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The Jianfengling granite is an important ore-forming rock unit in the Xianghualing orefield in Nanling region (South China), and its magmatic evolution is vital to understand the regional niobium (Nb)-tantalum (Ta) mineralization. The Jianfengling granite comprises three gradual transitional lithofacies: porphyritic biotite monzogranite (mesophase facies), biotite monzogranite (transition facies) and topaz biotite monzogranite (central facies). All the three biotite monzogranite lithofacies are characterized by being rich in SiO2 and Al2O3, poor in TFe2O3, CaO, MgO, TiO2, MnO and P2O5, and are peraluminous high-K calc-alkaline. These rocks are remarkably enriched in Rb, Th, U, Nb and Ta, strongly depleted in Ba and Sr, and slightly depleted in Zr. The LREE/HREE decreases gradually from porphyritic biotite monzogranite, through biotite monzogranite to topaz biotite monzogranite, with increasing convex (“M-type”) lanthanide tetrad effect, which similar to the highly-fractionated granite. The high Th-U (Thavg. = 2051.56°ppm; Uavg. = 1,498.23°ppm, respectively) and low Th-U (Thavg. = 708.14°ppm; Uavg. = 441.57°ppm, respectively) zircon grains from porphyritic biotite monzogranite yielded weighted average 206Pb/238U ages of 161.3 ± 1.6 Ma (MSWD = 1.3, n = 13) and 158.7 ± 2.0 Ma (MSWD = 1.7, n = 13), respectively, consistent with the large-scale magmatic-mineralization event in the Nanling region (ca. 160–150 Ma). The εHf(t) values of the high Th-U (-6.48 to -2.51) and low Th-U (-6.58 to -1.12) zircon grains from the porphyritic biotite monzogranite indicate that the causative magma was formed from partial melting of the Mesoproterozoic Cathaysian basement rocks in a lithospheric extension setting. The Nb and Ta contents increase with fluorine from the porphyritic to topaz biotite monzogranite, indicating that the Nb-Ta enrichment may have caused by the gradual increase of fluxing content (fluorine) during the fractionation of the Jianfengling granitic magma.
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INTRODUCTION
Highly-differentiated granites represent important resource of rare metals, such as Li, Be, Nb, Ta, Rb and Cs, and are also enriched in Sn, Th, Zr, U, Hf and Ga (Černý and Erict, 1985, 1992, 2005, 2012; Simmons and Webber, 2008; Thomas et al., 2011a, 2011b; Kesler et al., 2012; Linnen et al., 2012). This is because rare metals and volatiles are usually enriched in the late-stage differentiated magma (Linnen et al., 2012). In South China (Figures 1A,B), the W–Sn–Pb–Zn mineralization in the Nanling region possesses distinct zoning from east to west: the Shizhuyuan and Yaogangxian W deposits (east) → the Furong, Xianghualing and Furong Sn deposits (middle) → the Huangshaping and Baoshan Pb–Zn deposits (west) (Figure 1C). The Nanling region is also rich in rare metal resources, including Li, Be, Rb, Ta and Nb in many deposits (e.g., Jianfengling, Laiziling, Xianghualing, Tangguanpu, Changchong and Sanshiliuwan) (Figure 1D). The Jianfengling Nb-Ta granite and its genetic link with the Dongshan W-Sn skarn deposit represents an example of the regional W-Sn-rare metal metallogenic system (Figures 1D,E; Mo, 1983, Qiu et al., 2003; Chen, 2018; 2021). The Jianfengling granite is highly-differentiated peraluminous high-K calc-alkaline. Many previous studies were focused on the age, magma source and petrogenesis (Qiu and Peng, 1997, 1998, 2002; Lai et al., 2014, 2015; Xuan et al., 2014; Wen et al., 2017; Zhu, 2020). Published zircon U-Pb ages show that the Jianfengling granite was emplaced during ca. 154.4–165.2 Ma (Xuan et al., 2014; Yang et al., 2018; Zhu, 2020). However, it is still unclear why the Jianfengling granite was emplaced over a wide age range. Besides, the K2O and Na2O contents of the Jianfengling granites resemble A-type (Xuan et al., 2014; Yang et al., 2018), but the low Zr saturation temperature is inconsistent with typical A-type granite formation (Chen, 2021). Furthermore, how Nb-Ta enrichments was caused by extensive granitic magma fractionation is unclear. To address these issues, we describe the geology of the Jianfengling Nb-Ta rare metal granite, and present new data on its whole-rock geochemistry and in-situ zircon U-Pb-Hf isotopes for the different lithofacies of the granite.
[image: Figure 1]FIGURE 1 | (A,B) Map showing the Jurassic granite distribution in South China (after Wang et al., 2008). (C) Jurassic granites and associated W–Sn–Cu–Pb–Zn polymetallic deposits in southern Hunan (after Yao et al., 2007). Simplified geological maps of the (D) Xianghualing orefield (after Yang et al., 2013) and (E) Jianfengling granitic pluton (after Chen, 2021).
REGIONAL GEOLOGY
The Xianghualing orefield is located at the tectonic junction of the EW-trending Nanling metallogenic belt and the NE-trending Qin-Hang belt (Figure 1B). Since the Mesozoic, the region has undergone multiple periods of complex tectono-magmatic activities, and developed a series of granitic units and the accompanied W-Sn, Pb-Zn-Cu-Mo, and rare metal (Nb-Ta-Rb) polymetallic deposits (Figure 1C). The regional structure is dominated by the NS-trending Xianghualing anticline, with NS-trending reverse faults and NNE-trending closed complex linear folds on both limbs. The Tongtianmiao dome is located in the southern part of the anticlinal core. On margin of this dome, there are SW- and SE-trending conjugate tensional and strike-slip faults, NS-trending thrust faults, and NNE-trending thrust. Magmatic rocks and polymetallic mineral occurrences are distributed in/around this dome. The outcropping rocks are composed of the Cambrian to Cretaceous sequences and Quaternary sediments, among which the Devonian Xikuangshan Group and the Upper Devonian Shetianqiao Group are the main ore-host. There are over 180 (15 major) intermediate-felsic plutons in the Xianghualing orefield, covering an outcrop area of about 15 km2 (X, 1990). Representative plutons include (from north to south) the Tongtianmiao, Yaoshan, Zanziling, Jianfengling, and Qitianling (Figure 1C).
JIANFENGLING GRANITE PLUTON
The Jianfengling granite pluton (outcrop area: 4.4 km2) is located SE of Tongtianmiao anticline in the Xianghualing orefield (Figures 1D,E). The pluton has clear vertical/horizontal lithofacies transitional zonation:a) porphyritic biotite monzogranite (mesophase facies), b) biotite monzogranite (transition facies) and c) topaz biotite monzogranite (central facies), combined with 100 m-thick greisenization devolved on top of the Jianfengling granite (Figure 1E).
Fresh surface of the porphyritic biotite monzogranite is light fleshy red (Figure 2). The rock has massive structure, with feldspar phenocrysts of about 1–10 mm size. The samples contain mainly plagioclase (30%) and alkaline feldspar (25%), quartz (30%) and biotite (10%), as well as accessory zircon, monazite, bastnasite, thorite, xenotime, tantalite, rutile and uraninite. Alteration styles include mainly pyrite, carbonate, fluorite, silicic, argillic, and sericite.
[image: Figure 2]FIGURE 2 | (A) Photograph of the Jianfengling porphyritic biotite monzogranite in the field (B–F) Photomicrographs of porphyritic biotite monzogranite; (G) Monazite replaced by xenotime; (H) Monazite and zircon are co-junction edge structure, and zircon replaced by thorite and late pyrite; (I) Bastnasite replaced by xenotime and zircon. Pl, plagioclase; Kfs, K-feldspar; Qtz, quartz; Bt, biotite; Mnz, monazite; Py, pyrite; Zrn, zircon; Bst, bastnasite; Xen, xenotime; Thr, thorite.
The biotite monzogranite contains mainly alkaline feldspar (25%) and plagioclase (25%), quartz (35%) and biotite (15%) (Figure 3). Accessory minerals are similar to its porphyritic counterpart except for the presence of topaz and fluocerite, and their alteration styles are also similar except for the absence of pyritization.
[image: Figure 3]FIGURE 3 | (A) Photograph of the Jianfengling biotite monzogranite in the field (B–F) Photomicrographs of biotite monzogranite; (G) Zircon, bastnaesite, uraninite, and monazite coexist in fluorite. Bastnaesite replaced monazite, and was then replaced by zircon (H–I) Columbite-tantalite replaced by wolframite. Pl, plagioclase; Kfs, K-feldspar; Qtz, quartz; Bt, biotite; Toz, topaz; Mnz, monazite; Py, pyrite; Zrn, zircon; Bst, bastnasite; Xen, xenotime; Thr, thorite; Fl, fluorite; Col-tan, columbite-tantalite; Wol, wolframite.
The topaz biotite monzogranite has also massive structure (Figure 4). The mineral composition is mainly alkaline feldspar (25%) and plagioclase (25%), quartz (30%), biotite (15%) and topaz (5%). The accessory minerals and alteration styles are both similar to its transition facies counterpart. Compared with the transition facies, the central facies has more and coarser-grained topaz. Granitic pegmatite is developed locally (Figure 4B), which contains mainly mica (25%), quartz (40%), K-feldspar (25%), and fluorite (10%).
[image: Figure 4]FIGURE 4 | Photographs of (A) topaz biotite monzogranite; (B) granitic pegmatite in medium-grained biotite monzogranite (C–F) Photomicrographs of topaz biotite monzogranite (G–H) Zircon, bastnaesite, uraninite, monazite, and arsenopyrite coexist within fluorite; (I) Multigenerational zone-banded columbite-tantalite. Pl, plagioclase; Kfs, K-feldspar; Qtz, quartz; Bt, biotite; Toz, topaz; Mnz: monazite; Py, pyrite; Zrn, zircon; Bst, bastnasite; Xen, xenotime; Thr, thorite; Fl, fluorite; Col-tan, columbite-tantalite; Wol, wolframite; Apy, arsenopyrite.
ANALYTICAL TECHNIQUES
Major and trace elements geochemical analyses were undertaken at the ALS Laboratory (Guangzhou, China). Major oxide concentrations were measured with an X–ray fluorescence (XRF) spectrometer. Fused lithium borate glass disks were used, and the analytical precisions were better than ±0.01%, as estimated based on repeated analyses of the standards GSR–2 and GSR–3. The trace elements concentrations were determined by ICP–MS, using the USGS rock standards of the Columbia River 2 (BCR–2) basalt, Hawaiian Volcanic Observatory 1 (BHVO–1) basalt, and (AGV–1) andesite. The analytical precision and accuracy were better than ±5% for the trace elements studied, and the detailed analytical procedures are as described in Zhou et al. (2014).
Zircon grains were separated using standard heavy liquid and magnetic separation techniques. The selected grains were mounted in epoxy resin, polished, and gold-coated. The zircon internal texture was examined by cathodoluminescence (CL) imaging at the Sun Yat-Sen University (SYSU, Zhuhai). In-situ zircon U-Th-Pb dating was undertaken using an iCAP-RQ-ICP-MS coupled with an ArF-193 nm GeolasHD laser-ablation system at the SYSU. A 32 μm spot size with 5 Hz laser repetition rate was used for the ablation. Zircons Plešovice (337 ± 0.4 Ma) and 91,500 (1,065 ± 5 Ma) were used as the external standards and 29Si as the internal standard. Helium carrier gas was used to enhance the transport efficiency of the ablated material. Off-line raw data were processed with the GLITTER program, and the isotopic apparent and weighted mean ages were calculated with the Isoplot program (Ludwig, 2001). Zircon dates with <10% calculated discordance are considered to be valid, and 207Pb/206Pb and 206Pb/238U apparent ages were used for the older (>1 Ga) and younger (<1 Ga) zircon grains, respectively. Details of the zircon Hf isotope analytical procedures follow those given by Li et al. (2010). The 91,500 standard zircon was used for external standardization, and the resulting data were normalized to 176Hf/177Hf = 0.7325. The εHf(t) values were calculated using the present-day chondrite values of 176Hf/177Hf = 0.282,772 and 176Lu/177Hf = 0.0332 (Blichert-Toft et al., 1997). The Hf model ages (TDM1) were calculated relative to the depleted mantle, using 176Hf/177Hf = 0.283,250 and 176Lu/177Hf = 0.0384; whilst the two-stage Hf model ages (TDM2) were calculated with the mean continental crust value of 176Lu/177Hf = 0.015 (Griffin et al., 2000).
RESULTS
Whole–Rock Geochemistry
The major- and trace-element compositions of the Jianfengling granite are given in Table 1. Porphyritic biotite monzogranite, biotite monzogranite, and topaz biotite monzogranite have similarly high SiO2 and Al2O3, but low MgO, CaO, Na2O and K2O contents. The samples are classified as sub-alkalic monzogranite in the QAP and SiO2 vs (K2O + Na2O) plots (Figures 5A,B). The A/CNK values are above 1 (increase from porphyritic to topaz-rich lithofacies), suggesting that the rocks are peraluminous (Figure 5C). In addition, the rocks are K2O-rich and fall into the high-K calc-alkaline field (Figure 5D).
TABLE 1 | Whole-rock major and trace element compositions of the Jianfengling pluton.
[image: Table 1][image: Figure 5]FIGURE 5 | Geochemical discrimination diagrams for the Jianfengling granitic rocks: (A) SiO2 vs. (K2O + Na2O) (after Le Maitre, 1989); (B) QAP (after Streckeisen and Le Maitre, 1979); (C) A/KNC vs A/NK, where A/KNC = molar Al2O3/(K2O + Na2O + CaO), A/NK = molar Al2O3/(Na2O + K2O) (after Frost et al., 2001); (D) SiO2 vs K2O (after Le Maitre, 2002).
Samples from all the three lithofacies have similar chondrite-normalized rare earth element (REE) patterns (Figure 6A). Porphyritic and biotite monzogranite have similar total REE content, which is higher than that of the topaz biotite monzogranite (Table 1). The LREE/HREE ratio decreases from the porphyritic to topaz-rich lithofacies, whereas the convex lanthanide tetrad effect (TE1,3) increase (Table 1 note). When normalized to primitive mantle, all the biotite monzogranite samples are enriched in Rb, Th, U, Nb, and Ta, strongly depleted in Ba and Sr, and slightly depleted in Zr (Figure 6B).
[image: Figure 6]FIGURE 6 | (A) Chondrite-normalized REE patterns and (B) primitive mantle-normalized trace element for the Jianfengling pluton. Primitive-mantle and chondrite normalizing values are from Sun and McDonough (1989) and Taylor and McLennan (1985), respectively.
Zircon Trace Element Compositions and U–Pb Geochronology
From the zircon CL images, zircon grains from the porphyritic biotite granite are idiomorphic columnar (ca. 30–200 μm), with the development of oscillatory zoning (Figures 7A–D). Zircon grains can be divided into two types, those with high CL reflectance (bright, low Th-U; Figures 7A,B) and low CL reflectance (dark, high Th-U; Figures 7C,D). Furthermore, there are irregular areas with subtle heterogeneous BSE reflectance in the grain margin of zircon from porphyritic biotite granite. Besides, thorite and pores are well-developed in these areas with heterogeneous BSE reflectance (Figures 7B,D). This reflects that zircon grains were substantially fluid-modified through dissolution-reprecipitation (Putnis, 2009). In contrast, metamictization is generally developed in zircon grains from the medium-fine-grained (Figures 7E,F) and medium-grained (Figures 7G,H) lithofacies. The high Th-U zircons have Th = 454.74–4,085.56 ppm (avg. 2051.56 ppm) (Table 2), U = 428.76–7,404.61 ppm (avg. 2,289.82 ppm), and Th/U = 0.8–2.6 (avg. 1.50). The low Th-U zircons have Th = 279.19–1,419.34 ppm (avg. 708.14 ppm), U = 199.04–986.36 ppm (avg. 441.57 ppm), and Th/U = 1.3–2.2 (avg. 1.61). The Th and U contents and Th/U ratio in magmatic zircons are higher (Th/U > 0.5; Hoskin and Black, 2000; Belousova et al., 2002) than those of metamorphic zircons (Th/U < 0.1; Hoskin and Schaltegger, 2003). The high Th/U ratio of both types of zircons from the porphyritic lithofacies indicates a magmatic origin. In addition, chondrite-normalized REE patterns of the two types of zircons are similar to those of typical magmatic origin (Figure 8A). Based on the Ti-in-zircon thermometer on the porphyritic lithofacies (Table 2), the formation temperatures of primary magmatic- and altered high Th-U zircons are of 619–711°C (avg. 682°C) and 687–811°C (avg. 764°C) (Figure 8B), respectively, with the corresponding oxygen fugacity (ΔFMQ) of 0.71–7.47 (avg. 4.70) and from -12.79 to -0.27 (avg. −8.21°C) (Figure 8C; Table 2). The magmatic- and altered low Th-U zircons were estimated to have formed at 689–756°C (avg. 731°C) and 735–764°C (avg. 747°C), respectively, with their corresponding oxygen fugacity (ΔFMQ) of 1.96–6.92 (avg. 4.62) and -8.50 to -6.58°C (avg. -7.63). Thirteen high Th-U zircons yielded 206Pb/238U dates of 156.6 ± 2.4 Ma to 166.6 ± 2.3 Ma, with a weighted average of 161.3 ± 1.6 Ma (n = 13; MSWD = 1.3) (Figure 8D; Table 2). Thirteen low Th-U zircons yielded 206Pb/238U dates of 154.7 ± 2.4 Ma to 164.4 ± 2.9 Ma, with a weighted average of 158.7 ± 2.0 Ma (n = 13; MSWD = 1.7) (Figure 8E; Table 2).
[image: Figure 7]FIGURE 7 | Zircon CL images of the Jianfengling granite (A–D) porphyritic biotite monzogranite. Alteration is extensive on the zircon grain margin (E,F) medium-fine-grained biotite monzogranite (G,H) medium-grained biotite monzogranite. Thr, thorite.
TABLE 2 | Results of LA-ICPMS zircon U–Pb analyses for the porphyritic biotite granite from the Jianfengling pluton.
[image: Table 2][image: Figure 8]FIGURE 8 | (A) Chondrite-normalized REE patterns of different zircon groups in the Jianfengling porphyritic biotite monzogranite. Chondrite-normalized values from Taylor and McLennan (1985); (B) ΔFMQ vs 206Pb/238U age. Zircon oxygen fugacity was calculated from the method by Ballard et al. (2002); (C) Ti-in-zircon temperature vs 206Pb/238U age. The temperature was obtained with the method by Ferry and Watson (2007) (D,E) U–Pb concordant plots of different zircon groups in the porphyritic biotite monzogranite.
Zircon Hf Isotope Compositions
The zircon Hf isotope composition data from the Jianfengling porphyritic biotite monzogranite are given in Table 3. The εHf(t) values of the high Th-U and low Th-U zircons are largely similar (within error), i.e., high Th-U zircon: εHf(t) = -6.48 to -2.51 (avg. -4.55), corresponding to the second-stage model age (TDM2) of 1364–1613 Ma (avg. 1,492 Ma); Th-U zircon: εHf(t) = -6.58 to -1.12 (avg. -4.32), corresponding to TDM2 = 1,276–1,620 Ma (avg. 1,478 Ma).
TABLE 3 | Zircon Lu-Hf results of the porphyritic biotite granite from the Jianfengling pluton.
[image: Table 3]DISCUSSION
Timing of Jianfengling Granite Emplacement
For the more reliable zircon U-Pb dating technique, the biotite monzogranite yielded U-Pb ages of 154.4–165.2 Ma (Xuan et al., 2014; Yang et al., 2018; Zhu, 2020). However, zircons from the biotite monzogranite are clearly metamict (Figures 7E–H), probably leading to the varying U-Pb dates. Zircons from the porphyritic biotite monzogranite have well-developed oscillatory zoning (Figures 7A–D), and fall into the dark high Th-U and light low Th-U zircon groups. Similar mineral composition (Figures 2–4) and whole–rock geochemistry (Figures 5, 6) shows that the three lithofacies are products of the same magmatic evolution system, and thus the crystallization age of porphyritic biotite monzogranite (mesophase facies) can effectively represent the initial emplacement age of the Jianfengling pluton. The weighted average U-Pb age of the high Th-U zircons (161.3 ± 1.6 Ma) is consistent with that of the low Th-U zircons (158.7 ± 2.0 Ma) within error. The timing of the Jianfengling rare-metal granite emplacement is coeval with that of the Middle-Late Jurassic magmatic-metallogenic event across the Nanling region (160–150 Ma; Mao et al., 2004a, b; 2007; Li et al., 2004; Peng et al., 2006; Yuan et al., 2007; 2008; 2011; 2012a, b).
Magma Source
Zircon Hf isotopic compositions are considered to be stable during magma differentiation and hydrothermal alteration process, and can therefore be used to reveal the origin of the magma (Kemp et al., 2007; Lenting et al., 2010). The high Th-U and low Th-U zircon grains from the Jianfengling porphyritic biotite monzogranite have similar (176Hf/177Hf)i (0.28249–0.28260 and 0.28249 to 0.28264, respectively) and εHf(t)160Ma values (-6.48 to -2.51 and -6.58 to -1.12, respectively) (Table 3), which close to the region of lower crustal evolution line (Figure 9). The zircon TDM2 ages are close to the ages (1,500 Ma) of the Proterozoic meta-sedimentary strata. This inference is further supported by the presence of Proterozoic metamorphic zircons in the granites, which represent residual zircons from the partial melting source region (Li et al., 2018). Therefore, it is likely that parental magma of the Jiangfengling granite was derived from partial melting of the lower crust Proterozoic meta-sedimentary strata in South China.
[image: Figure 9]FIGURE 9 | Age vs εHf(t) plots for the Jianfengling granite samples.
Compared with the transition facies and central facies, the porphyritic lithofacies is the least fractionated (Section 6.3), and thus its geochemical composition is closer to the initial magma composition. The CaO/Na2O ratio is an important index to distinguish the magma source region (Chappell and White, 1992). The CaO/Na2O < 0.3 for the peraluminous granite formed from argillaceous rock, the CaO/Na2O > 0.3 for the granitoid formed from psammite. The CaO/Na2O ratio of the Jianfengling porphyritic biotite monzogranite varies in the range of 0.21–0.25, indicating that the magma was derived from the pelite rocks, such as leucogranite in Himalaya Orogen (Harris and Inger, 1992; Altherret al., 2000). In the (CaO)/(FeOt + MgO + TiO2) vs (CaO + FeOt + MgO + TiO2) (Figure 10A) and Na2O + K2O + FeOt + MgO + TiO2–(Na2O + K2O)/(FeOt + MgO + TiO2) (Figure 10B), Rb/Ba–Rb/Sr (Figure 10C), and the Al2O3/TiO2–CaO/Na2O (Figure 10D) plots, the sample data points also fall into the pelite range of the clay-rich source region, indicating that the granitic magma was mainly derived from the partial melting of the meta-pelite of the crust.
[image: Figure 10]FIGURE 10 | (A) (CaO)/(FeOt + MgO + TiO2) vs (CaO + FeOt + MgO + TiO2); (B) (Na2O + K2O)/(FeOt + MgO + TiO2) vs (Na2O + K2O + FeOt + MgO + TiO2). Fields in (A) and (B) are from Patiňo-Douce and Harris. (1999); (C) Rb/Ba vs Rb/Sr; (D) CaO/Na2O vs Al2O3/TiO2. The mixing curve between the basalt-and pelite-derived melts in Figures 11C,D is from Patiňo-Douce and Harris (1998) and Sylvester (1998).
Granite Petrogenesis
During the magmatic evolution, the incompatible LILEs and HFSEs would be significantly enriched in highly-fractionated magmas (Deering and Bachmann, 2010; Dostal et al., 2015; Ballouard et al., 2016). The increasing Nb, Ta, Li and Rb contents with decreasing Zr (Figure 11) from porphyritic biotite granite to biotite monzogranite, suggesting progressive magma fractionation (Gelman et al., 2014; Lee and Morton, 2015). However, the Nb, Li and Rb contents of the most-evolved topaz biotite monzogranite are very low, which may have been caused by the fractionation of Nb-, Li- and Rb-rich minerals, such as columbite-tantalite, lepidolite and Rb-rich biotite (Figures 2–4, Zhu, 2020; Chen, 2021). In the binary plots of Zr versus Zr/Hf, Nb/Ta and Y/Ho (Figure 11), the negative correlations from porphyritic biotite granite to topaz biotite monzogranite indicate increasing magma fractionation (Pérez-Soba and Villaseca, 2010; Ballouard et al., 2016). For granitic magma, Zr/Hf = 26 and Nb/Ta = 5 are proposed to be the boundaries between magmatic to magmatic-hydrothermal states (Bau, 1996; Ballouard et al., 2016). Except for the porphyritic biotite monzogranite, the Nb/Ta ratios of the other two lithofacies (i.e., biotite monzogranite and topaz biotite monzogranite) are all below 5, also indicating that they have experienced strong fractionation (Figure 11). During the fractionation of granitic magma, the total REE contents and LREE/HREE ratio would decrease significantly (Gelman et al., 2014). With the increasing Zr content, the total REE and LREE/HREE gradually decrease and the tetrad effects (TE1,3) increase significantly (Figure 12).
[image: Figure 11]FIGURE 11 | Plots of Zr vs (A) Nb, (B) Ta, (C) Rb, (D) Li, (E) Nb/Ta, (F) F, (G) Y/Ho, (H) Zr/Hf, and (I) Nb/Ta vs K/Rb (J) Zr vs TiO2 (K) Nb/Ta vs Zr/Hf (L) Nb/Ta vs TE1,3 for the different Jianfengling biotite monzogranite lithofacies.
[image: Figure 12]FIGURE 12 | Plots of Zr vs (A) Eu/Eu*, (B) LREE/HREE, (C) ∑REE, and (D) TE1,3 for the different biotite monzogranite lithofacies from the Jianfengling pluton.
As shown in (Zr + Ce + Y + Nb)-[(Ga/Al) ×10,000] and Zr-[(Ga/Al)×104] plots (Figure 13; Whalen et al., 1987), the porphyritic biotite monzogranite data points fall into the boundary of highly-fractionated I-, S- and A-type granites, while the biotite monzogranites and the topaz biotite monzogranites fall into the A-type granite field. However, the Zr content of the porphyritic biotite monzogranite (117–149 ppm, avg. 133 ppm), which is much lower than that of typical A-type granite (Zr ≈ 250 ppm). The (Zr + Nb + Y + Ce) content (279.5–364.1 ppm, avg. 327.2 ppm) is also below the minimum value of A-type granite (ca. 350 ppm) (Whalen et al., 1987). In addition, the temperature (from zircon Ti thermometer) for the porphyritic biotite monzogranite (619–811°C) is inconsistent with the high formation temperature of A-type granites. Although the (Ga/Al)×10,000 ratio of the porphyritic biotite monzogranite (2.52–2.72, avg. 2.64) close to the A-type granite range, the porphyritic biotite monzogranitic magma has undergone fractionation and those of highly-differentiated granites have also higher Ga/Al×10,000 ratio, which is defined as A-type granites (Linnen and Cuney, 2004; Pérez-Soba and Villaseca, 2010; Breiter et al., 2013). As shown in the Zr-[(Ga/Al) × 10,000] plot (Figure 13B), the evolution from porphyritic to medium-fine-grained biotite monzogranite is consistent with the evolution trend of highly-differentiated I-/S-type granites. As a highly-fractionated granite, it’s inevitable to be plotted in the A-type area, regardless of the Zr + Nb + Y + Ce value. A combination of FeOt/MgO (K2O + Na2O)/CaO and Zr + Nd + Y + Ce value is a proper parameter to discuss the highly-fractionated granite (Whalen et al., 1987). In the diagrams of FeOt/MgO vs Zr + Nd + Y + Ce (Figure 13C), and (K2O + Na2O)/CaO vs Zr + Nd + Y + Ce (Figure 13D), these granites have lower FeOt/MgO and (K2O + Na2O)/CaO than that of typical A-type granite. Some granite sample points do not fall into the high fractionated granite region, however, this does not mean that these are not highly fractionated granites, probably because of biotite (resulting in significantly lower K2O and FeOt content) and columbite-tantalite (resulting in a significant reduction in FeOt contents). In addition, petrography, whole-rocks geochemistry, and REE tetrad effect (>1.1; eg., Irber, 1999) all indicate that these granites are highly fractionated granites. Furthermore, with decreasing Zr content, the P2O5, Rb and Th evolution trends (gradually decrease) of the Jianfengling granite are similar to those of highly-differentiated S-type granites (e.g., Chappell and White, 1992; Li et al., 2007, Figures 13E,F).
[image: Figure 13]FIGURE 13 | (A) Nb vs (Ga/Al)×104; (B) Zr vs (Ga/Al) ×104; (C) (Na2O + K2O)/(CaO) vs (Zr + Ce + Y + Nb); (D) FeOt/MgO vs (Zr + Ce + Y + Nb). (A), (B), (C) and (D) after Whalen et al. (1987) and Wu et al. (2017), respectively; (E) P2O5 vs Zr; (F) Th vs Rb for the different biotite monzogranite lithofacies from the Jianfengling pluton.
Tectonic Settings
The Early Jurassic (205–180 Ma) marked a relatively calm period for the tectonism and magmatism in South China (Zhou et al., 2006). Maruyama and Seno (1986) and Wan and Zhu (2002) suggested that the Paleo-Pacific block began to move NW and subducted at a low angle beneath Eurasia in the Jurassic. Mao et al. (2011) also inferred that the Paleo-Pacific block subducted NW at a low angle beneath the Eurasia block at ∼175 Ma. Due to the NW-dipping Paleo-Pacific subduction, the eastern continental margin of China became an active continental margin, and remelting of the subducting plate occurred along the Qin–Hang paleo-suture zone and Nanling region. Meanwhile, the continental crust may have continued to thicken, and a series of crustal-scale extensional faults were developed in the backarc region (Mao et al., 2011; Wang et al., 2018). The development of bimodal magmatism (158–179 Ma; Chen et al., 2002), A-type granite and alkaline plutons (165–173 Ma; Li et al., 2003), and the low–tDM and high–εNd granite belt that extends from Hangzhou through Jiangxi and Hunan to Shiwandashan (Figure 1 in Gilder et al., 1996) all demonstrate that the northeastern Qin–Hang metallogenic belt was under extension in the Middle Jurassic (Gilder et al., 1996). The South China crust may have been extended and thinned in the Mesozoic (Xu, 2012; Wang et al., 2012; Mao et al., 2013; Wang et al., 2017), triggering mantle upwelling and underplating of mantle-derived materials along fractures in the extended continental margin (Figures 14A,B). In summary, the ca. 172–145 Ma Nanling granites in the Qin–Hang belt were likely developed in a backarc extensional setting related to the low-angle Paleo-Pacific subduction (Jiang et al., 2006; Mao et al., 2011). In the Y vs Nb and Yb vs Ta plots (Figures 14C,D; after Pearce, 1996), the Jianfengling granite sample points both fell into the area of the within-plate granite, also indicating that the magma was formed through lithosphere thinning.
[image: Figure 14]FIGURE 14 | Sketch diagram of the deep dynamic evolution of the Mesozoic metallogenesis of the Xianghualing orefield (A,B). Discrimination diagrams of granite type and tectonic setting for the Jianfengling granitic rocks: (C) Y vs Nb; and (D) Yb vs Ta. Base maps after Pearce (1996).
Magma Fractionation and Nb-Ta Enrichments
The Rb-Sr and Ba-Sr plots (Figures 15A,B) show fractionation of K-feldspar and plagioclase, consistent with the strong Eu/Eu* depletions of the Jianfengling granite. Granitic magmatic-hydrothermal evolution comprises generally two stages: 1) granite gradually evolved into highly-differentiated pegmatite (Trumbull and Chaussidon, 1999); 2) from granitic magma to magmatic-hydrothermal fluid, which is characterized by widespread greisenization and quartz veins (Roda-Robles et al., 2012; Pirajno, 2013; Breiter et al., 2017, 2019). Pegmatite, greisenization and W-Sn mineralization are developed in the Jianfengling biotite monzogranite, indicating that both stages are present in the evolution of the Jianfengling granitic magma. Compared with the porphyritic biotite monzogranite, tantalum content in the biotite monzogranites and the topaz biotite monzogranites increases significantly, whereas the Nb/Ta ratio decreases (Figures 11B–E). The TiO2 content decreases with increasing Zr, indicating the fractionation of Ti-rich minerals (Figure 11J). Biotite is a Ti-rich mineral and their crystallization is conducive to Ta enrichment in the granitic magma (Stepanov and Hermann, 2013; Stepanov et al., 2014). Biotite fractionation would also increase the magma Nb/Ta ratio (Stepanov and Hermann, 2013; Stepanov et al., 2014), however, which is not found in our samples. The compatibility of Nb and Ta in granitic melt depends on the activity of non-bridging oxygen (NBOs) (Van Lichtervelde et al., 2011). The ratio rt/meltDNb/DTa is 0.8–1.0 for more silicic melts, remaining <1 for all examined silicate melts (Schmidta et al., 2004). The fractional crystallization of rutile would lead to a significant increase in melt Nb/Ta, contrary to our observations (i.e., Figure 11E). Amphibole-rich melts have been proposed to be one such candidate due to the preferential partitioning of Nb over Ta into amphibole, and which, however, is not found in our samples (i.e., Figures 15A,B). Moreover, Niobium (Nb), tantalum (Ta), zirconium (Zr) and hafnium (Hf) are moderately incompatible to weakly compatible (Hf at low temperature), with the exception of titanium, which is compatible in the amphibole structure (Nandedkar et al., 2016). Partition coefficient ratios Amph/LDNb/Amph/LDTa (0.89–1.41) and Amph/LDZr/Amph/LDHf (0.44–0.75) generally increase with decreasing temperature but no systematic trends are evident for the case of Zr and Hf, indicating that other factors are controlling the partition coefficient ratios (Nandedkar et al., 2016). Thus, the fractional crystallization of amphibole would lead to a significant increase in melt Zr/Hf, contrary to our observations (i.e., Figure 11H). Fluorine (F) can generally replace O in tetrahedral complex anion [AlO2]− in the granitic melt, resulting in the decoupling of [AlO2]−. Meanwhile, fluorine would complex with Al to form AlF63- complex [3(Na,K)AlSi3O8 + 6F − 3O ⇌ (Na,K)3AlF6 + Al2O3 + 9SiO2; Keppler, 1993], which can significantly increase the magma non-bridging oxygen (NBOs) content. This could neutralize the excess alkali metal ions (Na+ and K+), and thus increase the Nb-Ta solubility in the melt (Keppler, 1993; Mysen, 1990). With magma fractionation (section 6.3), the contents of F, Nb and Ta in the Jianfengling granitic magma increase gradually (Figures 15C,D). This indicates that the F-rich volatile enrichment can significantly increase the Nb-Ta solubility in the melt (Mysen and RyersonVirgo, 1981; London et al., 1993; Xiong et al., 1999).
[image: Figure 15]FIGURE 15 | Plots of (A) Rb vs Sr; (B) Ba vs Sr; (C) Nb vs F; (D) Ta vs F for the different biotite monzogranite lithofacies from the Jianfengling pluton.
CONCLUSION

1) The Jianfengling biotite monzogranite pluton comprises three gradual transitional lithofacies: porphyritic (mesophase facies), the biotite monzogranites (transition facies) and the topaz biotite monzogranites (central facies).
2) The high Th-U and low Th-U zircon grains from porphyritic biotite monzogranite yielded weighted average 206Pb/238U ages of 161.3 ± 1.6 and 158.7 ± 2.0 Ma, respectively, coeval with the timing of large-scale magmatism-mineralization in the Nanling region (ca. 160–150 Ma). The εHf(t) values of the high Th-U zircons (-6.48 to -2.51) and low Th-U zircons (-6.58 to -1.12) from the porphyritic biotite monzogranite indicate that the parental magma was mainly derived from partial melting of Mesoproterozoic Cathaysian basement rocks under lithospheric extension.
3) The Nb and Ta contents increase with fluorine along with magma fractionation, indicating that the Nb-Ta enrichments was likely resulted from the gradual increase of fluxing content (fluorine) during extensive fractional crystallization of the Jianfengling granitic magma.
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