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Quantification of long-term hydrologic change in groundwater often requires the
comparison of states pre- and post-change. The assessment of these changes in
ungauged catchments using numerical models and other quantitative methods is
particularly difficult from a conceptual point of view and due to parameter non-
uniqueness and associated uncertainty of quantitative frameworks. In these contexts,
the use of data assimilation, sensitivity analysis and uncertainty quantification
techniques are critical to maximize the use of available data both in terms of
conceptualization and quantification. This paper summarizes findings of a study
undertaken in the Lake Muir-Unicup Natural Diversity Recovery Catchment
(MUNDRC), a small-scale endorheic basin located in southwestern Australia that
has been subject to a systematic decline in rainfall rates since 1970s. A combination
of data assimilation techniqueswas applied to conceptual and numerical frameworks
in order to understand and quantify impacts of rainfall decline on the catchment
using a variety of metrics involving groundwater and lake levels, as well as fluxes
between these compartments and mass balance components. Conceptualization
was facilitated with the use of a novel data-driven method relating rainfall and
groundwater responses running backwards in time, allowing the establishment of the
likely baseline conditions prior to rainfall decline, estimation of net recharge rates and
providing initial heads for the forward numerical modelling. Numerical model
parameter and predictive uncertainties associated with data gaps were then
minimized and quantified utilizing an Iterative Ensemble Smoother algorithm,
while further refinement of conceptual model was made possible following
results from sensitivity analysis, where major parameter controls on groundwater
levels and other predictions of interest were quantified. The combination ofmethods
can be considered as a template for other long-term catchment modelling studies
that seek to constrain uncertainty in situations with sparse data availability.
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1 Introduction

Endorheic basins, also known as terminal catchments of internally
drained basins, comprise a variety of geomorphic environments
widely distributed across the globe. These environments with often
distinct attributes are characterized by the lack of surface and
groundwater discharge across their borders and have evaporation
as the dominant outflow. Despite many of them being currently under
pressure from climate change and anthropogenic activities, these
basins are understudied when compared to traditional hillslope
catchments. The unique surface and groundwater attributes (De
Sousa, 2021) of these environments makes extrapolations and
inferences from better studied hillslope catchments difficult. From
a quantitative perspective, modelling efforts in these areas are not only
difficult given the lack of numerical frameworks designed for surface-
groundwater interactions in semi-arid settings (Jolly et al., 2008), but
they also suffer from a lack of site-specific monitoring data.

The issue of data sparsity is a common theme in endorheic basins,
evidenced by the fact that current literature relies heavily on indirect
measurements and remote-sensing data (De Sousa, 2021). Data
sparsity hinders the ability to establish a robust conceptualization
and incurs large predictive uncertainty which is inherent to surface
and groundwater models. The need to maximize the extraction of
information from largely incomplete datasets and its use in
conceptualization and numerical modelling is critical for the
development of quantitative frameworks that are capable of
accounting for hydrogeological/hydrological uncertainty and the
ability of available data to constrain it.

The use of Data Assimilation (DA), Uncertainty Quantification
(UQ) and Sensitivity Analysis (SA) techniques in hydrological
modelling is an emerging field with great potential to support
decision-making in catchments experiencing hydrological change,
but to date many of these techniques have not yet been applied to
endorheic basin studies. Challenges remain on how to apply them
appropriately in situations where the observation data is less than
ideal, such that they can output useful information relevant to inform
our conceptualization and strategies for management (Thompson
et al., 2015).

Research into DA was initially developed for the purpose of
numerical weather prediction, and is often related to Kalman filter
contexts, where the states of variables from numerical models are
updated incrementally through time as new observation data becomes
available. In this paper, we adopt a broader definition of DA, which
relates to optimally combine observations with theory (usually as
numerical models) to improve model integrity and the accuracy of
predictions of interest (Asch et al., 2016). In this regard, DA
techniques are used for several purposes, such as history matching
and parameter optimization based on observed data, determination of
initial conditions for a numerical forecast model, interpolation of
sparse observation datasets using the physical knowledge of the system
(i.e., numerical models), and reduction of predictive uncertainty of
numerical models.

The use of UQ and SA techniques is often interrelated with DA
techniques. While UQ tends to focus on quantifying and reducing
parameter and predictive uncertainty due to lack of data or model
defects, SA looks at the effect that model parameters have on outputs
of interest (Pianosi et al., 2016). These techniques have the potential to
support many of the questions that arise from investigation efforts in
endorheic basins, from conceptualization to quantification, predictive

modeling, and adaptive management (Figure 1), which are
explored next.

1.1 Finding evidence of long-term
groundwater trends and reconstruction of
baseline conditions

The use of signal analysis techniques for processing of time series
and extraction of useful information is an import area of signal
processing and well-established techniques such as Fourier
Transforms and Wavelets have been applied for decades
(Maheshwari and Kumar, 2014). Studies focused on groundwater
level time series analysis include works by Lafare et al. (2016) and
Seeboonruang (2014).

In situations where long-term stressors are intermixed with short-
term signals (such as seasonality), time decomposition techniques
have the potential to untangle them. The Empirical Model
Decomposition method developed by Huang et al. (1998) is a
technique for processing of non-linear and non-stationary signals
and/or time series, decomposing them into a number of zero-mean
signals called Intrinsic Mode Functions (IMF) in an adaptive and fully
data-driven way, from the assumption that any signal is composed by
different IMF’s and that each IMF represents a characteristic
oscillation on a separated time scale. The EMD technique have
been used in the hydrology field for identification of trends in lake
levels (Wang et al., 2020) and groundwater forecasting (Gong et al.,
2018).

Another challenge in the study of endorheic basins under long-
term impacts is the establishment of pre-impact baseline conditions.
For impact assessment in general, the definition of impacts often
involves comparison of current and past hydrologic states. The
absence of baseline data in these circumstances makes the
definition of these impacts difficult both in terms of
conceptualization and quantification. The Backward Water Table
Fluctuation (BWTF) developed by De Sousa (2021) is a data-driven
hindcasting technique based on rainfall and groundwater level
fluctuations, enabling the reconstruction of baseline groundwater
levels for periods where no monitoring data was available.

1.2 Data sparsity and uncertainty

Data sparsity in the endorheic basins reduces the reliability of
investigation efforts, both in terms of identification of dominant
processes (conceptualization) and predictive ability of quantitative
frameworks.

More conventional applications of data assimilation involve the
use of history-matching techniques to attempt the reduction of
parameter uncertainty (and possibly predictive uncertainty).
Excellent discussions on history-matching, data assimilation and
their value in the reduction of uncertainty are presented by Nicols
and Doherty (2020) and Gallagher and Doherty (2020). In these
discussions, history matching is defined as the “act of tuning model
parameters so that a model can reproduce past system behavior.”
Predictive uncertainty in hydrologic models is often expressed from a
conceptual point of view using Bayes equation, where imposition of
constraints on parameter values is obtained through history-
matching. Where approximations of prior distributions are derived
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from the conceptual understanding and expert-knowledge of a system
(also known as soft-data), history-matching against field
measurements (hard-data) induce alterations to the prior
parameter probability distributions and, consequently, predictive
uncertainty. The resulting probability distribution from parameter
sets that both conform with expert-knowledge and reproduce
historical behavior approximates the posterior probability
distribution.

As discussed in Nicols and Doherty (2020), mathematical
expressions for posterior parameter and predictive probability
distribution cannot be derived, however, they can be defined by
sampling them. The PESTPP-IES iterative ensemble smoother
(White, 2018) was designed to this end. Based on the algorithm
described by Chen and Oliver (2013), PESTPP-IES uses ensemble
realizations derived from an approximation of the prior parameter
probability distribution and attempt to adjust them by the minimum
amount required to match field observations and achieve history-
matching as well as reduction in parameter uncertainty.

1.3 Maximizing the use of available data sets
with derived metrics

In the “Concept-State-Process-System” (CSPS) framework
introduced for the hierarchical assessment of aquatic ecosystem
models, Hipsey et al. (2020) divides metrics used for history
matching of model states into 3 major groups: 1—Direct
comparison, where model results are compared with measured data
at specific points in time and space; 2—Derived metrics describing
model state, which do not involve a direct assessment of a state
variable, but are derived from them (such as head differences, or ratios
between variables); and 3—Metrics describing multi-scale variability
in model state, used to describe how well the various scales of spatial or
temporal variability are described in models.

The use of derived metrics involving groundwater head differences
in space and time is not new in hydrogeology studies and is
recommended by several authors (Hill and Tiedeman, 2007;
Doherty et al., 2010). Nevertheless, studies demonstrating and

FIGURE 1
Example of DA, UQ and SA techniques, and their potential to support research in endorheic basins.
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evaluating the value of derived metrics and how they contribute to
reducing uncertainty is not often seen in literature.

1.4 Informing conceptualization and controls
on catchment dynamics

Thompson et al. (2015) states that numerical models are
important in understanding how complex catchment systems are
responding to uncertain changes and while conceptual models
usually guide the development of numerical models, iterative cycles
between conceptualization and modelling results may be beneficial to
refine conceptual understanding.

Saltelli et al. (2004) defines sensitivity analysis as “The study of
how uncertainty in the output of a model (numerical or otherwise) can
be apportioned to different sources of uncertainty in the model input.”
In groundwater modelling practice, the sensitivity analysis is usually
performed at the end of the modelling exercise, or as a by-product of
parameter optimization methods used for history matching such as
PEST (Doherty, 2015) and PESTPP (Welter et al., 2015). However,
much can be gained from sensitivity analysis in terms of
conceptualization if these techniques are employed in earlier stages
of model development. Despite the fact that sensitivity can be
anticipated to some extent by experienced modelers, rigorous
analysis is useful to corroborate, indicate the need for new
conceptualization, or diagnose non-linear behavior of models and/
or numerical instabilities.

Algorithms based on the Gauss-Levemberg-Marquadt method
such as PEST (Doherty, 2015, 2020), PESTPP (Welter et al., 2015)
often require a tangent linear operator, also known as Jacobian matrix.
These matrices contain partial derivatives of model outputs in respect
to model parameters and are often required for history matching
methods, sensitivity, and linear uncertainty analysis. Detailed analysis
of these sensitive matrices can provide valuable insights on system
functioning and dominant controls on catchment dynamics (as
explored in the following sections). However, they are not often
“dissected” and interpreted in context of model conceptualization.

While point-source sensitivities obtained from perturbation
methods (such as those obtained by PEST and PESTPP) provide
valuable insights on system and model behavior, there are situations
where more robust sensitivity estimates are required. For these
purposes, the use of global sensitivity analysis (GSA) may be
useful. GSA methods characterize the effect of model parameter
onto model outputs over a wide range of acceptable parameter
values, covering larger portions of parameter space as opposed to
point-source sensitivity. As a result, the behavior of model outputs that
are non-linear and dependent on the combination of many parameters
can be unraveled. Several methods for global sensitivity analysis with
different degrees of computational effort and output results, as
discussed in Saltelli et al. (2004, 2008).

1.5 Optimizing site investigation efforts

In data-scarce areas and resource-constrained investigations, it is
important to collect data where it really matters. From a quantitative
perspective, that means where and when an observation will promote
the maximum reduction of predictive uncertainty. When a Jacobian
sensitivity matrix is calculated for a parameter set that reasonably

conforms with expert-knowledge and historical system behavior, it
can be used for linear uncertainty analysis, also known as first-order
second moment (FOSM) analysis. The theory behind linear
uncertainty analysis is widely discussed in the literature (Moore
and Doherty, 2006; James et al., 2009; Dausman et al., 2010; White
et al., 2014) and it has been implemented in a number of model-
independent software packages, including PEST, PESTPP and PyEMU
(White et al., 2016).

This method provides an approximate mathematical
characterization of prior and posterior probability distributions for
parameters and predictions of interest (Nicols and Doherty, 2020).
Furthermore, it can be used to demonstrate the value of history
matching data (existing or not) in the reduction of parameter and
predictive uncertainty. This enables the assessment of data worth not
only for different data metrics, but also optimizing data acquisition
efforts, by pre-empting its ability to constrain parameter and
predictive uncertainty.

1.6 Study objectives and structure

The objective of this study is to apply and demonstrate the use of
DA, UQ and SA techniques in the context of endorheic basins
research, evaluating the ability of these methods to facilitate and
enable conceptualization, quantification, and adaptive management
measures. These techniques were applied during research undertaken
at the Lake Muir-Unicup Natural Diversity Recovery Catchment
(MUNDRC), a small scale semi-arid basin located in southwestern
Australia, and subject to a systematic decline in rainfall rates over the
past 50 years.

The application of the different techniques presented in this
paper was not linear, in the sense they were not necessarily applied in
the order they are presented. Multiple feedback loops between
assessment of model results and conceptualization were
undertaken, evolving the understanding of the site and robustness
of quantitative assessments to the final form. The last part of this
paper integrates the findings of all techniques and how they
contributed to the research development.

2 Study site, conceptual and numerical
framework

The area of investigation employed in this study is the Lake Muir-
Unicup Natural Diversity Recovery Catchment (MUNDRC), located
in southwestern Australia and listed under the Ramsar Convention as
a Wetland of International Importance. This area consists of a
complex system of lakes, swamps and flood plains, encompassing
an area of 630 km2 and is located 65 km from the coastline (Figure 2).

The conceptual model for the area, main hydrological drivers and
effects from rainfall decline on surface and groundwater
compartments are discussed in De Sousa (2021). Four
hydrogeological units are associated with unconsolidated sediments
and weathered portions of the crystalline basement. The combination
of low relief, high specific yield, and flat lake bathymetry results in a
relatively stagnant groundwater system with respect to horizontal
flows along the lower plains surrounding Lake Muir. The flat
topography also results in poor development of surface drainage
lines, favoring infiltration processes over runoff, as well as the
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development of shallow groundwater tables with high correlation to
the topography and significant seasonal oscillations.

Lake Muir is positioned in the lowest topographical area of the
catchment and constitutes the largest groundwater discharge area,
where water is constantly removed from the lake through evaporation.
Water exchanges between the lake and adjacent aquifers is dynamic
given the highly variable lake-aquifer interface areas resulting from the
flat lakebed geometry.

Long-term rainfall records for the catchment show a systematic
decrease in rainfall rates, particularly during the wet seasons. Hope
and Foster (2005) analyzed winter rainfall rates in Western Australia
for the period of 1925–2005 and identified an abrupt change in rainfall
rates since 1970s.

Cumulative rainfall reductions for the MUNDRC have been
undertaken using Accumulation Monthly Residual Rainfall
(Ferdowsian et al., 2001) and are displayed in Figure 3, showing
relatively small departures for the period from 1920–1970, with a

pronounced negative departure from 1970 to present, showing a total
deficit of 5,500 mm over 46 years. This reduction in rainfall results in
smaller groundwater recharge and, consequently, reductions in
groundwater levels and discharge volumes.

2.1 Numerical framework

A numerical framework for quantification of long-term impacts
associated with rainfall decline on MUNDRC have been developed
and described by De Sousa (2021). Aiming at representing the main
hydrologic controls in the area and encapsulating both
conceptualization and monitoring data, the framework consisted of
a dynamically-coupled lake and groundwater model, accompanied by
a rainfall-based groundwater recharge formulation.

The three-dimensional groundwater model was built using the
finite element code FEFLOW (Diersch, 2014), coupled with a lake

FIGURE 2
Location of study site, Lake Muir and nearby surface water compartments.

FIGURE 3
Cumulative rainfall departure for Station 9,506 and average southwestern Australia, using rainfall averages for the period of 1900–1970.
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model component developed using FEFLOW’s API. The model was
defined based on catchment boundaries and geometry of the main
hydrogeological units in the area (Figure 4).

The model was initially calibrated against lake and groundwater
levels, as well as additional derived metrics discussed later in the
section below, using piecewise-constant parameter zones, where
hydrogeological parameters of the different aquifers were assumed
to be homogeneous over their extent.

This numerical framework was upgraded in this paper by adopting
a highly-parameterized approach using pilot points (Doherty et al.,
2010). The use of pilot points not only allows for heterogeneity within
the aquifers, but also builds the foundation for the DA, UQ and SA
workflows presented in this paper. Pilot points were assigned covering
the extent of each of the aquifer and recharge zones, using a
predominantly regular grid with 1,500 m spacing (Figure 5). Each
aquifer pilot point was assigned four parameters and two parameters
were assigned for each recharge pilot point. Three additional
parameters were also implemented to define initial lake level and
multipliers for lake evaporation and rainfall, resulting in
3,295 parameters adjusted during history matching and analyzed in
the uncertainty quantification and sensitivity analyses (Table 1). In
order to facilitate the discussion, the following convention was used
for parameter naming:

Ptype _Pzone _PPID
where Ptype is the type of parameter, Pzone relates to the original

parameter zones defined De Sousa (2021) and PPID correspond to the
pilot point number for the spatially distributed parameter groups.
Parameters related to the lake model have the prefix “Lk_” and
descriptor for parameter types and zones are presented in Tables 1,
2, respectively. Corresponding parent groups for each of the
parameters are named with Ptype followed by Pzone.

2.2 History matching data, derived metrics,
and predictions of interest

The DA, UQ and SA techniques employed in this study were based
on historical lake and groundwater levels. These levels have been

measured in LakeMuir and groundwater monitoring boreholes drilled
as part of hydrogeological investigations by the former Western
Australia Department of Land Management (New et al., 2004), and
further expanded by former Department of Environment and
Conservation (Grelet and Smith, 2009). These groundwater
monitoring boreholes have been screened to target the different
hydrogeological units in the area and are displayed in Figure 6,
along with selected locations from which model results are
presented and discussed.

The majority of the data have been collected on a monthly basis
from early 2000s, while historical level measurements on Lake Muir
have been conducted since 1980s, mostly during the wet seasons. In
the context of impacts related to rainfall decline, the dataset coverage is
relatively small, since the decline period started in the early 1970s.

The MUNDRC model used several direct and derived history-
matching and predictive metrics, as summarized in Table 3. Direct
metrics are defined here as values related to direct model outputs that
do not require further post-processing (or in other words, raw output),
while derived metrics are based on post-processing of model outputs
(such as head-differences). The use of different metrics was three-fold:
attempt to improve history matching, reduce parameter and predictive
uncertainty, and to understand how they respond to parameter
changes and contribute to the reduction of uncertainty.

Horizontal head differences between boreholes were added as
observations, based on a Delaunay triangulation generated from the
borehole locations. Head differences between borehole pairs defining
each of the triangulation edges were use as observations, with quarterly
snapshots generated for the period from 2000–2014. Seasonal head
differences within each borehole were also included, in an attempt to
inform the optimization process of groundwater level differences
between wet and dry seasons. Groundwater level estimates for
1970 presented in De Sousa (2021) were included, together with
the difference between these levels and the first record of each
borehole, in an attempt to inform long-term changes.

In addition, predictive metrics have been added in for the
sensitivity analysis workflows in the form of “virtual observations”
(i.e., fake observations at prescribed locations in space-time), for
sensitivity analysis. Virtual monthly groundwater level observations
have been added for all boreholes, covering the period from 1970 to

FIGURE 4
Groundwater model mesh and main surface water compartments (A), and fence diagram illustrating the distribution of the main hydrogeological
units (B).
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2010 to observe whether sensitivity to groundwater levels vary over
time. Virtual observations for lake levels were also included, in
addition to monthly net recharge rates and exchange fluxes
between Lake Muir and adjacent aquifers.

3 Data assimilation in conceptualization

3.1 Identifying rainfall decline trends in
groundwater monitoring data

Given the strong correlation between rainfall rates and groundwater
levels, it was expected that drawdown trends associated to rainfall decline

would be strongly present in the historical data, however, the
identification of long-term drawdowns in the available monitoring
data is very subtle and difficult to undertake. Reasons for that include
the relatively short monitoring period (15-year against 40–50 years of
rainfall decline) and also that the consistent rainfall decline for such a long
period may lead the catchment towards a new equilibrium state, with
groundwater levels “adapting” to the lower recharge regime. Lastly, the
high seasonality observed in groundwater levels add short-term variations
in monitoring records masking subtler long-term drawdown trends.

Here, the EMD method have been applied to the groundwater
time series from monitoring boreholes to isolate long-term drawdown
terms from seasonal and higher frequency changes in groundwater
levels.

FIGURE 5
Distribution of pilot points for the different hydrogeological units.
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Groundwater time series from all monitoring boreholes were
processed using the Python implementation of the EMD algorithm
developed by Laszuk (2017). The original data and resulting IMF’s for
monitoring boreholes MU22A, MU45S and MU65S are presented in
Figure 7. The EMD results show long-term decline terms in the last
IMF of all three boreholes (IMF_6 for MU22A, IMF_5 for boreholes
MU45S andMU65S), while seasonal signals for the three boreholes are
clearly identified in IMF’s 3, 1 and 2, respectively.

Another important aspect is that the magnitude of the long-term
variations found by the EMD are much smaller than seasonal
variations in the groundwater levels and higher-frequency IMF’s,
demonstrating the ability of the method to identify subtle
drawdown patterns in areas under high seasonality effects.

3.2 Establishment of baseline groundwater
levels and conceptual drawdown estimates

The assessment of environmental impacts often involves the
comparison of current and/or past hydrologic states against states
prior to the impact development. The absence of baseline data in these
situations makes the assessment of these impacts extremely
challenging, both on conceptual and quantitative levels.

In the MUNDRC, while groundwater monitoring data was
available for a large number of boreholes spread across the
catchment, the majority of groundwater level data was collected
from the early 2000s approximately 30 years from the beginning of
the rainfall decline. From that perspective, besides subtle drawdown
trends observed in the EMD analyses, the premise that rainfall decline

promoted groundwater drawdown in the catchment was merely
conceptual.

Based on relationships between rainfall and groundwater responses,
the Backwards Water Table Fluctuation (BWTF) method was developed.
This technique enabled the reconstruction of groundwater levels in the
MUNDRC prior to rainfall decline by running the calculations backwards
in time and providing reverse hindcasts. Historical groundwater levels
were estimated for each borehole in the catchment, utilizing a starting
head (equating to the latest observation of each monitoring time series),
rainfall fraction applied to rainfall historical time series, specific yield, and
a constant outflow term. These parameters were calibrated against
available data and ran backwards until 1970, prior to rainfall decline.

The pre-rainfall decline hindcasts obtained from this method
provided not only preliminary drawdown estimates across the
catchment, but also estimates on net recharge rates. Furthermore,
the estimated groundwater levels were incorporated in the forward
numerical framework (as discussed in history matching metrics),
therefore enabling the history matching to reach for reasonable
groundwater levels pre-rainfall decline and provide more robust
estimates for groundwater level changes since 1970.

4 Uncertainty quantification and the role
of history matching

4.1 Reducing uncertainty

The Iterative Ensemble Smoother implementation in PESTPP-IES
have been utilized for history-matching aiming at 1)—reasonably

TABLE 1 Parameter type descriptors used in parameter name definition.

Parameter symbol Description Spatially distributed Units

Kh Horizontal hydraulic conductivity Yes m/d

Va Vertical anisotropy Yes (-)

Ss Specific storage Yes m−1

Sy Specific yield Yes (-)

Ra Rainfall fraction for recharge formulation Yes (-)

Ev Constant outflow term for recharge formulation Yes (mm/day)

Lk_strt Lake Muir starting level (1960) No mAHD

Lk_evap Lake Muir evaporation multiplier No (-)

Lk_rain Lake Muir rainfall multiplier No (-)

TABLE 2 Parameter group descriptors used in parameter name definitions.

Parameter group Aquifer/recharge zone Description

1 Aquifer Quaternary sediments

2 Aquifer Pallinup Formation

3 Aquifer Werillup Formation

4 Aquifer Weathered Basement

8 Recharge Sedimentary aquifer outcrop zone

9 Recharge Weathered basement outcrop zone
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representing historical behavior of the catchment, 2)—reduce
parameter uncertainty, 3)—provide an ensemble of conceptually
feasible parameter sets that are a reasonable approximation of
posterior parameter distributions and 4)—enable the quantification
of uncertainty of the different metrics and predictions of interest.

PESTPP-IES was used in conjunction with the numerical model
described in the previous section and upgraded here with pilot-point
parameterization. An ensemble of 150 realizations was constructed
based on conceptual information of the site, which included likely
parameter values, upper and lower bounds, and conceptual estimates
of spatial correlation. The prior ensemble included a base realization,
which served as a parameter means for the remaining realizations.

This realization was based on the piecewise-zone calibration presented
in De Sousa (2021).

Prior information was applied in the generation of the parameter sets
through the definition of parametermeans and boundaries as well as their
spatial correlations. Upper and lower boundaries for aquifer parameter
values were based on lithological descriptions and literature values
(Reynolds and Marimuthu, 2007) of each of the aquifers. Parameter
bounds for recharge outflow terms were set .7 to 1.2 while values between
.5–.9 were assigned to rainfall fraction. The spatial correlation of
parameters of the same type and group was defined using covariance
matrices based on variograms defined for the area, under the assumption
that spatial correlation is lost beyond the distance of 6 km.

FIGURE 6
Location of groundwater monitoring boreholes screened in the different hydrogeological units.
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Details from the PESTPP-IES settings used in this calibration,
including regularization settings and use of localization, are discussed
in De Sousa (2021). The results from the history matching showed a
reduction in the mean objective function value from 484,555 to
28,936 at the end of iteration 6. The standard deviation of the
objective function values also reduces throughout the iterations,
from a prior value of 583,308 to 641 at the end of optimization.
Furthermore, the total number of runs required for the entire
procedure (prior plus 6 iterations) was 1842, which is about half
the number of adjustable parameters and demonstrates the efficiency
of the algorithm. Despite similar objective functions obtained at the
end of the IES optimization, the distribution of parameters from the
different ensemble sets can be quite distinct, as illustrated by
horizontal conductivity values in layer one displayed in Figure 8.
Although the differences between realizations in this figure are not
always apparent (since the color-scale span 4 orders of magnitude), the
histograms for hydraulic conductivity displayed in Figure 10 show
clearly that ranges often span over one order of magnitude.

To illustrate the reduction in uncertainty, simulated hydrographs
from the prior and posterior ensemble were plotted against observed
data and the results from the piecewise-constant zone calibration
presented in De Sousa (2021) for selected monitoring locations and
Lake Muir (Figure 9). When compared to the prior ensemble, the
posterior realizations not only present a better fit with observed data,
but also have a much narrower spread (therefore demonstrating the
reduction of parameter uncertainty). In relation to the piecewise-
constant calibration, posterior runs also present a significantly better
fit, which is expected as the highly-parameterized form allows for
heterogeneity within the parameter zones and adjust locally to each
monitoring location. Lastly it can be observed that prior realizations
are predominantly centered around the hydrographs from the

piecewise-constant calibration run, which is expected as the
parameters from this run were used as means for the generation of
the prior ensemble set.

The reduction of uncertainty can also be observed when
comparing parameter distributions from prior and posterior
ensembles (Figure 10). In this figure, most sensitive parameters to
groundwater level observations from selected hydrographs have been
selected for plotting of histograms with prior and posterior
distributions. It can be observed that there is an overall reduction
in the spread of parameter values, and these reductions are particularly
pronounced in highly sensitive parameters, such as those related to
groundwater recharge. Parameters with low sensitivity such as vertical
anisotropy shows little to no reduction in parameter uncertainty.

4.2 Quantification of predictive uncertainty

If the ensemble size utilized by the iterative ensemble smoother is
of sufficient size, the execution of model runs using the posterior
ensemble sets can be utilized collectively to define posterior probability
distributions for predictions of interest.

The results from the posterior ensemble sets obtained using
PESTPP-IES were used to assess uncertainty of predicted
groundwater levels and other metrics as illustrated in Figures 11
and 12.

Despite the large number of locations and metrics, some common
uncertainty patterns can be observed across different model results.
For instance, uncertainty of simulated groundwater levels shows an
increase during the period from 1980 to 1988 in many borehole
locations such as MU68S and PM03. For these boreholes the
maximum simulated drawdown occurs in this period, which

TABLE 3 System observation metrics used in history matching, and predictive metrics used in the UQ and SA workflows.

Name Description Derived/
direct

History matching/
Sensitivity analysis

Temporal
coverage

Number of
sites

Number of
observations

Heads Historical groundwater levels at monitoring
boreholes

Direct History matching 1997–2017 103 17,735

BWTF_Heads 1970 Groundwater level estimates using the
BWTF method

Derived History matching 1970 57 57

HGrads Horizontal historical head differences
between boreholes

Derived History matching 2000–2014 31a 17,272

BWTF_TGrads Head differences between 1970 BWTF
estimates and first observation of each
borehole

Derived History matching 1970–2008 57 57

T_Grads Seasonal head differences in boreholes Derived History matching 2000–2018 107 1,655

Lake levels Historical Lake Muir levels Direct History matching 1980–2010 1 58

Historical heads Virtual monthly groundwater levels at
monitoring bores

Direct Sensitivity analysis 1970–2010 103 49,543

Historical lake
levels

Virtual monthly levels for Lake Muir Direct Sensitivity analysis 1970–2017 1 576

Net recharge Monthly net recharge rates for the entire
model domain

Direct Sensitivity analysis 1970–2017 2b 576

Lake Muir/GW
fluxes

Exchange fluxes between Lake Muir and
adjacent aquifers

Direct Sensitivity analysis 1970–2017 1 576

aNumber of quarterly time snapshots.
bNet recharge over the entire zones 8 (sedimentary aquifers) and 9 (weathered basement).
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suggest the degree of uncertainty is related to the magnitude of stresses
being imposed in the catchment. The distribution of mean and
standard deviation of simulated groundwater levels corroborates
this hypothesis, with areas of larger standard deviation
predominantly overlapping areas of larger mean drawdown.

The uncertainty around groundwater levels is relatively small
when considering the absolute groundwater levels, with 95%
confidence intervals under ±1 m from mean levels for the majority
of monitoring boreholes. Nevertheless, when looked in terms of
drawdown, these uncertainties can equate to 50%–100% of
maximum simulated drawdown in some boreholes (PM-03, MU65S).

Uncertainty around the LakeMuir levels is relatively small, probably
due to the fact the dominant fluxes in the lake are controlled by
historical rainfall and evaporation time series (prescribed in the
model) and only two parameters with corresponding multipliers, as
relative contributions from groundwater into the lake inputs only
account for approximately 30% (Figure 12).

Uncertainty of mass balance quantities displayed in the same
figure provide some important insights. It can be noted that
uncertainty over cumulative groundwater storage changes increase
progressively through the entire simulated period, where uncertainty
around rates such as net recharge and groundwater contributions to
lake inflow remain relatively stable. Uncertainties around the period of
1970–1974 are slightly higher for net groundwater recharge, net
balance for Lake Muir and relative contributions, as well as lake
levels. This is the period where rainfall decline starts and it is possible
that the sudden shift in rainfall rates produced larger stresses in the
initial years and, consequently larger uncertainty.

5 Sensitivity analysis

We explored different sensitivity analysis techniques and their
ability to contribute to the understanding of hydrologic processes

FIGURE 7
Historical groundwater levels and Intrinsic Mode Functions obtained from the EMD analysis for boreholes MU22A (A), MU45S (B) and MU65S (C).
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occurring in the MUNDRC and terminal catchments in general. Local
sensitivity analysis was employed to quantify point-source sensitivities
(i.e., at a single location in parameter space) to understand spatial and
temporal relationships, and global sensitivity methods were used to
provide more robust sensitivity estimates and investigate broader
controls on history matching and predictions of interest.

5.1 Improving understanding and
conceptualization

A Jacobianmatrix for theMUNDRCmodel has been generated for
the parameter set with lowest residuals from the posterior ensemble
obtained for the PESTPP-IES history matching work, using PEST-HP.
The matrix was constructed considering all parameters (3,295) using a
3-point derivative approximation, in a total of 6,591 model runs.
Analyzed inputs included observation and derived metrics used in the

history-matching process, as well as virtual observations described in
Section 2.2.

The comparison of groundwater level sensitivities to model
parameters against the distance between monitoring point and
pilot-point location is useful to establish distance-sensitivity
relationships and estimate the “radius of influence” of certain
parameters. Figure 13 shows plots of absolute sensitivity of
groundwater levels in selected monitoring locations, where average
sensitivity values for all groundwater levels in each location were
calculated for all spatially distributed parameters (i.e., parameters from
the pilot points). These plots show that in general, all parameters
beyond 2–4 km from observation points show very low to no
sensitivity, despite the maximum sensitivity of each parameter
group (for example, recharge parameters show very high sensitivity
for pilot points within 2–4 km, but the sensitivity is lost in parameters
beyond that distance in the same way that storage parameters, which
have much lower sensitivities).

FIGURE 8
Calibrated horizontal conductivity values for layer 1 on selected posterior ensemble realizations.
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The distance-sensitivity plots also unravel relationships between
maximum sensitivity on a parameter group basis, and their sensitivity
noise, defined here as average groundwater level sensitivities to
parameters located beyond the threshold distance. Ratios between
maximum sensitivity and sensitivity noise are very high in parameter
groups with high maximum sensitivity (such as Ev and Ra), but this
ratio tends to degrade for parameter groups with low maximum
sensitivity (for example, for groups Ss_3 and Sy_3 in monitoring
borehole PM-03).

The use of virtual observations over the entire period between
1970 and 2010 showed that groundwater level sensitivity varies
considerably over the simulated period. The assessment of

sensitivities over time shows that sensitivity to recharge parameters
increase over time (particularly in monitoring bores located away from
lakes and other surface water compartments), suggesting that changes
in net recharge rates have a cumulative effect on groundwater levels. In
monitoring sites near lakes, this cumulative behavior is likely
dampened by the model boundary conditions, as groundwater
fluxes into these compartments adjust to the different recharge rates.

It can be observed that the sensitivities have a large influence from
the rainfall signal, as sensitivity peaks from different parameters and
location often align in periods of high or very low rainfall (such as
years 2001 and 2006). This also demonstrates that sensitivity is
influenced by the magnitude of hydrologic stress throughout the

FIGURE 9
Simulated lake and groundwater levels prior and post-calibration at selected locations.
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simulated period. Lastly the temporal behavior of storage parameter
sensitivities is largely cyclical over the entire simulated period. To
investigate whether these oscillations were associated with the
seasonality observed in the catchment, groundwater level
sensitivities to the parameters were grouped monthly and displayed

as box and whiskers plots in Figure 14. These plots show that the
groundwater level sensitivity is not only seasonal for storage
parameters but, to a lesser degree, all other parameter types. High
sensitivity peaks in these plots are normally in April-May, at the end of
dry season, and low peaks are observed in September-October, at the

FIGURE 10
Parameter histograms of prior (orange) and posterior (blue) distributions of most sensitive parameters to observations in selected monitoring boreholes.
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end of wet season. This reflects not only the seasonality, but also
suggest that the sensitivity is dependent on the hydrological state of the
system, with sensitivities varying largely from periods of water surplus
(wet season) and water deficit (dry season).

5.2 Assessing the value of history matching
metrics and prioritizing site investigation
efforts with linear uncertainty methods

Doherty and Hunt (2009) describe two statistics referred to as
Identifiability and Relative Parameter Uncertainty Variance
Reduction (RUVR). These statistics can be obtained from the
Jacobian Matrix of a calibrated parameter set for any adjustable
parameter and vary between 0 and 1, where the value of 0 means

no reduction of uncertainty has been achieved through the history-
matching process and the value of 1 indicates small parameter
uncertainty in relation to the prior.

These analyses can be obtained considering history-matching
observations that exist or not, and when applying different settings
for observations (through weighting) and parameters (by fixing them
or not) they can provide useful insights on the value of different
observation groups, aggregate value of raw and derived metrics, and
also inform site investigation efforts.

The several history-matching groups employed in the calibration
of the MUNDRC model allowed a significant reduction in parameter
uncertainties and also reasonable replication of past system behavior.
However, the contribution of the different metrics to reduction in the
uncertainty of different parameter groups was not clear. To investigate
that, different linear analysis runs were done considering the entire

FIGURE 11
Simulated lake and groundwater level ensemble percentiles at selected locations.
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history-matching data set and different observation groups
individually as displayed in Figure 15, where values for
identifiability and RUVR were averaged for the different parameter
groups.

These results shows that 1) the sum of the values from individual
observation groups is different from the values for the entire dataset,
given the fact the these metrics are to some extent correlated in terms
of sensitivity, 2) groundwater level observations shown overall the
largest identifiability values as an individual group, 3) contributions
from the derivedmetrics of horizontal and seasonal head differences to
reduction of parameter uncertainty are most effective in the
identification of storage parameters and 4) identifiability and
RUVR values for lake values are predominantly controlled by lake
observations, with subordinate contributions of groundwater levels. In
the case of horizontal head differences, it also shows slightly higher
values than the raw groundwater levels, showing that they have the
same ability, if not more, of reducing parameter uncertainty.

In order to inform further investigation efforts in the area,
additional linear analysis runs were undertaken by fixing the
different parameter groups to understand what the reductions in
the uncertainty of the remaining parameters would be if the fixed
parameters were known. These results show clearly that largest
benefits in terms of reducing parameter uncertainty would be from

investigating recharge attributes (either infiltration rates, Ra, or
evapotranspiration, Ev) as they would result in a minimum of 10%
increase in identifiability values (with exception of lake parameters).
The determination of unconfined storage (i.e., specific yield) would
also be beneficial, as it controls the effective size of groundwater
reservoir and the magnitude of head change associated with net
recharge.

6 Discussion

6.1 The use of DA, UQ and SA techniques
throughout the model development

While the DA, UQ and SA techniques are mostly used as
accessories in conventional modelling practice, they have proven
pivotal to the development of the numerical model and evolution
of conceptual understanding of the MUNDRC.Where in earlier stages
of model development the definition of aquifer geometry, boundary
conditions and coupling with the lake model were reasonably
straightforward, the initial iterations of history matching and
conceptualization were hindered by the lack of baseline
groundwater level data. At that stage, despite the clear reduction of

FIGURE 12
Simulated ensemble percentiles for different water balance predictive metrics.
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rainfall volumes, groundwater and lake level declines could not be
clearly demonstrated.

The application of EMD on historical groundwater levels
provided some evidence of longer-term drawdowns, by
removing noise introduced by seasonal and higher-frequency

variations, supporting the hypothesis that groundwater levels
dropped as result of rainfall decline. While not employed in
this study, the EMD’s ability to decompose time series in
different frequencies could enable new derived metrics for
history matching by comparing simulated and observed IMF’s,

FIGURE 13
Scatter plots of absolute sensitivity values versus distance to pilot point for selected monitoring locations.
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similar to the “data transformation methods” described in
Bennett et al. (2013) and the “Metrics describing multi-scale
variability in model state” from Hipsey et al. (2020). These
metrics potentially can contribute to history matching and

robustness of models by highlighting aspects of model
behavior that are not clear in the original time domain.

The high correlation between seasonality of groundwater levels
and rainfall led to attempts of establishing relationships between

FIGURE 14
Monthly-grouped absolute sensitivity values for vertical anisotropy, specific yield and specific storage at selected locations.
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rainfall rates, net groundwater recharge and groundwater levels. These
attempts culminated in the development of the BWTF, which
provided coarse estimates on net recharge but, most importantly,
provided hindcast estimates of groundwater levels in 1970, prior to
rainfall decline. The baseline groundwater level estimates from the
BWTF analysis allowed for: 1—Reconstruction of groundwater levels
prior to the rainfall decline (from a conceptual perspective),
2—Inclusion of these estimates in the history matching process,
3—Improvement of recharge implementation in the groundwater
model by using a similar formulation and 4—Simulation of the
whole trajectory from pre-rainfall decline towards present day.

Once the final model form was in place (1960–2018 simulated
period with BWTF estimates in history matching, coupled lake model
and improved recharge formulation), the history matching techniques
assisted in reducing the uncertainty around aquifer parameters, which
was particularly important since no aquifer test data was available. The
piecewise-zone calibration presented in De Sousa (2021) provided
reasonable average values for the entire catchment, and the highly-
parameterized form presented in this paper allowed better

representation of historical system behavior, representation of
heterogeneity within each of the hydrogeological units and
implemented the foundation for the UQ workflows.

The IES technique employed in history matching provided a
quantitative assessment of parameter and predictive uncertainty
constrained solely by conceptual expert-knowledge (i.e., prior) and
allowed data assimilation in its more classic form, where prior model
uncertainty has been reduced through the assimilation of site
observations (i.e., history matching).

This paper has presented the final results of sensitivity analysis;
nevertheless, several iterations have been undertaken throughout the
development of the model, many of which contributed to the final
form of conceptual and numerical model. The investigation of
distance-sensitivity relationships provided insights on the area of
influence of each parameter and this information can be helpful in
the use of localization in iterative ensemble smoothers (Chen and
Oliver, 2013). These relationships can also be used to prioritise site
investigations, particularly if used in conjunction with linear
uncertainty analysis.

FIGURE 15
Average identifiability and RUVR values considering the entire history matching data set and individual metrics for (A) Recharge outflow term, (B)
Horizontal hydraulic conductivity, (C) Recharge rainfall fraction, (D) Specific storage, (E) Specific yield, (F) Vertical anisotropy, and (G) Lake parameters.
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Transient and seasonal trends of groundwater level sensitivity
identified in the model demonstrate the value of using virtual
observations over the entire simulated periods, even when
corresponding field measurements are not available. Although these
sensitivities cannot be used in the history matching process, they were
useful to establish relationships between seasonality, aquifer net
balance state (surplus, deficit or neutral) and sensitivity.

6.2 Distinct attributes of terminal catchments
unveiled by these techniques

The results from the DA, UQ and SA techniques corroborated
several attributes of the MUNDRC that are distinct of low-relief
terminal catchments and unveiled new attributes that were
expected by early conceptualization.

The sensitivity analysis of the Jacobian matrix showed the
dominance of recharge parameters in terms of sensitivity and
confirm the high influence of the interplay between rainfall
infiltration and evapotranspiration in groundwater levels and
catchment dynamics. Regarding groundwater levels, the
conceptualization postulated that their response to rainfall events
was rapid given the shallow groundwater table depths and
relatively high hydraulic conductivity of sedimentary aquifers. The
results from the BWTF and FEFLOW models agree with this
hypothesis, as a good fit between simulated and groundwater levels
was obtained for absolute values and seasonal oscillations without the
use of a delay term in the recharge formulations. Furthermore, cluster
analysis also demonstrated the relationships between land use and
groundwater recharge, as well as its influence in associated
groundwater level signatures.

The analysis of model results also led to some insights that were
counter-intuitive and in disagreement with our early
conceptualization. For instance, groundwater inflows into Lake
Muir were expected to be higher during the dry season as the lake
levels were at their lowest. Mass balance analysis of FEFLOW showed
that while that is true in terms of relative contributions, the highest
groundwater discharge rates occur during the wet season, where
highest recharge rates replenish the aquifers increasing hydraulic
gradients and consequently discharge rates. In another example, it
was expected that groundwater discharge would occur predominantly
through the base of the lake (assuming density effects on groundwater
head distribution were negligible). Mass balance results at the lake
nodes suggest that fluxes from lake to the aquifers occur through the
base of the lake, groundwater discharge into Lake Muir occurs
predominantly along the perimeter of the lake (De Sousa, 2021).
Lastly, groundwater levels near surface water compartments are less
sensitive to recharge and are to some extent regularized, in the sense
that changes in recharge rates and groundwater level are compensated
by adjusted flux rates between surface water bodies and adjacent
aquifers.

Another new concept unveiled by the SA was the transient
sensitivity of groundwater levels with regards to time. While this
concept seems straight forward after the analysis of results, the concept
of transient sensitivities has not, to the authors’ knowledge, been
demonstrated in literature.

The discussion presented in De Sousa (2021) suggests that Lake
Muir is more resilient to rainfall decline the originally thought. The
UQ works presented in this paper corroborate that and sensitivity

analysis hinted at the underlying reasons. It was observed that
sensitivity to rainfall multiplier (Lk_rain) was in general higher
than sensitivity to the evaporation multiplier (Lk_evap), leading to
the conclusion while evaporation rates are directly related to the lake
area, rainfall rates are less susceptible to that as rainwater infiltrates the
dry portions of the lake and ultimately is discharged there. The direct
relation between lake area and evaporation volumes can be translated
to lake level and evaporation volumes, therefore decline in lake levels
caused by rainfall decline (both as direct rainfall and groundwater
discharge) incur reduced evaporation rates, dampening the net lake
losses. This is a mechanism that can be extrapolated to all lakes with
shallow and flat bathymetry, but less likely to occur in lakes with
steeper lake beds, as reductions in lake area (and evaporation) due to
decline in lake level will be somewhat smaller.

6.3 Computational costs and limitations of the
different techniques

The results presented in the previous sections demonstrate the
value of DA, UQ and SA techniques in improving conceptual
understanding and facilitating the quantification of impacts and
catchment hydrologic processes. On the other hand, computation
costs of each of these techniques may lead to a prioritization of
efforts and cost/benefit assessment in a resource-constrained study.
Furthermore, the use of these techniques needs to be undertaken
cognizant of their limitations and computational costs, some of
which are discussed here.

The use of the EMD method is computationally inexpensive and
can be used in a batch fashion to process time series from multiple
observation time series simultaneously, but the interpretation of the
Intrinsic Mode Functions obtained from the EMDmust be conducted
with caution as they can be highly sensitive to the time series sampling
frequency and are potentially problematic when time series have
irregular observation intervals. This can be noticed on the analysis
for borehole MU22A (Figure 7) which has a higher monitoring
frequency and display an additional high frequency IMF when
compared to the time series from boreholes MU45S and MU65S. It
is possible that this issue could be minimized by resampling at regular
intervals using interpolation methods and, despite not being tested,
the application of EMD on the regular time series generated by the
BWTF method may prove to be a better option than the raw
monitoring data.

The IES method is an extremely powerful approach that allows
history matching of highly-parameterized models with a very small
number of runs, compared to number of parameters, enabling DA and
UQ of large models that would previously be too expensive in terms of
computational effort. While the IES method has shown good history
matching results with small ensemble sizes (in particularly if
localization is employed), questions remains whether these
ensembles are sufficiently large to characterize the uncertainty,
particularly in terms of probability distributions. A possible
solution for that could potentially be to increase the ensemble size
with parameter sets derived from the sampling of a posterior
covariance matrix created based on the original ensemble
parameter values. This procedure would continue to require a
small number of runs for the history matching process and provide
a larger ensemble size for UQ. Furthermore, the application of
ensemble methods in groundwater modelling is relatively new and
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more testing and use of this tool is required for definition of optimized
settings such as ensemble size, localization matrices and so forth.

The DA and UQ applied in the MUNDRC model resulted in
simulated groundwater and lake levels with relatively small
uncertainty. It is important to emphasize, however, that the rainfall
time series for the simulated period were actual values from historical
records and “hard-wired” in the model lake and recharge components.
Given that there is a strong relationship between groundwater level,
sensitivity, and rainfall rates/events (as seen in the transient sensitivity
plots), groundwater predictions in the future should account for
uncertainty of rainfall time series inputs, and these can potentially
promote larger predictive uncertainty.

7 Conclusion

The research presented in this paper illustrates the use of DA, UQ
and SA in the study of terminal catchments, their value in the
identification of particularities of hydrologic behavior in these
settings and provide a blueprint for assessment of impacts
associated to long-term rainfall decline in terminal catchments. On
a conceptual level, main drivers of the groundwater and surface-
groundwater interactions have been identified and corroborated by
sensitivity analysis results. In terms of quantification and prediction,
the developed numerical model coupling approaches and data
assimilation tools used in the study provide a framework to
estimate environmental impacts considering inherent
hydrogeological and hydrological uncertainty, as well as the ability
of monitoring data to constrain it. From a broader perspective,
practicalities and lessons learned from the application of these
techniques are lacking in literature, which is predominantly
focused on theory and development of new techniques, and the
paper also contributes to that regard.

Although several techniques have been explored in this study, it by
no means exhaust the number of techniques available in the literature.
Notable examples include the time-series analysis using transfer
function noise modelling (Collenteur et al., 2019), evolutionary
algorithms (Maier et al., 2014), time series clustering methods
(Aghabozorgi et al., 2015) and ensemble machine learning
techniques (Zounermat-Kermani et al., 2021).

This study has also shown that much can be gained through
feedback loops between the application of these techniques (in
particular SA) and conceptualization, as opposed to conventional
use of UQ and SA at the end of model development. The
conceptual model of MUNDRC have evolved substantially from its
early inception through the multiple sensitivity analysis rounds until
the final conceptual and numerical model form was achieved.
Counter-intuitive findings from this process such as higher
groundwater inflows to Lake Muir during the wet season,
dominance of vertical dynamics of recharge and evapotranspiration
over horizontal flows and potential surface runoff flows into the lake
challenged the assumptions from initial conceptualization and
resulted in a more robust final model form which conforms to
expert-knowledge and was able to replicate historical system behavior.

The DA, UQ and SA techniques applied in the MUNDRC were
undertaken with open-source software freely available on web which
facilitated the model development significantly. Nevertheless, the
implementation these techniques still remains an onerous task,

particularly with regards to post-processing workflows. The
adoption of these techniques in the broader modelling community
will depend much on the development of tools to streamline these
workflows and availability of educational resources, and initiatives
such as the Groundwater Modelling Decision Support Initiative
(GMDSI, https://gmdsi.org) are making a big impact in that direction.
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