
Acoustoelastic FD Simulation of
Elastic Wave Propagation in
Prestressed Media
Haidi Yang1,2, Li-Yun Fu1,2*, Bo-Ye Fu3,4 and Tobias M. Müller5

1Shandong Provincial Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China,
2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,
3Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing,
China, 4Institutions of Earth Science, Chinese Academy of Sciences, Beijing, China, 5Centro de Investigación Científica y de
Educación Superior de Ensenada (CICESE), Department of Seismology, Ensenada, Mexico

Insights into wave propagation in prestressed media are important in geophysical
applications such as monitoring changes in geo-pressure and tectonic stress. This can
be addressed by acoustoelasticity theory, which accounts for nonlinear strain responses
due to stresses of finite magnitude. In this study, a rotated staggered grid finite-difference
(RSG-FD) method with an unsplit convolutional perfectly matched layer absorbing
boundary is used to solve the relevant acoustoelastic equations with third-order elastic
constants for elastic wave propagation in prestressed media. We partially verify our
numerical simulations by the plane-wave theoretical solution. Comparisons of
theoretical and calculated wave velocities are conducted for both P-wave and S-wave
as a function of hydrostatic prestresses. We discuss several aspects of the numerical
implementation. Numerical acoustoelasticity simulations for wave propagation in single-
and double-layer models are carried out under four states of prestresses, confining,
uniaxial, pure-shear, and simple-shear. The results display the effective anisotropy of
elastic wave propagation in acoustoelastic media, illustrating that the prestress-induced
velocity anisotropy is of orthotropic features strongly related to the orientation of
prestresses. These examples demonstrate the significant impact of prestressed
conditions on seismic responses in both phase and amplitude.

Keywords: acoustoelasticity, elastic wave propagation, modelling, CPML absorbing boundary condition, rotated
staggered grid (RSG) method

INTRODUCTION

The impact of prestressed zones on seismic waves is an important issue that affects the interpretation of
the results by seismic imaging and inversion. It is well known that acoustic velocities in rocks are
sensitive to prestresses. The theory of acoustoelasticity, as an extension of the classical theory of
elasticity, is set up under the framework of hyperelasticity (e.g., Toupin and Bernstein, 1961; Thurston
and Brugger, 1964; Norris, 1983; Shams et al., 2011). The theory relates elastic moduli to prestresses (or
residual stresses) in solids (e.g., Pao et al., 1984), resulting in an effective anisotropy for wave
propagation in acoustoelastic media. It has been used to account for stress-induced velocity
variations in rocks (e.g., Johnson and Shankland, 1989; Meegan et al., 1993), therefore perhaps
providing the potential to understand the acoustic response to in-situ stresses (Sinha and Kostek, 1996;
Huang et al., 2001) and, in turn, to monitor changes in geopressure and tectonic stress. Theoretical and
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experimental investigations of acoustoelasticity for wave
propagation in prestressed rocks have made great signs of
progress, but with limited literature on numerical simulations
for acoustoelastic wave propagation. As a useful complement to
the theoretical solutions of acoustoelastic equations, numerical
acoustoelasticity simulations are thought to provide further
insights into the stress-induced variations in velocity and
anisotropy.

Finite-difference (FD) numerical simulations of elastic wave
propagation have been extensively studied over the past decades.
A comprehensive review and mathematical details are discussed
by Carcione (2007). The standard staggered grid (SSG) FD
operator (Virieux, 1986) has been widely applied to various
types of velocity-stress equations for wave propagation. It
calculates spatial derivatives halfway between two gridpoints,
where some modeling parameters defined on intergrid
locations must be averaged, yielding inaccurate results or
instability problems for wave propagation in media with
strong fluctuations in elastic parameters (Crase, 1990; Seron
et al., 1996). The SSG-FD algorithm has been improved
significantly, for example, with the staggered mesh for
anisotropic and viscoelastic wave equations (Carcione, 1999),
the volume harmonic and arithmetic averaging of parameters
(Moczo et al., 2002), the Lebedev FD scheme for anisotropic
media (Lisitsa and Vishnevskiy, 2010), and the high-order
operator for anisotropy simulations (e.g., Hu and McMechan,
2010; Pei et al., 2012). It is worth noting that a rotated staggered
grid (RSG) FDmethod (Saenger et al., 2000; Saenger and Shapiro,
2002) is presented with no averaging of elastic moduli required in
an elementary cell. The method has been applied to viscoelastic
and anisotropic wave propagation (Saenger and Bohlen, 2004)
and to poroelastic equations for ultrasonic propagation (coda
waves) in digital porous cores (Zhang et al., 2014). Gao and
Huang (2017) develop an improved RSG scheme for elastic-wave
modeling in anisotropic media, with fourth-order temporal
accuracy to reduce the numerical dispersion associated with
prolonged wave propagation or a large temporal step size.
Recent and valuable contributions to the FD numerical
simulation of wave propagation include a high-performance
FD architecture for wave propagation in anisotropic
poroelastic media (Alkhimenkov et al., 2021) and a discrete
FD grid representation for strongly heterogeneous media
(Moczo et al., 2019; Gregor et al., 2021).

Great progress has been made in both the theoretical and
experimental aspects of acoustoelasticity, but dedicated
computational literature is rare. Mavko et al. (1995) present a
simple transformation to calculate the stress-induced anisotropy
in homogeneous rocks. Liu and Sinha (2000) solve acoustoelastic
equations using a second-order FD time-domain (FDTD)
method to simulate borehole acoustic wave propagation in
prestressed formations. Chen et al. (2006) parallelize the
FDTD simulation in the super computer for ultrasonic wave
propagation in prestressed media with a perfectly matched layer
(PML) as an absorbing boundary condition. Fang et al. (2013)
propose an iterative finite-element numerical approach to
calculate stress-induced anisotropy around a borehole by
incorporating the rock-physics transformation (Mavko et al.,

1995). Yang et al. (2019) present a finite-element prediction of
acoustoelastic effects associated with Lamb wave propagation in
prestressed plates. Li et al. (2020) simulate acoustoelastic effects
associated with ultrasound wave propagation by time-space finite
element formulation based on quadratic interpolation of the
acceleration. It is worth mentioning that Lys et al. (2015) use
the general theory of finite deformations to formulate a governing
equation in terms of velocities, stresses, and small rotations in the
form of the first-order hyperbolic system. They apply the RSG-FD
method to the governing equation for wave propagation in a
homogeneous medium under a simple prestress mode, but with
the results unvalidated.

In this study, we introduce the theory of acoustoelasticity as a
base to support numerical simulations for wave propagation in
prestressed media. We follow the works of Pao et al. (1984), Pao
and Gamer (1985), and Winkler and Liu (1996) for the theory of
acoustoelasticity with a detailed description of the third-order
elastic constants that are important for building physically
meaningful prestressed models. The presented numerical
scheme is based on the RSG-FD method which is
implemented by an eighth-order (for the space derivatives)
and second-order (for the time derivatives) FD operator. The
classical split PML and conventional unsplit PML absorbing
boundaries suffer from large spurious reflections at grazing
incidences, especially for low-frequency numerical simulations.
An unsplit convolutional PML (CPML) absorbing boundary
(Komatitsch and Martin, 2007; Martin and Komatitsch, 2009)
is used in this study to overcome this difficulty with less memory
and more computational efficiency. For insights into the effect of
third-order elastic constants on the velocity, we conduct a plane-
wave analysis, combined with the closed-pore jacketed sandstone
experiment (Winkler and Liu, 1996), which describes P-wave and
S-wave velocities against prestresses. The presented numerical
scheme is partially validated using the plane-wave theoretical
solution through the comparison of theoretical and calculated
wave velocities. Four states of prestress, not only the conventional
confining and uniaxial modes but also the pure-shear and simple-
shear patterns, are investigated with different simplified stiffness
matrices to model the prestress-induced anisotropy of velocities
and its effect on the characteristics of wavefronts. The
acoustoelastic modeling scheme can be applied to double-
layered cases.

We first briefly introduce the theory of acoustoelasticity based
on the third-order elastic constants, followed by a stress-velocity
plane-wave analysis. Then, we apply the RSG-FD method to the
acoustoelastic equations with the velocity-stress CPML absorbing
boundaries. Numerical examples are presented for elastic wave
propagation in an isotropic and homogeneous medium and a
double-layer model under different kinds of prestress modes.

Theoretical Background
Acoustoelastic Equations
For wave propagation in prestressed media, there exist three
configurations involved: the stress-free natural configuration
as a reference state, the initial configuration of finite static
deformations as a prestressed state, and the final configuration
associated with wave-induced dynamic deformations. The
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theory of acoustoelasticity superposes small-amplitude
dynamic deformations of a wave onto a prestressed finite
deformation. The relevant acoustoelastic equation of motion
can be derived either in the natural or in the initial states.

As defined by Pao et al. (1984) for a predeformed medium, the
dynamic displacement u(ξ, t) from the initial to the final state
satisfies the following acoustoelastic equation of motion in the
natural frame of reference,

Aαβγδ
z2uγ

zξβzξδ
� ρ

z2uα

zt2
(1)

with

Aαβγδ � Ti
βδδαγ + Γαβγδ (2)

where δαγ represent the Kronecker symbol, Γαβγδ and Ti
βδ

denote the fourth-order stiffness tensor and the second Piola-
Kirchhoff stress tensor caused by a finite static deformation,
respectively. The mass density ρ refers to the natural state.
The fourth-order stiffness tensor Aαβγδ can be expanded
about the material’s elastic constants in the initial state,

Aαβγδ � cαβγδ(1 − eηη) + cαβγδϵηeϵη + cϵβγδ
zui

α

zξϵ
+ cαϵγδ

zui
β

zξϵ
+ cαβϵδ

zui
γ

zξϵ

+ cαβγϵ
zui

δ

zξϵ
(3)

where eϵη � 1
2 (zu

i
ϵ

zξη
+ zuiη

zξϵ
) is the infinitesimal strain, ui(ξ) denotes

the static displacement caused by the applied static loading of
material points for the natural state, and cαβγδ and cαβγδϵη are
the second-order and third-order elastic constants of the
medium in the prestressed configuration, respectively. The
coefficients Aαβγδ depend on both the material constants
and the prestress strains. These coefficients possess the same
symmetry (Pao et al., 1984) as the Hookean stiffness tensor
cαβγδ , namely,

Aαβγδ � Aβαγδ � Aαβδγ � Aγδαβ (4)

For convenience, we use the following Voigt’s compressed
notation for the tensorial indices to contract the indices of cαβγδ
(α, β, γ, δ = 1, 2, 3) to cpq (p, q = 1, 2, . . ., 6) whereby.

11→1, 22→2, 33→3, 23→4, 13→5, and 12→6. (5)

The second-order tensor cαβγδ is replaced hereafter with a 6
by 6 matrix cpq as follows (Pao et al., 1984),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

The medium has 9 independent second-order elastic constants
because of the symmetry of cpq and 20 third-order elastic
constants with the following symmetry,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c111 � c222 � c333,
c144 � c255 � c366,

c112 � c223 � c133 � c113 � c122 � c233
c155 � c244 � c344 � c166 � c266 � c355

c123, and c456

(7)

Acoustoelastic Constants
Compared to the linear elasticity with two elastic constants for an
isotropic medium, the third-order nonlinear elasticity invokes
three additional elastic constants (sometimes called A, B, and C)
(Green, 1973). FollowingWinkler and Liu (1996), the static strain
tensor caused by static loading with respect to the natural state
can be expressed as a function of ui(ξ),

εαβ � 1
2
(ui

α,β + ui
β,α + ui

δ,αu
i
δ,β) (8)

The elastic strain energy density is expressed as

W � με2αβ + (K2 − μ

3
)ε2δδ + A

3
εαβεαδεβδ + Bε2αβεδδ +

C

3
ε3δδ (9)

where μ is the shear modulus, K is the bulk modulus, and (A, B,
C) are the third-order elastic constants. We see that there are two
sources of nonlinearity in Eqs. 8, 9, as described by Pau and
Vestroni (2019), one from the geometrical nonlinearity term in
the strain tensor and the other from the cubic terms referred to
physical nonlinearity through the potential energy.

For infinitesimally small strains, the geometrical nonlinearity term
in Eq. 8 and the cubic terms in Eq. 9 are negligible, leading to the
standard equation of linear elasticity. The (A,B,C) nomenclature used
above is common, but it is not universal. Green (1973) presents a table
that correlates five definitions of the third-order elastic constants used
by different authors. With the Goldberg, 1961, the third-order elastic
constants cpqr can be represented by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c111 � c333 � 2C + 6B + 2A,

c133 � c113 � 2C + 2B,

c155 � c355 � c111 − c113
4

� B + A/2
(10)

Based on the above third-order elastic constants and the Voigt
abbreviated symbol in Eq. 5, the second-order effective elastic
constants Aαβγδ for a 2D homogeneous medium can be
reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 � (λ + 2μ)(1 + 3e11 − e33) + (6B + 2C + 2A)e11 + (2B + 2C)e33,
A13 � λ(1 + e11 + e33) + (2B + 2C)(e11 + e33),
A33 � (λ + 2μ)(1 − e11 + 3e33) + (6B + 2C + 2A)e33 + (2B + 2C)e11,

A51 � 2(B + A

2
)e13 + 2(λ + 2μ)e13,

A53 � 2(B + A

2
)e13 + 2(λ + 2μ)e13,

A55 � μ(1 + e11 + e33) + (B + A

2
)(e11 + e33)

(11)

where eαβ are the components of the total prestrain tensor,
and λ and μ are the Lamé constants in the initial
configuration.
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Plane-Wave Analysis
The plane-wave analysis of acoustoelastic equations provides a simple
way to understand the physics of wave propagation in acoustoelastic
media. In this section, we follow the plane-wave analysis in Section 3.2
of Pao et al. (1984), with attempts to compare with experimental
measurements (Winkler and Liu, 1996). The resulting analytical
solution will be used to validate our numerical results.

Let us assume that the displacement components in Eq. 1 can
be described by a time-harmonic plane wave,

uα � Uα exp[i(klβξβ − ωt)] (12)

where ω is the angular frequency, lβ denotes the component of
the wave normal (a unit vector), k is the wave number with the
wave velocity v � ω/k, Uα is the amplitude constant, and i =

���−1√
.

SubstitutingEq. 12 into (1), we obtain a system of equations for
the amplitude vector U,

[Aαβγδlβlδ − ρv2δαγ]Uγ � 0 (13)

Considering the case of orthotropic predeformations, the
orthotropic body possesses three axes of symmetry, called the
principal axes of orthotropy. For a plane wave propagating in the
direction of the ξ3 axis, Eq. 13 can be simplified to

[Aα3γ3 − ρv2δαγ]Uγ � 0 (14)

Equation 14 has a solution under the condition that the
determinant of coefficients is zero, namely,

det[Aα3γ3 − ρv2δαγ] � 0 (15)

The corresponding characteristic equation in the contracted
notation is,

det⎡⎢⎢⎢⎢⎢⎣A55 − ρv2 A54 A53

A45 A44 − ρv2 A43

A35 A34 A33 − ρv2
⎤⎥⎥⎥⎥⎥⎦ � 0 (16)

where the second-order effective elastic constants are defined by
Pao et al. (1984) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A33 � Ti
33 + c33(1 + 2e33) + c331e11 + c332e22 + c333e33,

A44 � Ti
33 + c44(1 + 2e22) + c441e11 + c442e22 + c443e33,

A55 � Ti
33 + c55(1 + 2e11) + c551e11 + c552e22 + c553e33,

A34 � A43 � c33(zui
2/zξ3) + c44(zui

3/zξ2) + 2c344e23,
A35 � A53 � c33(zui

1/zξ3) + c55(zui
3/zξ1) + 2c355e31,

A45 � A54 � c44(zui
1/zξ2) + c55(zui

2/zξ1) + 2c456e12

(17)

Because ξ3 is in the direction of one of the strains, we have
A43 = A53 = 0 (due to e31 � e32 � 0), Eq. 16 reduces to

(A33 − ρv2)[(ρv2)2 − (A55 + A44)ρv2 + A55A44 − A2
45] � 0 (18)

The solution to this equation for three eigenvalues can be
obtained in terms of the following two cases. For the cubic-
symmetric medium under the confining prestress, the resulting
three eigenvalues lead to one longitudinal mode and two
transverse modes as follows,

⎧⎪⎨⎪⎩
v2P � A11/ρ,
v2SV � A44/ρ,
v2SH � A44/ρ (19)

For the symmetric plane, for example when θ2 = 0°, the
velocities can be expressed as (Zong, 2014)

⎧⎪⎨⎪⎩
v2P � (A11 + A44 +

��
K

√ )/ρ,
v2SV � (A11 + A44 −

��
K

√ )/ρ,
v2SH � A44/ρ

(20)

where

K � 4A2
11 sin

4θ1 − 8A11A44 sin
4θ1 − 4A2

12 sin
4θ1 − 8A12A44 sin

4θ1

− 4A2
11 sin

2θ1 + 8A11A44 sin
2θ1 + 4A2

12 sin
2θ1

+ 8A12c44 sin
2θ1 + (A11 − A44)2

(21)

Figure 1 shows the definition of angles θ1, θ2, and θ3, where θ1
is the angle between the z-axis and the line linking a point in the
space and the origin of coordinates, θ2 is the angle between the
x-axis and the projection line on the xoy plane, and θ3 is the angle
between the y-axis and the projection line on the xoy plane. These
angles define the relationship between the reference-coordinate
and orthotropy axes which should be coincident for the cases of
confining stress, uniaxial stress, and pure shear stress, but with a
difference of 45° for the case of simple shear stress. We see that
these modes are strongly related to stress changes. The stress-
induced velocity anisotropies depend on the orientation of
external stresses.

Based on the experimental measurements (Winkler and Liu,
1996) under the hydrostatic pressures for Portland sandstone,
we calculate velocities for the longitudinal mode against
pressure. The physical constants for the simulation are
picked from Tables III-IV of (Winkler and Liu, 1996). The
prestress condition in the simulation is regarded as the
confining stress with its implementation described in detail
in Section 4.1. The result is shown in Figure 2, where the circles
(experimental measurements) are obtained by picking the
pixel coordinates in Figure 4 of (Winkler and Liu, 1996).
We see a weak nonlinearity for velocity variations with
increasing pressures, resulting from the third-order elasticity
with a cubic term for the strain energy function. Some
departures from experimental measurements can be
observed during the pressure of 20–60 MPa possibly because
of the deformation of pores in the sandstone which the third-
order elasticity for solids cannot account for. In general, for
most consolidated rocks, the third-order elasticity could be
enough to describe the nonlinear stress dependence of velocity
variations.

Numerical Methodolgy
Velocity–Stress Version of Acoustoelastic Equations
for Space- and Time-Derivative Approximations
Equation 1 can be written as the first-order velocity-stress
equation,
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{ ρvβ,t � ταβ,α,
ταβ,t � Aαβγδvγ,δ

(22)

where v and τ are velocity and stress, respectively. With Eq. 11
and the Cartesian tensor notation with the x- and z-coordinates
for convenience, we rewrite Eq. 22 as its velocity-stress FD
formulation,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvx,t � τxx,z + τxz,z,
ρvz,t � τxz,x + τzz,z,
τxx,t � A11vx,x + A13vz,z + A15(vx,z + vz,x),
τzz,t � A13vx,x + A33vz,z + A35(vx,z + vz,x),
τxz,t � A15vx,x + A35vz,z + A55(vx,z + vz,x)

(23)

The nonlinear effect of predeformation is introduced by
the effective elastic constants. Equation 23 can be reduced to

the classical elastic wave equation when no static stress is
applied.

The SSG-FD method is widely used in seismology to
simulate elastic wave propagation. The method defines
velocity components, stress components, and physical
properties in four grids crosswise shown in Figure 3A,
whereas the RSG-FD method defines velocity components
in one grid and stress components and elastic parameters in
another grid shown in Figure 3B. The RSG-FD method is
employed in this study to solve the first-order velocity-stress
acoustoelastic equations.

As shown in Figure 3B, the RSG technique calculates the

spatial derivative along the diagonal direction of grids, and then

interpolates the result along the normal coordinate axis to obtain

the spatial derivative along the horizontal and vertical directions.

We rotate the direction of spatial derivatives from the horizontal

(x) and vertical (z) directions to the diagonal directions (�x and

�z) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�x � Δx

Δr
x − Δz

Δr
z,

�z � Δx

Δr
x + Δz

Δr
z,

(24)

where Δr � ���������
Δx2 + Δz2

√
. The first-order spatial derivatives along

the horizontal and vertical directions become,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z

zx
� Δr

2Δx
( z

z�z
+ z

z�x
),

z

zz
� Δr

2Δz
( z

z�z
− z

z�x
).

(25)

With Eq. 25, it is easy to define the differentiation operators D�x

and D�z , which implement the spatial derivatives along
diagonal directions (�x and �z) in the time domain (Saenger
et al., 2000),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D�xu(x, z, t) � 1

Δr
[u(x − Δx

2
, z + Δz

2
, t) − u(x + Δx

2
, z − Δz

2
, t)],

D�zu(x, z, t) � 1
Δr
[u(x + Δx

2
, z + Δz

2
, t) − u(x − Δx

2
, z − Δz

2
, t)].
(26)

With Eqs. 25, 26, the numerical differentiation operators are
obtained that perform the spatial derivatives along the x and z
directions in the rotated staggered grid by a linear combination
of the derivatives along the �x and �z directions,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z

zx
u(x, z, t) ≈ Δr

2Δz
(D�xu(x, z, t) +D�zu(x, z, t)),

z

zz
u(x, z, t) ≈ Δr

2Δz
(D�xu(x, z, t) −D�zu(x, z, t)).

(27)

A detailed process of the implementation of the RGS-FD
scheme is addressed as follows.

By that analogy, we express the L-order RSG of each physical
quantity in the discrete form as

FIGURE 1 | Schematic diagram in the rectangular coordinate system.

FIGURE 2 | Velocities (solid line) of the longitudinal mode as a function of
pressure based on the experimental measurements (circles) of hydrostatic
pressure (Winkler and Liu, 1996) for Portland sandstone.
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vx,x(x, z) ≈ ∑L/2
l�1

cn
2Δx

{vx(x + (l − 1/2)Δx, z + (l − 1/2)Δz) + vx(x + (l − 1/2)Δx, z
− (l − 1/2)Δz) − vx(x − (l − 1/2)Δx, z − (l − 1/2)Δz) − vx(x − (l − 1/2)Δx, z
+ (l − 1/2)Δz)}

vz,x(x, z) ≈ ∑L/2
l�1

cn
2Δx

{vz(x + (n − 1/2)Δx, z + (n − 1/2)Δz) + vz(x + (n − 1/2)Δx, z

− (n − 1/2)Δz) − vz(x − (n − 1/2)Δx, z − (n − 1/2)Δz) − vz(x − (n − 1/2)Δx, z
+ (n − 1/2)Δz)}

vx,z(x, z) ≈ ∑L/2
l�1

cn
2Δz

{vx(x + (l − 1/2)Δx, z + (l − 1/2)Δz) − vx(x + (l − 1/2)Δx, z
− (l − 1/2)Δz) − vx(x − (l − 1/2)Δx, z − (l − 1/2)Δz) + vx(x − (l − 1/2)Δx, z
+ (l − 1/2)Δz)}

vz,z(x, z) ≈ ∑L/2
l�1

cn
2Δz

{vz(x + (l − 1/2)Δx, z + (l − 1/2)Δz) − vz(x + (l − 1/2)Δx, z
− (l − 1/2)Δz) − vz(x − (l − 1/2)Δx, z − (l − 1/2)Δz) + vz(x − (l − 1/2)Δx, z
+ (l − 1/2)Δz)}
τxx,x(x + Δx/2, z + Δz/2) ≈ ∑L/2

l�1

cn
2Δx

{τxx(x + lΔx, z + lΔz) + τxx(x + lΔx, z

− (l − 1)Δz) − τxx(x − lΔx, z − (l − 1)Δz) − τxx(x − lΔx, z + lΔz)}

τxz,x(x + Δx/2, z + Δz/2) ≈ ∑L/2
l�1

cn
2Δx

{τxz(x + lΔx, z + lΔz) + τxz(x + lΔx, z

− (l − 1)Δz) − τxz(x − lΔx, z − (l − 1)Δz) − τxz(x − lΔx, z + lΔz)}

τzz,x(x + Δx/2, z + Δz/2) ≈ ∑L/2
n�1

cn
2Δx

{τzz(x + nΔx, z + nΔz) + τzz(x + nΔx, z

− (n − 1)Δz) − τzz(x − nΔx, z − (n − 1)Δz) − τzz(x − nΔx, z + nΔz)}

τxx,z(x + Δx/2, z + Δz/2) ≈ ∑L/2
n�1

cn
2Δz

{τxx(x + nΔx, z + nΔz) − τxx(x + nΔx, z

− (n − 1)Δz) − τxx(x − nΔx, z − (n − 1)Δz) + τxx(x − nΔx, z + nΔz)}

τxz,z(x + Δx/2, z + Δz/2) ≈ ∑L/2
l�1

cn
2Δz

{τxz(x + lΔx, z + lΔz) − τxz(x + lΔx, z

− (l − 1)Δz) − τxz(x − lΔx, z − (l − 1)Δz) + τxz(x − lΔx, z + lΔz)}

τzz,z(x + Δx/2, z + Δz/2) ≈ ∑L/2
l�1

cn
2Δz

{τzz(x + lΔx, z + lΔz) − τzz(x + lΔx, z

− (l − 1)Δz) − τzz(x − lΔx, z − (l − 1)Δz) + τzz(x − lΔx, z + lΔz)} (28)

where the differential coefficients cl will be specified
subsequently. For the time derivatives, we use the second-
order FD approximation with vi((l + 1/2)Δt) � vl+1/2i for
velocity, where Δt is the time step.

Simultaneous Matrix Equations
Substituting Eq. 28 into (23) and adding a source field in the
simulation, we obtain the discrete form of the first-order velocity-
stress acoustoelastic equations,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

_vx � (zxτxx + zzτxz − fx)/ρ,
_vz � (zxτxz + zzτzz − fz)/ρ,
_τxx � A11zxvx + A13zzvz + A15(zzvx + zxvz) + _fxx,
_τzz � A13zxvx + A33zzvz + A35(zzvx + zxvz) + _fzz,
_τxz � A15zxvx + A35zzvz + A55(zzvx + zxvz) + _fxz,

(29)

where the cap dot represents the first-order partial derivative of time,
andf denotes the components of the external body force. The set of
equations can be combined into a matrix system as

_v + s � Mv (30)

where the product Mv is given by

Mv �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

A11zx + A15zz
A13zx + A35zz
A15zx + A55zz

0
0

A13zz + A15zx
A33zz + A35zx
A35zz + A55zx

zx/ρ
0
0
0
0

0
zz/ρ
0
0
0

zz/ρ
zx/ρ
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vx
vz
τxx
τzz
τxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(31)

and the source vector is

s � [ fx/ρ fz /ρ _fxx
_fzz

_fxz ]T (32)

For the time integration from t to t + Δt, with the discretizing
time as t � nΔt, we have,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vn+1x � vnx + Δt(zxτnxx + zzτ
n
xz − fn

x)/ρ,
vn+1z � vnz + Δt(zxτnxz + zzτ

n
zz − fn

z)/ρ,
τn+1xx � τnxx + Δt(A11zxv

n
x + A13zzv

n
z + A15(zzvnx + zxv

n
z) + fn

xx),
τn+1zz � τnzz + Δt(A13zxv

n
x + A33zzv

n
z + A35(zzvnx + zxv

n
z) + fn

zz),
τn+1xz � τnxz + Δt(A15zxv

n
x + A35zzv

n
z + A55(zzvnx + zxv

n
z) + fn

xz).
(33)

FIGURE 3 | Schematic diagram of finite difference operators for SSG (A) and RSG (B). The SSG defines normal stress and all physical parameters in the solid
squares, and shear stress in the solid circle, but with horizontal and vertical velocities in the downward and upward triangles, respectively. The RSG defines horizontal
and vertical velocities in the square, but with normal and shear stresses and all physical parameters in the circles, where the line represents the direction of differentiation.
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The set of Eq. 33 can be combined into a matrix system
as. vn+1 � Mnvn + sn.

CPML Absorbing Boundary
The conventional PML absorption boundary is unable to
handle the reflections (evanescent waves) at grazing
incidences, especially for low-frequency components. The
CPML absorption boundary improves the absorption effect
of evanescent waves, with efficient computations by
introducing auxiliary variables to avoid convolutional
calculations that need to store past-time wavefields. The
implementation of the CPML boundary does not need to
split velocity and stress fields, and is easily incorporated
into the RSG-FD program.

The CPML absorption boundary with the selection of
parameters is detailed in Appendix. The algorithm is
developed by modifying the complex coefficient Sk and
introducing the auxiliary variables dk, αk, and χk, where dk
denotes the damping profile, and two real variables χk ≥ 1 and
αx ≥ 0. Substituting Eq. A4 into Eq. A2 yields,

z~xk � 1
Sk
zxk � [ 1

χk
− dk

χ2k(iω + ak + dk/χk)]zxk � 1
χk
zxk + ~ψk

(34)

where ~ψk is a memory variable that can be rewritten as

iω~ψk + (ak + dk

χk
)~ψk � −dk

χ2k
zxk (35)

FIGURE 4 | Wavefield snapshots of the x-component of the particle velocity at t = 0.12 ms for various hydrostatic stresses.
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Using an inverse Fourier transform to Eq. 35, we have,
zψk

zt
+ (ak + dk

χk
)ψk � −dk

χ2k
zxk (36)

where ψk is the inverse of ~ψk. This equation has an iterative
solution of the form,

ψn
k � ψn−1

k e−(ak+dk/χk)Δt + dkzxk

χk(akχk + dk) (e−(ak+dk/χk)Δt − 1) (37)

Equation 37 is derived simply by solving a first-order
differential equation, leading to the same result in

FIGURE 5 | Comparison of the theoretical and calculated wave velocities for both the P-wave and S-wave as a function of hydrostatic prestresses (θ1 = 0°).

FIGURE 6 | Comparison of the theoretical and calculated wave velocities for both the P-wave and S-wave under the same pressure (10 MPa) but with different
directions.
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Komatitsch and Martin (2007) obtained by a recursive
convolution method.

The CPML absorbing boundary for the first-order
velocity-stress formulation of acoustoelastic equations can
be implemented by 1) applying Eqs. 27–38 for the estimation
of various memory variables in the rotated operators, 2)
substituting these memory variables into Eq. 34 to obtain
the spatial derivatives of all the field components in the
stretched coordinates, and 3) substituting the resulting
spatial derivatives into the velocity–stress formulas (Eq.
22) to yield the following C-PML formulation of
acoustoelastic equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ _vx � 1
χx
zxτxx + ψx,τxx

+ 1
χz
zzτxz + ψz,τxz

,

ρ _vz � 1
χx
zxτxz + ψx,τxz

+ 1
χz
zzτzz + ψz,τzz

,

_τxx � A11( 1
χx
zxvx + ψx,vx

) + A13( 1
χx
zzvz + ψz,vz

) + A15( 1
χz
zzvx + ψz,vx

+ 1
χx
zxvz + ψx,vz

),
_τzz � A13( 1

χx
zxvx + ψx,vx

) + A33( 1
χz
zzvz + ψz,vz

) + A35( 1
χz
zzvx + ψz,vx

+ 1
χx
zxvz + ψx,vz

),
_τxz � A15( 1

χx
zxvx + ψx,vx

) + A35( 1
χz
zzvz + ψz,vz

) + A55( 1
χz
zzvx + ψz,vx

+ 1
χx
zxvz + ψx,vz

).

(38)

Stability Analysis
The stability criterion for the velocity–stress RSG-FD operator
with equal grid spacings can be generally expressed as the
following inequality (Masson et al., 2006),

FIGURE 7 | Wavefield snapshots of the x-component of the particle velocity at t = 0.12 ms for various uniaxial stresses. The arrow indicates the principal strain
direction calculated by Eq. 45.
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ΔtVmax

Δr
≤C , (39)

with

C � 1��
D

√ ∑n
k�1|cn|

, (40)

where Vmax represents the maximum phase velocity in the
medium, D represents the spatial dimension, and cn are the
differential coefficients depending on the order of the spatial
operator. For an eighth-order spatial and second-order temporal
2D FD operators with coefficients c1 � 1225

1024, c2 � − 245
3072, c3 � 49

5120,
and c4 � − 5

7168, we can calculate C = 0.5497.
Numerical dispersion is one of the main factors affecting the

accuracy of the finite-difference method. To reduce the level of
numerical dispersions in the RSG-FD method, a discretization
interval should be selected to ensure a good number of grid
points nλ per minimum wavelength, which is generally
calculated by

nλ � Vmin

Δrfmax
, (41)

where Vmin is the minimum phase velocity and fmax is the
maximum frequency, usually taken as four times the center
frequency of the source. Dispersion errors accumulate with
increasing propagation distances, which can be reduced by
refining grids. Numerical experiments by Chen et al. (2006)
show that no less than 3 grid points per wavelength are
required for the RSG eighth-order operator.

Numerical Examples
In this section, we calculate wavefield snapshots under various
prestress conditions. The RSG-FD numerical method is applied
to the first-order velocity-stress acoustoelastic equations. The

effective second-order elastic constants, generally as shown in
Eq. 11, can be further simplified in terms of prestressed
conditions addressed as follows.

To simplify calculations, we set the y-direction of the model to
infinity, so that the 3D case is simplified into a plane strain
problem. Numerical examples are calculated using the properties
from the Portland sandstone (807 × 807) mm with the bulk and
shear moduli and density set to 9.7 GPa, 7.3 GPa, and 2,140 kg/
m3 (Winkler and Liu, 1996), respectively. The third-order elastic
constants (A, B, C) = (−1,122, −419, −340) GPa. The RSG-FD
numerical simulation is conducted by the eighth-order spatial
and second-order temporal FD operators. The source is a vertical
force located at the center of the model domain with the time
history,

s(t) � (t − t0)e−[πf0(t−t0)]2 , (42)

where the central frequency f0 = 1.42MHz, and t0 is a delay time.
According to Eq. 35 where the maximum frequency fmax = 4f0
and nλ � 3 (Chen et al., 2006), we obtain Vmin � 1704 m/s as the
condition of stability. Generally, for a given frequency, we
determine the maximum velocity of the medium vmax at a
maximum prestress 50 MPa, but with vmin at 0 MPa. From the
parameters listed above, we can obtain vmax � vP � 3,528 m/s at
50 MPa and vmin � vS = 1,848 m/s at 0 MPa, which enables a
time step of 2·10–7 s and a grid size of 10–4 m to satisfy the
condition of stability.

Acoustoelastic Simulation Under the Confining
Prestress
For this case, the stress field is isotropic under the hydrostatic
stress P, leading to the same stress and strain in all the
directions. The principal strain components can be
expressed as,

FIGURE 8 | Schematic diagram of the deformation progression for pure (A) and simple (B) shear deformations.
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⎧⎪⎨⎪⎩ e11 � e33 � − P

3K
,

e13 � 0.
(43)

Substituting into Eq. 11 leads to a stiffness matrix

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (2λ + 4μ + 4C + 8B + 2A)(−P/3K),
A33 � λ + 2μ + (2λ + 4μ + 4C + 8B + 2A)(−P/3K),
A55 � μ + (2μ + 2B + A)(−P/3K) ,
A13 � λ + (2λ + 4C + 4B)(−P/3K),
A51 � 0,
A53 � 0.

(44)

Wavefield snapshots are calculated with increasing hydrostatic
stresses, as shown in Figure 4 for the x-component of the particle
velocity at t=0.12ms.We see that the stress-induced velocity variations
are isotropic, with the amplitude along the wavefront changing in
accordance with the characteristics of a vertical force source. We
calculate the theoretical wave velocity by Eqs. 20, 21. Figure 5
compares the theoretical and simulated wave velocities at the same
angle but with different prestresses. Figure 6 compares the theoretical
and calculated wave velocities under the same pressure (10MPa) but
with different directions. Both the theoretical and simulated wave
velocities agree well under the different prestress conditions. These
comparisons validate numerical simulations at least in travel time.

FIGURE 9 |Wavefield snapshots of the x-component of the particle velocity at t = 0.12 ms for various pure-shear stresses. The arrow indicates the principal strain
direction calculated by Eq. 47.
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Acoustoelastic Simulation Under the Uniaxial
Prestress
For this case, the stress field is anisotropic under the
uniaxial stress P. The principal strain components can be
expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e11 � P(λ + μ)
μ(3λ + 2μ),

e33 � − Pλ

2μ(3λ + 2μ),
e13 � 0.

(45)

The corresponding stiffness matrix becomes,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (3λ + 6μ + 2C + 6B + 2A)e11 + (2B + 2C − λ − 2μ)e33,
A33 � λ + 2μ + (2B + 2C − λ − 2μ)e11 + (6B + 2C + 2A + 3λ + 6μ)e33,
A55 � μ + (μ + B + A

2
)e11 + (μ + B + A

2
)e33,

A13 � λ + (λ + 2C + 2B)e11 + (2B + 2C + λ)e33,
A51 � 0,

A53 � 0,

(46)

Figure 7 shows the wavefield snapshots with increasing
uniaxial stresses for the x-component of the particle velocity
at t = 0.12 ms. With increasing uniaxial stresses, the P-wave
and S-wave are gradually coupled together, with the

FIGURE 10 | Wavefield snapshots of the x-component of the particle velocity at t = 0.12 ms for various simple shear stresses. The arrow indicates the principal
strain direction calculated by Eq. 49.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 88692012

Yang et al. Acoustoelastic FD Simulation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


wavefronts of qP-wave and qS-wave becoming more elliptical
due to the stress-induced anisotropy of velocities. For p =
10 MPa, the qP-wave becomes elliptical slightly, but the qS-
wave is almost a circle. For p = 30 MPa, we see a trigeminal
region occurring symmetrically to connect the qS-wave and
the qP-wave. The oval aspect ratio of the qP-wave becomes
larger, implying an increasing velocity anisotropy on the
longitudinal and transverse symmetry axes. For p = 50 MPa,
we see more pronounced trigeminal region, approximately
rhombic qS-wave, and elliptical qP-wave. Under the
anisotropic predeformed condition, the polarization
direction changes with the propagation direction, but
neither parallel nor perpendicular to the propagation
direction. These polarized waves are usually denoted by qP
and qS, with their wavefronts deforming along the x-axis as the
uniaxial stress increases. The azimuthal anisotropy of qP-wave
is more and more obvious than that of the qS-wave, consistent
with the mechanical mechanism of uniaxial stress. We calculate
the principal strain direction according to Eq. 45 andmark it in the
figure. It coincides with the directions of maximum/minimum
velocities, which validates our numerical simulations. Thus, the
directions of the velocity principal axis can indicate the directions
of the principal strain for this case.

Acoustoelastic Simulation Under the Shear Prestress
As shown in Figure 8, the shear prestress can be classified into
two cases: pure-shear and simple-shear deformations (Means
and Williams, 1976). Different pre-deformations correspond
to the different geological features. In order to identify these
geological features in the seismic wave field, the simulations of
pure shear and simple shear wavefield are carried out. For the
former (see Figure 8A), the principal strain direction does not
rotate with the progression of deformations, which is also
called the non-rotational deformation or the coaxial

deformation. In this case, the horizontal elongation and
vertical contraction of deformations occur simultaneously
under the uniaxial loading. The geological tensile and
compressive effects produce a pure shear deformation.

The principal strain components for the pure-shear prestress
become,

⎧⎪⎪⎨⎪⎪⎩
e11 � −e33 � P

λ + 2μ
,

e13 � 0,

(47)

yielding the following stiffness matrix,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (4λ + 8μ + 4B − 2A)e11 ,

A33 � λ + 2μ − (4λ + 8μ + 4B − 2A)e11 ,
A55 � μ,
A13 � λ,
A53 � 0,
A51 � 0.

(48)

Wavefield snapshots are calculated with increasing pure-
shear stresses and shown in Figure 9 for the x-component of
the particle velocity at t = 0.12 ms. Similar to the case of
uniaxial stresses, the circular wavefront at 0 MPa becomes
more and more elliptical with increasing pure-shear stresses.
The same changes in azimuthal anisotropy and amplitude can
be seen as the uniaxial case. Unlike the uniaxial pressure
condition, the absolute values of strains along the two axes
of a pure-shear stress field are the same, implying that the
stress-induced velocity anisotropy is more sensitive under the
pure-shear prestress. Therefore, the velocities of qP-wave and
qS-wave increase much more in the z-axis direction compared
to the uniaxial case, as shown in Figure 7. We also calculate the
principal strain direction according to Eq. 47 and mark it
in the figure. It coincides with the directions of

FIGURE 11 | Variations of P-wave velocity against θ1 under the pure-shear (solid line) and simple-shear (dashed line) conditions.
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maximum/minimum velocities. Similarly, the directions of the
velocity principal axis indicate the directions of the principal
strain.

The deformation under the simple-shear prestress, as
shown in Figure 8B, is rotational deformation or non-
coaxial deformation. The direction and magnitude of two
principal strains vary with increasing shear stresses, except

for the strain parallel to the shear plane. Simple shear
deformation is caused by shear sliding of a series of parallel
sliding layers. For the simple-shear prestress, we have,

⎧⎪⎪⎨⎪⎪⎩
e13 � P

μ
,

e11 � e33 � 0,

(49)

FIGURE 12 |Wavefield snapshots of the x-component of velocity at t = 0.08 ms for a double-layer model under various hydrostatic stresses (A), uniaxial stresses
(B), pure-shear stresses (C), and simple-shear stresses (D). The location of the source is marked by a star in the figure. The consecutive wavefronts include P-wave (P),
S-wave (S), P-wave reflection (PP), S-wave reflection (SS), P-wave converted S-wave (PS), and S-wave converted P-wave (SP) are observed.
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with the stiffness matrix as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ,
A33 � λ + 2μ,
A55 � μ, .
A13 � λ,
A53 � (2λ + 4μ + 2B − A)e13,
A51 � (2λ + 4μ + 2B − A)e13.

(50)

Wavefield snapshots are calculated with increasing shear
stresses and shown in Figure 10 for the x-component of the
particle velocity at t = 0.12 ms, respectively. We see that the
wavefront characterizes the orientation of stresses. The
stress-induced anisotropy becomes stronger with
increasing stresses. Unlike the pure-shear stress loading,
the axis of symmetry rotates in terms of stress
orientations, which is consistent with the characteristics of
shear stresses. The wavefronts of qP-wave and qS-wave
become more elliptical and rotational with increasing
shear stresses.

To improve the understanding of the phenomenon
observed in Figures 9, 10, we compare the changes in the
P-wave velocity with θ1 under both the pure-shear and
simple-shear conditions, as shown in Figure 11. We see
that the principal axis in the simple-shear case is shifted by
about 45° relative to that in the pure-shear case, which is
consistent with the direction by a shift of the principal strain
axis. Therefore, the shift of the velocity principal axis
direction can be used to judge the geological characteristics
of the region.

Acoustoelastic Simulation for a Double-Layer Model
The double-layer model, separated by a plane interface, is
presented to investigate the reflection/transmission at the
interface under the four different cases of loading prestress.
The upper medium has the same properties as previous
simulations. The lower medium has K = 5.6 GPa, μ = 2.3 GPa
(A, B, C) = (-23, -10, -13) GPa, and ρ = 1,200 kg/m3.
Consider an interface between two elastic media
indicated by the + and - superscripts. The boundary
condition at the interface requires the continuity of
tractions and displacements. These conditions could be
written as

{ τ+ijnj � τ−ijnj,
u+
i � u−

i ,
(51)

where ni represents the unit normal to the interface.
Einstein’s summation convention for repeating indices is
assumed.

Figure 12 shows the x-component of the particle velocity
snapshots at t = 0.08 ms under four different prestress
conditions: hydrostatic, uniaxial stress, pure-shear, and
simple-shear stresses. The location of the source is marked
by a star in Figure 12A. All the wave types of reflection/
transmission can be observed from these snapshots which
illustrate that the stress-induced velocity anisotropy is
strongly related to the orientation of prestresses.

CONCLUSION

Acoustoelastic theory describes wave propagation in
prestressed media and relates elastic wave velocities to
prestresses, resulting from the third-order elasticity with a
cubic term for the strain energy function. We propose an
acoustoelastic modeling scheme for elastic wave propagation
in prestressed media based on the RSG-FD method with the
CPML absorbing boundary. The RSG-FD numerical method is
applied to the first-order velocity-stress acoustoelastic
equations. We address several aspects in the numerical
implementation. Four states of prestress, confining-
hydrostatic, uniaxial-stress, pure-shear, and simple-shear
patterns, are investigated with different simplified stiffness
matrices to model the prestress-induced anisotropy of
velocities and its effect on the characteristics of wavefronts.
The main conclusions can be summarized as follows.

1) A plane-wave analysis combined with closed-pore
jacketed sandstone experiments illustrates the effect of
third-order elastic constants on the P- and S-wave
velocities under various prestresses. For most
consolidated rocks, the third-order elasticity could be
enough to describe the nonlinear stress dependence of
velocity variations.

2) We partially validate the presented numerical scheme by the
plane-wave theoretical solution. Comparisons between
theoretical and calculated wave velocities are performed at
the same angle but with different prestresses and under the
same pressure (10 MPa) but with different directions,
respectively.

3) Acoustoelastic simulations demonstrate that the confining
prestress leads to the same stress and strain in all the
directions, yielding isotropic velocity variations, whereas
the uniaxial stress generates an anisotropic stress field,
making the P-wave and S-wave be gradually coupled
together, with the wavefronts of qP-wave and qS-wave
becoming more elliptical due to the stress-induced
anisotropy of velocities.

4) The pure-shear prestress with a coaxial deformation
(horizontal elongation and vertical contraction) induces
obvious elliptical wavefronts because of the stress-induced
anisotropy of velocities that, unlike the uniaxial prestress,
becomes more sensitive to the z-axis direction along which the
velocities of qP-wave and qS-wave increase much more
compared with the uniaxial case.

5) Unlike the pure-shear stress loading, the simple-shear
prestress with a non-coaxial rotational deformation
rotates the axis of symmetry in terms of stress
orientations. The direction and magnitude of strains
vary with increasing shear stresses, except for the strain
parallel to the shear plane. The stress-induced anisotropy of
velocities is sensitive to the orientation of stresses. the
wavefronts of qP-wave and qS-wave become more
elliptical and rotational with increasing shear stresses.

6) Numerical acoustoelastic simulations provide us with the
possibility to explore wave propagation in deep high-
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pressure formations. However, the third-order elastic
constants used are limited to isotropic solid media
without microstructures. Considering that fractures are
sensitive to prestress conditions, we will develop
numerical schemes for anisotropic acoustoelastic
equations of fractured media in the near future.
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CPML ABSORBING BOUNDARY

This appendix summarizes the CPML absorption boundary
(Komatitsch and Martin, 2007; Martin and Komatitsch, 2009).
The conventional PML absorption boundary formulates various
memory variables in the FD operator from the Cartesian
coordinate to the complex coordinate by introducing a
complex factor

~x � x − i

ω
∫x

0
dx(s)ds, (A1)

where i =
���−1√

and ω is the angular frequency. The damping
factor dx(s) � 0 inside the computational domain and dx(s) > 0
in the PML region. The regular coordinate variable x is replaced
by the complex coordinate variable ~x, with the corresponding
differential operator as

z~x �
1
Sx
zx , (A2)

where

Sx � iω + dx

iω
� 1 + dx

iω
. (A3)

The PML formulation is implemented directly by changing
original wave equations written in terms of the variable x into new
equations in terms of the variable ~x.

The conventional PML absorption boundary suffers from
poor accuracy at grazing incidences. It also requires much
memory and computation. The problem is related to the
complex coefficient Sx in Eq. A3. The CPML approach
improves the performance of the PML by introducing two

auxiliary variables, αx and χx. The modified complex
coefficient becomes

Sx � χx +
dx

αx + iω
, (A4)

where χx ≥ 1 and αx ≥ 0.
The CPML absorption boundary involves a number of absorption

parameters. The maximum damping factor is usually set as

dmax � −(m + 1)Vmax

2L
ln(R) , (A5)

where Vmax is the maximum phase velocity in the medium, L is
the thickness of the absorption boundary layer, R is the theoretical
reflection coefficient, and m is the order of the polynomial
(typically 2 or 3). The damping factor can be determined by

dx(l) � dmax( l

L
)m

, (A6)

where l(0≤ l≤ L) is the distance from the calculated point to the
boundary. The other parameters are accordingly set as

χx � 1 + (χmax − 1)( l

L
)m

, (A7)

and

αx � π(1 − l

L
)αmax (A8)

.

The auxiliary variable αx varies linearly between 0 and αmax in
the absorption region. We usually take αmax � f0 with f0 the
main frequency of the source. For αmax � 0 and χx � 1, Sx is
reduced to that of the conventional PML boundary.
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