of shale gas reservoirs.

FIGURE 8 | Comparison results of different models for saturation (depth: 3650–4100 m).
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A qualitative analysis of the results from four models is also
provided by calculating the minimum (Min), maximum (Max),
mean of all data in each model (Mean), standard deviation (Std
Dev), and Variance (Var).

The Var is expressed as

Var � 1
n
∑n
i�1
(yi − �y)2. (14)

The Std Dev is calculated by

StdDev �
������������
1
n
∑n
i�1
(yi − �yi)2√

, (15)

where n is the number of samples, yi denotes the data to be
assessed, and �yi is the mean of all samples.

The consequences are shown in Table 3.
For the prediction of porosity and saturation, it can be

concluded from Table 3 that the predicted results from the

NRF2 model have the closest value of mean, standard
deviation, and variance with the actual data, which means this
model has a similar distribution with the actual measured
porosity and saturation data. In addition, it also demonstrates
greater stability and better performance. In this case, the NRF1
method is slightly inferior to the NRF2method. It is noted that for
the prediction of saturation, the NN model obtains close
qualitative values with the actual data. However, it does not
imply that this algorithm has better performance according to
Figures 7, 8.

Therefore, from the perspective of data distribution, the
superiority of the algorithm proposed in this article is further
illustrated.

It is crucial to notice that the models created in the present
research are suitable only for the shale gas reservoir. When the
same methodologies used are presented in this research, it is
necessary to retrain the model with the data in the respective area.

4 CONCLUSION

In this study, a novel hybrid model combining the neural network
and random forest is proposed for predicting the porosity and
saturation based on well logging of the shale gas reservoir. The
ability of the proposed model to forecast porosity and saturation
is discussed. Meanwhile, the proposed model is also compared
with the baseline methods, namely, NN and RF. The main
conclusions are as follows:

1. The proposed NRF model provided a promising method for
predicting the porosity and saturation, as evidenced by the

TABLE 2 | Qualitative analysis of predicted porosity and saturation results from
four models.

Method for porosity R2 MAE MSE RMSE

NN 0.256 2.096 0.985 1.462
RF 0.913 0.066 0.201 0.226
NRF1 0.941 0.047 0.153 0.186
NRF2 0.952 0.039 0.114 0.162
Method for saturation
NN 0.363 24.821 3.069 4.865
RF 0.774 9.040 2.193 3.006
NRF1 0.823 8.845 1.902 2.942
NRF2 0.844 7.169 1.836 2.135

FIGURE 9 | Histogram of porosity data distribution.
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satisfactory performance on porosity data with R2 above 0.94
and saturation data with R2 above 0.82. It can serve as an
alternative tool to give a reliable prediction.

2. The proposed NRF model outperformed the classical neural
networks and random forest models. In comparison, for the
prediction of porosity, the RF algorithm worked much better
than the NN model with R2 above 0.91. The NRF2 model
obtained the unsurpassed performance with R2 above 0.95,
which is 1.1% higher than that of the NRF1model, 3.9% higher
than RF, and greatly higher than the NN. For the prediction of
saturation, the NRF2 model with R2 above 0.84 is also superior
than other algorithms, which is 2.1% higher than the NRF1
model and 7.0% higher than the RF model. It has been proven

that the NRF2model can more accurately capture the complex
relationship between the logging data and physical
parameters.

3. In terms of the histogram of data distribution, the NRF2 method
demonstrated greater stability, while the NRF1 method was
slightly inferior in the study case. Therefore, the superiority of
the algorithm proposed in this article is further illustrated.

In the future, we will investigate the logging data and other
physical properties.
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FIGURE 10 | Histogram of saturation data distribution.

TABLE 3 | Qualitative analysis of data distribution for porosity and saturation from
the actual data and predicted results.

Method for
porosity

Min Max Mean Var Std. Dev.

Actual 0.53 9.43 4.88 0.82 0.91
NN −3.45 20.13 4.12 1.09 1.04
RF 0.78 9.34 4.49 0.82 0.90
NRF1 0.51 9.68 4.78 0.83 0.91
NRF2 0.66 9.58 4.80 0.81 0.90
Method for saturation
Actual 3.80 78.35 21.43 40.14 6.34
NN 3.12 63.45 22.34 44.96 6.70
RF 10.25 55.21 20.17 35.58 5.96
NRF1 10.02 56.41 21.64 34.86 5.90
NRF2 9.31 58.02 21.27 32.04 5.66
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