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China has abundant shale gas resources with great exploration potential, and stage
progress has been made in this aspect. The sedimentary environment and reservoir
characteristics are important aspects of the study on shale gas accumulation. Previous
studies have mostly been carried out from a “qualitative” perspective, but not from a
“quantitative” one. There is a lack of comparative studies on “marine shales with different
TOC contents”. This paper takes the marine shale of the first member of the Longmaxi
Formation (Long 1 Fm) in southern Sichuan Basin, Southern China, as the research object.
The core samples were taken to carry out analyses (mineral composition analysis, TOC
content analysis, porosity analysis) and experiments (carbon dioxide and nitrogen
adsorption experiments, high-pressure mercury intrusion, FIB-SEM, and FIB-HIM
experiments). The element logging data were collected to conduct the quantitative
comparison of genesis and pore structure characteristics of siliceous minerals in
marine shale with different TOC contents in this area. The conclusions are as follows:
first, a formula is used to calculate and determine whether there is excessive silicon; then
the Al-Fe-Mn triangle diagram is used to analyze the genesis of excessive silicon, so as to
quantitatively analyze the genesis of siliceous minerals in shale: the siliceous minerals of
organic shale (1% < TOC <2%) in the member studied are almost terrigenous detrital
genesis; most siliceousminerals in organic-rich shale (TOC >2%) are detrital genesis, and a
small part (0–20%) are biogenic. Carbon dioxide and nitrogen adsorption experiments, as
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well as high-pressure mercury intrusion experiments are adopted to quantitatively
characterize the whole-aperture pore structure characteristics. The pore development
characteristics of different shale components are analyzed by combing FIB-SEM and FIB-
HIM experiments. The organic-bearing shales in the target section of this study area mainly
develop clay mineral pores (71%), and are dominated by macro-pores (57.3%) with a low
number of pores, irregular-shaped pores, as well as poor storage capacity and
connectivity; the organic-rich shales in the target section of this study area mainly
develop organic pores (51%), and are dominated by micro-pores (32.1%) and
mesopores (54%) that are large in number and elliptical-shaped, with good storage
capacity and good connectivity. The results of this study help to improve the
understanding of the pore size of marine shales, the origin of siliceous minerals in
marine shales, and the pore structure characteristics of marine shales, which are of
great theoretical and practical significance for improving the theory of shale gas formation
and guiding the selection of shale gas sweet spot.

Keywords: marine shales, quantitative analysis, genesis of siliceous minerals, organic pores, clay mineral pores,
connectivity

INTRODUCTION

The need for natural gas in China has increased substantially due
to the rapid economic growth in recent years. Similar to North
America, China is also rich in shale gas resources with enormous
potential for exploration (Curtis., 2002; Guo, 2016; Zou et al.,
2017; Guo et al., 2021). Since 2009, the major oil companies have
successively completed five key industrial construction areas in
Fuling, Changning, Weiyuan, Zhaotong, and Fushun-
Yongchuan, and six evaluation breakthrough areas in
Xuanhan-Wuxi, Jingmen, Southern Sichuan (Rongchang-
Yongchuan and Weiyuan-Rongxian County), Southeast
Sichuan (Dingshan, Wulong and Nanchuan), Meigu-Wuzishan
and Yan’an, as well as seven potential research areas in Guizhou
Zheng’an, Cengong, Hubei Laifeng-Xianfeng, Hunan Baojing,
Longshan, Chongqing Chengkou and Zhongxian-Fengdu, with
proven geological reserves of shale gas reaching 17,800 × 108 m3.
This means that China has achieved phased achievements in shale
gas exploration and development (Zou et al., 2015; Zou et al.,
2016; Hou et al., 2020; Guo, 2021a).

Sichuan Basin is the main area for marine shale gas
exploration and development in China. In the first member
of the Lower Silurian Longmaxi Formation, the total organic
carbon content (TOC content) exceeds 2% overall, and the rocks
are organic-rich shales in the first sub-member, which is also the
main reservoir stratum of shale gas (Guo et al., 2016; Kang et al.,
2019; Guo et al., 2020). As exploration proceeds, a batch of
prolific shale gas wells have been discovered; meanwhile, there
are also some shale gas wells with little gas or no gas. There are
significant differences in the shale gas production of the same
block (Guo et al., 2017). The research on shale deposition and
shale reservoir is important regarding the shale gas
accumulation research. A series of studies on shale deposition
and reservoirs have been done before the present study (Gao and
Hu, 2018; Zhang et al., 2018; Wang et al., 2019; Huang et al.,
2020a; Gao et al., 2020). Taking the shale samples of Longmaxi

Formation and Niutitang Formation in the periphery of
Chongqing as the research objects, Wang et al. (2018) studied
the organic pores and development characteristics of the two sets
of shales through the organic carbon content test, mineral
composition analysis, equivalent vitrinite reflectance test, FIB-
SEM and FIB-HIM observation in combination with the analysis
of stratigraphic burial history and hydrocarbon generation
history. However, the experimental method used in this paper
is mainly a qualitative study of shale reservoirs, and quantitative
studies have not been conducted. Taking the continental shale
reservoirs in the lower sub-member of the Third Sha Member of
Zhanhua Depression and marine shale reservoirs in Longmaxi
Formation of Southeast Sichuan Basin as typical examples, Li
et al. (2019) thoroughly analyzed the pore structure differences
between continental and marine shale reservoirs by field
emission scanning electron microscopy, carbon dioxide
adsorption, nitrogen adsorption, high-pressure mercury
intrusion analysis, Soxhlet extraction and other methods. In
this paper, some experimental methods are used to
quantitatively study the characteristics of shale reservoirs, but
the experimental methods used are not comprehensive enough.
Moreover, this paper is a comparative study of the characteristics
of shale reservoirs in different sedimentary phases (terrestrial
and marine), and it does not compare the shale reservoirs with
different TOC contents. Qiu et al. (2019) took the shale in Lower
Silurian Longmaxi Formation in the Upper Yangtze Region of
southern China as an example to carry out the comparative
analysis on TOC content, paleoproductivity, and redox
conditions between the shale formation containing volcanic
ash and the normal sedimentary shale formation. Gao et al.
(2020) pointed out through literature review that both the
inorganic and organic diagenesis control the shale pore
structure evolution process. The studies on pore structure
characteristics and diagenesis of shales conducted in this
paper are mainly qualitative studies, and the quantitative
aspects are slightly inadequate.
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A series of studies have been done on shale sedimentation and
shale reservoirs, but most of them are “qualitative” research, while
the “quantitative” perspective has rarely been taken. As shale gas
exploration proceeds, the gap needs to be filled. Moreover,
comparative studies on “marine shales with different TOC
contents” are rare. Therefore, this paper takes a quantitative
and comparative perspective of the silica-mineral genesis and
pore structure characteristics of marine shales with different TOC
contents in Jiao Ye 1 Well from the Lower Silurian Longmaxi
Formation in the southeastern Sichuan Basin, southern China

(Figure 1) (Nie et al., 2020; Wang et al., 2020e; Zhang et al., 2021;
Zhang et al., 2022a). This paper quantifies the presence and
content of excess silicon in marine shales with different TOC
contents by using Si and Al elements from elemental logging, and
uses the Al-Fe-Mn triangle diagram to determine the cause of
excess silicon. Besides, the “porosity petrophysical model” is
utilized to quantitatively characterize the pore composition of
marine shales with different TOC contents. CO2 and N2

adsorption experiments, combined with high-pressure mercury
pressure experiments, were carried out to quantitatively

FIGURE 1 | Location of Jiaoshiba Block in Southeast Sichuan Basin, South China and JiaoYe1 Well Location Map. Modified from references (Wang et al., 2020e;
Nie et al., 2020; Zhang et al., 2021; Zhang et al., 2022a).

FIGURE 2 | Schematic diagram of the experiments used in each of the research components of this paper.
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characterize the pore volumes of marine shales with different
TOC contents. FIB-SEM and FIB-HIM observations were
completed to directly characterize the pore volumes of marine
shales with different TOC contents.

GEOLOGICAL SETTINGS

Sedimentary and Stratum Characteristics
According to previous studies (Mei et al., 2012; Wang et al.,
2015b; Mou et al., 2016; Zhang et al., 2020b), the interior
Cratonic sagging basin was formed after the Upper Yangtze
area was squeezed by the Cathaysian Plate in the Upper
Ordovician-Lower Silurian. In the Upper Yangtze region, the
Upper Ordovician and Lower Silurian sedimentary strata are
called the Wufeng and the Longmaxi Formations, respectively.
The latter can be divided into the first, second, and third
members from bottom to top. This work focuses on the first
member of the Longmaxi Formation, (Long 1 Fm.,) and its shale
has different lithologies: the first sub-member is primarily the

black organic-rich siliceous shales, while the second and third
sub-members are a combination of dark grey shales, silty shales,
and siltstones.

Tectonic Characteristics
According to previous studies (Li et al., 1995; Li et al., 2002; Wang
and Li, 2003; Shan et al., 2021), the original continental crust in
South China was split into Yangtze and Cathaysian paleo-plates
in the early Mesoproterozoic. In the Lower Cambrian, the two
plates had tension and a large-scale transgression occurred in
them, leading to the sedimentation of a group of organic-rich
shales that almost covered the entire plate. Later, the water body
became shallower over time, and the lithology gradually
developed from fine shales and silty shales into coarse clastic
rocks, such as siltstones and sandstones, etc. Due to the extrusion
and collision of the Cathaysian Plate in the Ordovician, the water
body continued to get shallower, thus changing the sedimentary
system of clastic rocks into carbonate rocks. In the Upper
Ordovician-Lower Silurian, the sedimentary system of clastic
rocks was restored due to the large-scale transgression.

FIGURE 3 |Quantitative analysis of siliceous minerals in marine shales with different TOC contents in the first member of Lower Silurian Longmaxi Formation in Jiao
Ye 1 well, Yangtze area. See Figure 1 for the well location.
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Consequently, a set of organic-rich shales were deposited in the
deep shelf surrounded by the ancient land. In the Cambrian-
Silurian, the Cathaysian Plate gradually subducted into and
collided with the Yangtze Plate. The two plates merged into
the unified South China Plate at the end of the Silurian (Huang
et al., 2020b; Wang H. et al., 2020; Wang et al., 2020d; Li et al.,
2020; Gao et al., 2021a).

SAMPLES, EXPERIMENTS, AND DATA
SOURCES

A schematic diagram of the experiments used in each of the
research components of this paper is shown in Figure 2. From
Long 1 Formation, the core samples were taken every 2 m from
the JiaoYe 1 Well. Then, we carried out the TOC content analysis
experiments with Sievers 860 analyzer, the X diffraction whole-
rock mineral analyses and clay mineral analyses with mineral
analyzer YST-I and the porosity experiments with Poro PDP-200
tester. Partial data were collected from the literature of Guo et al.
(2016). The element logging data provided by Schlumberger
Company were also collected.

Meanwhile, some samples with different TOC contents were
selected. Then we carried out the carbon dioxide adsorption
experiments with a BSD-PM1/2 instrument, the nitrogen
adsorption experiments with a BSD-PS1/2/4 adsorber, and
the high-pressure mercury intrusion experiments with a 3H-
2000PS2 instrument. The experimental data were collected to
obtain the experimental results about the joint characterization
of the whole-aperture pore volume. Other samples with
different TOC contents were chosen and carried out the FIB-
SEM (Focused ion beam scanning electron microscopy)
experiments with Helios NanoLab 660, and the FIB-HIM

(Focused ion beam-Helium ion microscopy) experiments
with Zeiss Orion NanoFab.

RESULTS AND DISCUSSION

Quantitative Comparison of Siliceous
Mineral Marine Shale With Different TOC
Contents
The silica sources include normal terrigenous detrital deposits,
hydrothermal genesis and biogenic silica under special
circumstances (Bostrom et al., 1973; Murray et al., 1991; Liu
and Zheng, 1993; Yang et al., 1999). Excess siliceous mineral
content (Siex) refers to siliceous minerals other than normal
terrigenous detrital deposits. The content of excess siliceous
minerals can be calculated by the following formula:

FIGURE 4 | The source of siliceous minerals in the first member of Lower
Silurian Longmaxi Formation of Jiao Ye 1 Well containing excess silicon
content is analyzed by Al-Fe-Mn triangle diagram, indicating that the excess
silicon content is biogenesis. See Figure 1 for the well location.

FIGURE 5 | The divided sub-members in JiaoYe 1 Well in Long 1 Fm.
and analysis results of mineral composition, TOC content and porosity. See
Figure 1 for the well location.
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Siex � Sis − [(Si/Al)bg × Als] (1)
where, Sis is the content of silicon in the sample, Unit:wt%; Als is
the aluminum content in the sample, Unit:wt%; the value of (Si/
Al)bg is 3.11, which is the average content in shale (Holdaway and
Clayton, 1982).

The shale in the JiaoYe 1 Well from the first sub-member of
Long 1 Formation is organic-rich shale (TOC >2%), and those
from the second and third sub-members are organic shale (1% <
TOC <2%). According to the Si and Al elements logging data
provided by the Schlumberger Company and calculation formula
of the excess siliceous mineral content, the Siex of the Jiao Ye 1
Well from Long 1 Fm. is calculated, and the results are shown in
Figure 3.

Wedepohl (1971), Adachi et al. (1986), and Yamamoto (1987)
proposed a method to determine whether siliceous minerals are
hydrothermal or biogenic genesis by Al-Fe-Mn triangular
diagram. In this paper, the test values of Al, Fe and Mn
elements in the formation with excess silicon content in the
first member of Lower Silurian Long Fm. in Jiao Ye 1 Well are
projected on the triangle diagram, as shown in Figure 4. It is
found that the numerical values are basically distributed in the
biogenesis area, which indicates that excess silicon content is
biogenic. Based on the findings, the vertical siliceous source map
of shale in the first member of Lower Silurian Longmaxi
Formation in Jiao Ye 1 Well can be accurately drawn, as
shown in Figure 3. It can be seen that the organic shale in the
second and third sub-members of Long 1 Fm. are basically
terrigenous detrital silicon, and the organic-rich shale in the
first sub-member of Long 1 Fm. contains biogenic silicon.
Among the members with biogenic silicon, the biogenic silicon
content of more than half of the members is between 0 and 5%,
and that in some members is 5–15%, with the highest being
15–20%.

Quantitative Comparison of Pore Structure
Characteristics of Marine Shales With
Different TOC Contents
Quantitative Comparison of Pore Composition of
Marine Shales With Different TOC Contents
From Long 1 Fm. in this study, the core samples were taken from
the JiaoYe 1 Well. Next, we carried out TOC content analyses,
porosity experiments and mineral composition analyses. See
Figure 5 for the stratigraphic division and geochemical data

analysis results in this area. Based on the porosity data statistics of
each sub-member in Long 1 Fm., we found that the average total
porosity is 4.60% in the first sub-member, 3.72% in the second
sub-member, and 5.36% in the third sub-member. According to
TOC content and mineral composition analyses, in the Long
1 Fm., the brittle minerals content and TOC content in shales
decrease gradually from the lower first sub-member (average
value is 65.9 and 3.58%, respectively) to the upper third sub-
member (average 46.8 and 1.72%, respectively), while the clay
minerals content increases gradually (from 34.1 to 53.2%). See
these data in Table 1.

In Long 1 Fm., each sub-member has different mineral
composition and TOC content, which means that the pore
composition varies as well. According to the reservoir condition,
shale pores can be divided into organic pores, brittle mineral pores,
and claymineral pores. Guo et al. (2016) quantitatively characterized
the contribution of each type to shale pores through the
petrophysical model of porosity (Guo et al., 2016). Although the
total porosity is similar among sub-members, the porosity
composition is different because of the various mineral
composition and TOC content in shales. For the total porosity in
Long 1 Fm., the proportion of the clay mineral pores increases
gradually from the lower first sub-member (average 43%) to the
upper third sub-member (average 71%), while the proportion of the
organic pores decreases gradually from the lower first sub-member
(average 51%) to the upper third sub-member (average 24%) (Guo
et al., 2016).

Quantitative Characterization of Pore Volumes of
Marine Shales With Different TOC Contents
CO2 and N2 adsorption experiments were carried out on the
samples in this study for characterization, which has overlapped
area inevitably so the weighted average method (Ji et al., 2015;
Wang et al., 2016a; Wang et al., 2016b; Tang et al., 2017; Gao
et al., 2021b; Gao., 2021) was adopted to process the pore volume
and pore-specific surface area data. Besides, high-pressure
mercury experiments were carried out for the distribution of
micro- (<2 nm), meso- (2–50 nm), and macropores (>50 nm),
respectively. For Long 1 Fm. in this study, quantitative
characterization (Figure 6) was conducted on the pore volume
of shales with different TOC content. See the statistical data in
Table 1. In the first sub-member with high TOC content, It is
found that the pore volume proportion of micropores and
mesopores are relatively larger (32.1 and 54%, respectively),
and the volume proportion of macropores is relatively smaller

TABLE 1 | Pore volume and proportion of shaly micropores, mesopores and macropores in long 1 Fm.

Strata name TOC content
(%)

Pore volume of micropores Pore volume of mesopores Pore volume of macropores

Value (
× 10−3 ml/g)

Proportion (%) Value (
× 10−3 ml/g)

Proportion (%) Value (
× 10−3 ml/g)

Proportion (%)

Third Sub-member 1.0 1.2 10.3 3.8 32.5 6.7 57.3
Second Sub-member 1.6 1.8 15.3 4 33.9 6 50.8

1.8 2.6 22.8 4.9 43 3.9 34.2
First Sub-member 4.2 4 27.4 6.8 46.6 3.8 26

5.1 4.4 32.1 7.4 54 1.9 13.9
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(13.9%). In the third sub-member with gradually decreasing TOC
content and gradually increasing clay minerals, the pore volume
proportion of micropores and mesopores decreased gradually
(10.3 and 32.5%, respectively), and the pore volume proportion of
macropores increased gradually (57.3%). This means that
micropores and mesopores are mainly developed in organic
pores, and macropores are mainly developed in clay
mineral pores.

Direct Observation of Pore Structure Characteristics of
Marine Shales With Different TOC Contents
For an in-depth analysis on the characteristics of shaly pore
structure in different strata, we observed the organic pores in the
first sub-member and the clay mineral pores in the third sub-
member of the JiaoYe 1 Well in Long 1 Fm. during FIB-SEM
experiments and FIB-HIM experiments.

The FIB-SEM images show that the grayscale of pores is the
largest, and the grayscale of each shaly material composition
decreases as the molecular weight drops, which means that the
grayscale of organic matters is higher than that of inorganic
minerals in FIB-SEM images (Ji et al., 2014; Ji et al., 2016;
Guo,2021b; He et al., 2021; Huang et al., 2021; Zhang et al.,
2022b). For the Long 1 Fm., it is found that most pores are
organic pores in the first sub-member with large pore diameter
(micropores, mesopores and macropores with diameter less
than 200 nm), and the pores are mostly elliptical
(Figure 7A); the number of clay mineral pores is less than
that of organic pores in the third sub-member, while with larger
pore diameter than that of organic pores (macropores with a
diameter of 200nm~1 μm), and the pores are mostly irregular
(Figure 7C).

The FIB-HIM experiments can be adopted to further observe
the internal stereo structure of the pores and display the two-
dimensional images with three-dimensional effects (Zhang
et al., 2020a; Zhang et al., 2020c; Liu et al., 2021a; Liu et al.,
2021b; Wang et al., 2021). The grayscale of FIB-HIM images is
right the opposite of that of FIB-SEM images, and the
grayscale of each shaly material composition increases with
the decreasing molecular weight. This means that the
grayscale of organic matter is lower than that of inorganic
minerals in FIB-SEM images (Bernard et al., 2012a; Bernard
et al., 2012b; Dillinger and Esteban, 2014; Wang et al., 2017;
Kou et al., 2022). For the Long 1 Fm., FIB-HIM experiments
were carried out on the FIB-SEM samples with similar depth.
It is found that there are foramina embedded in the
macropores in the organic pores of JiaoYe 1 well in the
first sub-member (Figure 7B). The porosity development
characteristics of “foramina embedded in the macropores”
not only increase the reservoir space and specific surface area
of organic matters, but also provides a seepage channel for
shale gas, as well as enhances the connectivity of organic
matters (Zuo et al., 2019; Wang G. et al., 2020; Wang J. et al.,
2020; Xia et al., 2020; Yu et al., 2022). Relatively isolated pores
are fewer and mainly developed in the clay mineral pores in
the second and the third sub-members (Figure 7D), with
relatively poor reservoir capacity and connectivity (Nie et al.,
2012; Dillinger and Esteban, 2014; Wang et al., 2015a; Guo
et al., 2016).

Patterns of Pore Structure Characteristics
Based on the above analysis, the patterns of pore structure
characteristics of marine shales with different TOC contents
were summarized, as shown in Figure 8. The organic shales in
the second and third sub-members of Long 1 Fm. mainly develop
clay mineral pores, mainly macropores, and the pore

FIGURE 6 | The whole-aperture quantitative characterization on pore
volume of the shales with different TOC content in JiaoYe 1 Well in the Long
1 Fm.: Characteristics about. (A): 2337 m, TOC = 1.0%; (B): 2358 m, TOC
= 1.6%; (C): 2369 m, TOC = 1.8%; (D): 2396 m, TOC = 4.2%; (E):
2406 m, TOC = 5.1%. See Figure 1 for the well location. Modified from
reference (Tang et al., 2016).
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FIGURE 7 | In JiaoYe 1 Well in the Long 1 Fm.: FIB-SEM and FIB-HIM images of shales in the first sum-member and third member. In JiaoYe 1 Well in the Long
1 Fm., 2402 m: Organic pores: (A) FIB-SEM image, (B) FIB-HIM image; In JiaoYe 1 Well in the third member of Longmaxi Formation, 2339 m: Clay Mineral Pores: (C)
FIB-SEM Image, (D) FIB-HIM Image.

FIGURE 8 | Patterns of pore structure characteristics of marine shales with different TOC contents (A): Organic shale; (B) Organic-rich shale.
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development is isolated, with a small number of pores. The pores
are mostly irregular, with poor reservoir capacity and
connectivity (Figure 8A). The organic-rich shales in the first
sub-member of Longmaxi Formation mainly develop organic
pores, mainly micropores and mesopores, which are great in
quantity and mostly elliptical. It presents the development
characteristics of “small pores in big pores”, with large
reservoir space and sound connectivity (Figure 8B).

The following analyzes the reasons why the pore structure
characteristics of marine shales with different TOC contents
are developed differently. The organic-bearing shales in the
sub-members 2 and 3 of Long 1 formation have relatively low
TOC contents, and inorganic minerals are mainly clay
minerals; while the contents of siliceous minerals such as
quartz and feldspar are low. Intergranular pores are
developed in clay minerals. Due to the effect of overburden
pressure and the lack of support from rigid minerals such as
quartz and feldspar, some of the clay minerals were
compressed, causing the residual clay mineral pores to
develop more isolated and irregular pores that are small in
number, with poor storage capacity and connectivity. The
organic-rich shale in the sub-member 1 of the Long 1
Formation has a relatively high TOC content, and inorganic
minerals are mostly siliceous minerals such as quartz and
feldspar, but the clay mineral content is relatively low. The
organic-rich shales in the sub-member 1 of the Long 1
formation have a kerogen type of I and II1 as they are all
marine shales. With the gradually deepened thermal evolution
when entering the immature stage (Ro > 2%), part of type I and
II1 kerogen are directly converted to natural gas, and the other
part is first converted to liquid hydrocarbons and then to
natural gas, thus forming organic pores within the kerogen.
The organic pores are protected by rigid minerals such as
quartz and feldspar and are highly resistant to compression. As
a result, these organic pores are mostly in an elliptical shape
and large in number with the distribution of “large pores over
small pores”. Besides, they have large storage space and strong
connectivity.

Two quantitative analysis methods are applied in this
paper: (1) Quantitative analysis of shale silica mineral
genesis: The data are from elemental logging data or data
obtained from the main trace element analysis of the cores.
The Si and Al contents, combined with the calculation
formula, are used to determine the presence of excess Si
and to calculate its amount; and then the Al-Fe-Mn
triangle is used to analyze the cause of the excess Si. This
can quantitatively analyze the siliceous mineral genesis of
shale and provide a basis for the study of shale depositional
environment. (2) Quantitative analysis methods of pore
structure characteristics of shale: (1) data are obtained
from TOC content analysis, mineral composition analysis,
rock density analysis and porosity analysis of shale cores; the
“porosity petrophysical model” is used to quantitatively
characterize the pore composition of marine shale; (2) data
are obtained from adsorption experiments of carbon dioxide
and nitrogen; high-pressure mercury pressure experiments,
FIB-SEM experiments, and FIB-HIM experiments. A

combination of these five experiments was used to
quantitatively characterize the pore structure of shale micro
and nano full pore size. The above methods can be applied not
only to the study of marine shale, but also to the study of
terrestrial shale and marine-terrestrial transitional shale,
providing important technical support for the analysis of
shale depositional environment and shale reservoir
characterization.

SUMMARY AND CONCLUSION

This paper studied the marine shales in Long 1 Fm. (located in the
Jiaoshiba Block in Southeast Sichuan Basin). The core samples
were taken from the newly drilled shale gas exploration wells. The
mineral composition analysis, TOC content analysis, porosity
analyses, carbon dioxide adsorption experiment, nitrogen
adsorption experiment, high-pressure mercury intrusion
experiment, FIB-SEM experiments and FIB-HIM experiments
were carried out, and the element logging data were collected to
quantitatively compare the genesis of siliceous minerals and pore
structure characteristics of marine shales with different TOC
contents. The conclusions are as follows:

1) The existence of excess silicon content was determined
according to the contents of silicon and aluminum, as well
as the results of calculation by formula, and then the Al-Fe-
Mn triangle diagram analysis method used to analyze the
genesis of excess silicon content was adopted to quantitatively
analyze the genesis of siliceous minerals of shales. The
siliceous minerals of organic shale in the target formation
of study area are almost terrigenous detrital genesis; while the
siliceous minerals in organic-rich shales contain 0–20%
biogenic silicon.

2) The full aperture pore structure characteristics of shale can be
quantitatively characterized by carbon dioxide adsorption
experiment (characterizing the micropores < 2 nm),
nitrogen adsorption experiment (characterizing the
mesopores from 2 to 50 nm), and high-pressure mercury
intrusion experiment (characterizing the macropores
>50 nm). Besides, combined with FIB-SEM experiments
and FIB-HIM experiments, the pore development
characteristics of different components of shale can be
analyzed. Clay mineral pores are mainly developed in the
organic shales of the target formation in this study area, which
are mainly large pores, small in quantity, irregular and poor in
reservoir capacity and connectivity. The organic-rich shales in
the target formation of this study area mainly develop organic
pores, which are mainly composed of a large number of oval
micropores and mesopores, with good reservoir capacity and
connectivity.
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NOMENCLATURE

Als the aluminum content in the sample, unit:wt.%Clay minerals, unit:wt%

FIB-HIM Focused ion beam-Helium ion microscopy

FIB-SEM Focused ion beam-scanning electron microscopy Pore Diameter,
unit:nm Pore volume, unit:ml/g Porosity, unit:%

Siex Excess siliceous mineral content, unit:wt% Siliceous minerals, unit:
wt%

Sis the content of silicon in the sample, unit:wt%

(Si/Al)bg 3.11, which is the average content in shale

TOC Total organic carbon, unit:wt%
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