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Constant stiffness confining condition seems more reasonable than constant stress
confining condition to simulate the actual confining stress environment of in situ rock
which varies with the lateral strain. Compression tests of sandstone samples with two
different confining conditions were conducted to study the energy evolution characteristics
of rock under constant stress confining condition and constant stiffness confining
condition. Except for the conventional triaxial compression tests, CFRP-confined rock
samples were also used to simulate the constant stiffness confinement of the rock
specimen in the laboratory. The stress–strain curve and failure mode of the samples
under different confining conditions were compared. The influence of confining condition
on the characteristics of rock energy evolution was investigated. The results show that the
stress–strain curves under the confining conditions of constant stress and constant
stiffness exhibited strain softening and strain hardening, respectively. Under constant
stress confining condition, the specimen failed in the ductile mode while the specimen
exhibited a sudden and brittle failure behavior under constant stiffness confining condition.
The evolution trend of the elastic strain energy was greatly affected by the magnitude of
confining stiffness. The elastic strain energy of the specimen under low stiffness confining
condition decreased slightly after reaching its peak. As the confining stiffness increased,
the elastic strain energy would not decrease but continued to increase until the failure of the
specimen. The maximum elastic strain energy under the confining condition of the high
confining stiffness is greater than that of constant stress. Considering the influence of
confining stiffness on the storage and release of the strain energy, to obtain the true
mechanical behavior of the rock mass under confining conditions, stiffness confining
conditions should be taken into consideration in the laboratory.

Keywords: constant confining stress, constant confining stiffness, energy evolution, elastic strain energy, fracture
mode

INTRODUCTION

In deep underground rock mass engineering, engineering activities can induce severe rock failure of
the surrounding rock masses due to the release of strain energy stored in the rocks (Ma et al., 2020;
Yu et al., 2022). The mechanical behavior of the rock mass is an important factor affecting the failure
mechanism. Due to high confining stress in situ, the mechanical characteristics of deep rock are
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significantly different from those of shallow rock (Xie H. P. et al.,
2021). The mechanical behavior of rock under confining
conditions is a critical topic concerned in engineering. In
previous studies, scholars investigated rock under different
lateral pressures to simulate the confining environment in situ
(Li et al., 1999; Chen and Feng, 2006; Zhang and Zhao, 2014).
Triaxial loading tests are the most common laboratory method
and the mechanical behavior of rock under constant confining
stress has been widely investigated by means of laboratory tests
and numerical modeling (Fang et al., 2019; Liu et al., 2020; Xie H.
et al., 2021). However, for the in situ rock, its constraints come
from the surrounding rock mass, and the confining stresses are
not fixed during the deformation and failure process. When the
rock deforms outward, it will squeeze the surrounding rock mass,
and the confining stress will increase accordingly. It means that
the confining stress is dependent on the lateral strain of the rock.
The confining condition can be regarded as a constant confining
stiffness condition. For the laboratory test, a constant stiffness
confining condition seems more reasonable than constant stress
confining condition to simulate the actual confining
environment.

The mechanical behavior of the rock is driven by the
evolution and release of energy (Xie et al., 2009; Bagde and
Petroš, 2009; Feng et al., 2022). Energy evolution can better
describe the deformation and failure mechanisms of the rock
(Wang and Cui, 2018; Jia et al., 2019; Zhang et al., 2021). Some
researchers have carried out studies to analyze the energy
evolution characteristics of the rock under various confining
pressures (Peng et al., 2014; Zhang and Gao, 2015; Meng et al.,
2022). Li et al. (2017) studied the characteristics of energy
evolution and dissipation during hard rock during triaxial
failure with different loading and unloading paths. Huang
and Li (2014) studied the conversion characteristics of strain
energy with conventional triaxial unloading tests at different
unloading rates and initial confining pressures. The results show
that the confining pressure has a significant influence on the
energy evolution of rock. Increases in the confining pressures
can improve cumulative strain energy density and effectively
limit the energy dissipation and release due to fracture or failure
of the rock. However, most of the research to date has focused
on the mechanical behavior and energy evolution of rock under
constant confining stress. Few studies have been conducted to
explore the mechanism of the energy evolution of rock under
constant confining stiffness. Tests on the concrete showed that
axial stress–strain curves under constant confining stiffness
were obviously different from those under constant confining
stress (Dong et al., 2015). The stiffness of the loading system has
also been proven to have an important impact on the energy
release of the rock (Feng et al., 2014; Wang and Kaunda, 2019).
Therefore, the influence of confining stiffness on the evolution
and release of the rock strain energy is a critical issue that should
be further clarified.

In this study, compression tests of sandstone samples with
different confining conditions were conducted to study the
energy evolution characteristics of rock under constant
confining stiffness and constant confining stress. Except for
the conventional triaxial compression tests, CFRP-confined

rock samples were also used to simulate the constant
confining stiffness of the rock in the laboratory. The
stress–strain curve and failure mode of the samples under
different confining conditions were compared. The influence
of confining condition on the characteristics of rock energy
evolution was investigated.

STIFFNESS CONFINING CONDITION

In order to simulate the confining conditions with different
constant stiffness, fiber-reinforced polymer (FRP) was used
as the confining material to form the FRP jackets in the hoop
direction of the specimen. FRP materials have high tensile
strength and deformation modulus, and it has been widely
used as confining materials for concrete structures to
improve the performance of the concrete building (Lam
and Teng, 2004; Jiang and Teng., 2007). Due to their
ultra-high ductility and strength, FRP materials could
provide a substantially constant confining stiffness for the
test rock core (Dong et al., 2015). Different confining
stiffness of rock samples can be achieved by overlapping
FRP materials with different layers.

The following analytical model can be used to quantify the
confining stiffness provided by FRP when the fibers of the FRP
are wrapped in the hoop direction. As shown in Figure 1,
considering the equilibrium condition in the in-plane direction
of the rock core section, the confining stress in the rock core can
be calculated as follows:

σr � 2σfrpt

D
, (1)

where σfrp is the hoop stress in FRP; t is the thickness of FRP; and
D is the diameter of the rock core.

Assuming that the FRP is linearly elastic until rupture, its
stress–strain relation can be written as follows:

FIGURE 1 | Analytical model of confining stiffness of FRP.
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σfrp � εfrpEfrp, (2)
where εfrp is the hoop strain in FRP and Efrp is the Young’s
modulus of FRP.

Considering the compatibility condition in the in-plane
direction of the rock core section, the strain of the FRP is
equal to the circumference strain of the rock core,

εr � εfrp. (3)
Substituting Eq. 2 and Eq. 3 into Eq. 1, an expression between

the confining stress and the confining strain can be obtained as
follows:

σr � 2tEfrp

D
εr. (4)

The structural confining stiffness of the FRP jacket can be
calculated as the ratio of confining stress to the confining strain. It
can be evaluated as in the following equation:

kfrp � 2tEfrp

D
. (5)

Based on Eq.5, the specific confining stiffness corresponding
to different layers of the FRP jacket can be calculated. For the
convenience of the following discussion, confining stiffness can
be normalized by the elastic modulus of the rock core sample. A
new parameter, confining stiffness ratio, can be introduced as in
the following equations:

ρs �
2Efrpt

EcD
, (6)

where Ec is the Young’s modulus of the rock sample.
It can be found that confining stiffness is directly proportional

to the thickness of the FRP material. Different confining stiffness
can be achieved conveniently by different layers of fiber jackets.
Several types of FRP have been used in practice. In the present
experimental work, 200 g class I carbon-fiber-reinforced polymer
(CFRP) was selected as the confining material. It has the
advantages of high tensile strength, lightweight, and small-
fiber diameter. The carbon fiber sheets had a nominal
thickness of 0.111 mm. Its elastic modulus is 241 GPa, and its
tensile strength along the fiber direction is greater than 1600 MPa.
The calculated confining stiffness for different thicknesses of
confining jackets is listed in Table 1.

Considering that the rock in situ is confined by the surrounding
rock mass, one layer of CFRP jacket can be regarded as a rock
sleeve with a certain thickness. Assuming that the rock core was
confined by the rock sleeve with a certain thickness, an equivalent
thickness of the surrounding rock sleeve can be obtained based on
the equal confining stiffness. The surrounding confining rock
sleeve can be regarded as a thick-walled hollow cylinder. The
elastic solution of the thick-walled hollow cylinder under uniform
internal radial pressure can be used to obtain the relationship
between the radial stress and the radial strain. According to the
definition, the confining stiffness of the rock sleeve can be
determined by the ratio of radial stress and radial strain as
shown in Eq. 8. By equating the confining stiffness of Eqs 5
and 8, the equivalent thickness of the rock sleeve can be obtained.
The calculated equivalent thickness of the rock sleeve for different
numbers of CFRP layers is shown in Figure 2. It can be found that
one layer of CFRP jacket is equivalent to a 5 mm rock sleeve in
confining stiffness. When the thickness of the surrounding rock
sleeve approaches infinity, the equivalent number of CFRP layers is
4.3. It means that 4.3 layers of CFRP jacket can be used to simulate
the confining stiffness of surrounding rock in situ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr � a2p

b2 − a2
(1 − b2

r2
)

σθ � a2p

b2 − a2
(1 + b2

r2
)

εr � 1 − ]2

E
(σr − ]

1 − ]
σθ)

, (7)

kc � E

1 + ]
b2 − a2

(b2 − (1 − 2])a2), (8)

where a is the radius of the rock core, and b is the radius of the
confining rock sleeve.

TABLE 1 | Calculated confining stiffness for different thicknesses of confining
jacket.

Fiber type Thickness t Efrp kfrp ρs

(mm) (GPa) (MPa)

CFRP 0.111 241 1070 0.18
CFRP 0.222 241 2140 0.37
CFRP 0.333 241 3210 0.55
CFRP 0.444 241 4280 0.74
CFRP 0.555 241 5350 0.92
CFRP 0.666 241 6420 1.10

FIGURE 2 | Equivalent thickness of surrounding rock for different
numbers of CFRP layers.
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SPECIMEN PREPARATION AND TESTING

A total of 27 specimens were prepared from a sandstone block in
Jining of Shandong, China. Cylindrical specimens were drilled
and prepared with a diameter of 50 mm and a height of 100 mm
as shown in Figure 3. The specimens were divided into two
groups to be tested under different confining conditions as listed
in Table 2. The preparation of the CFRP-confined specimens
followed a standard procedure, which has been described
elsewhere (Jiang and Teng, 2007; Micelli and Modarelli, 2013).

The tests were carried out on the RLJW-2000 rock mechanics
testing apparatus. The tests under constant confining stress and
constant confining stiffness were conducted following the
standard procedure of triaxial tests and uniaxial tests,
respectively. The axial pressure was applied in a displacement-
controlled way, and the loading rate was 0.005 mm/s. Both the
axial and circumferential strains were recorded by the LVDT
during the tests.

TEST RESULTS

Stress-Strain Relationship Under Different
Confining Conditions
The typical deviatoric stress–axial-strain curves of sandstone samples
under different confining pressures are shown in Figure 4. It can be

seen that both the peak deviatoric stress and corresponding peak strain
increase as the confining pressure increases. When the confining
pressure increases from 8 to 32MPa, the peak deviatoric stress and
peak strain increase by 43.15% and 36.75%, respectively.

FIGURE 3 | Specimens for tests. (A) Cylindrical samples; (B) CFRP-confined rock specimens.

TABLE 2 | Two groups of specimens with different confining conditions.

Confining condition σ3 (MPa) Specimen number Confining condition ρs Specimen number

Constant confining pressure 0 S0-1,2,3 Constant confining stiffness 0.18 k1-1,2
8 S8-1,2,3 0.37 k2-1,2
16 S16-1,2,3 0.55 k3-1,2
24 S24-1,2,3 0.74 k4-1,2
32 S32-1,2,3 0.92 k5-1,2

1.10 k6-1,2

FIGURE 4 | Deviatoric stress axial strain curves under different confining
pressures. Stress–strain relationship under constant confining stiffness tests.
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The typical axial stress–strain curves under different confining
stiffness ratios are shown in Figure 5. It can be found that the
curve shape under constant confining stiffness is not the same as

that under constant confining stress. The stress–strain curve
under constant confining stress exhibits strain softening. But
the stress–strain curve under constant confining stiffness may not
have a descending portion. For low confining stiffness, the
stress–strain curve would first exhibit strain softening and
then exhibit strain hardening. For high confining stiffness, the
stress–strain curve would exhibit strain hardening only. The axial
stress ascends to a certain turning point and then continues to
ascend at a slower rate.

Furthermore, it can be seen from Figure 5 that with the
increase in confining stiffness ratio, the ultimate axial stress
and ultimate axial strain increase. When the confining stiffness
ratio increases from 0.37 to 1.10, the ultimate stress and strain
increase by 127% and 33%, respectively.

Failure Mode Under Different Confining
Conditions
The typical failure modes of the specimens under different
confining conditions are shown in Figure 6. Different failure
modes are exhibited for the specimen under constant confining
stress and constant confining stiffness. As shown in Figure 6A,
for the tests under constant confining stress (triaxial test), the
failure mode of rock samples is basically the same even with

FIGURE 5 | Axial-stress–axial-strain curves under different confining
stiffness ratios.

FIGURE 6 | Failure mode of the specimen under different confining conditions. (A) constant confining stress; (B) constant confining stiffness.
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different confining pressures. The macroscopic shear fracture
surface can be seen when the failure of the rock specimen occurs.
However, for the specimen under constant confining stiffness, the
failure mode appears more complex. Failure of CFRP-confined
specimens occurred in a sudden and explosive way due to fiber
rupture that reached their ultimate tensile strain. The rock
specimens expanded outward and were severely damaged. For
the specimen under low confining stiffness, the CFRP jacket
broke in the upper section of the specimen accompanied by
spalling of the broken rock. For the specimen under high
confining stiffness, a cone-shape failure surface is generated in
the mid-height region of the specimen. Both the stress–strain
curve and the failure mode of the samples show a significant
differentiation between the two confining conditions.

EVOLUTION OF STRAIN ENERGY

Calculation of Strain Energy
During the process of loading, the test machine does work on the
specimen. Part of the energy is transformed from the mechanical
energy of the test machine into the deformation energy of the
rock, which is stored in the rock mass. And the other part is
dissipated due to the plastic deformation and crack propagation
in the specimen. Assuming that there was no heat exchange
between the specimen and the environment during the loading,
the total input energy generated by external force work can be
written as follows:

U � Ue + Ud, (9)
where U is the total strain energy, Ue is the elastic strain energy
stored in the specimen, and Ud is the dissipated strain energy.

Under triaxial loading conditions, the total strain energy U
and elastic strain energy Ue can be calculated as follows:

U � ∫
ε1

0

σ1dε1 + ∫
ε2

0

σ2dε2 + ∫
ε3

0

σ3dε3, (10)

Ue � 1
2
σ1εe1 + 1

2
σ2εe2 + 1

2
σ3εe3. (11)

The total energy absorbed by the rock sample can be
obtained by the integral of the stress–strain curve.
Considering that medium principal stress is equal to small
principal stress for this test, then Eq. 10 and Eq. 11 can be
written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U � ∑n
i�1

1
2
(σ1i + σ1i−1)(ε1i − ε1i−1) +∑n

i�1
(σ2i + σ2i−1)(ε2i − ε2i−1)

Ue � 1
2
σ1εe1 + σ3εe3

Ud � U − Ue.

(12)
The elastic strain can be obtained by the unloading elastic

modulus and Poisson’s ratio.

FIGURE 7 | Energy evolution curve of the specimen under different confining pressures. (A) Confining pressure = 8 MPa; (B) confining pressure = 16 MPa; (C)
confining pressure = 24 MPa; (D) confining pressure = 32 MPa.
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εei � 1
Eu

[σ i − ]u(σj + σk)]. (13)

Existing studies have shown that the unloading elastic modulus

and Poisson’s ratio were close to the initial value of uncracked rock

(Yu et al., 2005; David et al., 2012). So the initial elastic modulus and

Poisson’s ratio were used for the calculation. For constant confining

stiffness conditions, the confining pressure of the specimen can be

calculated by Eq. 4 based on the measured strain of FPR.

Evolution of Strain Energy Under Constant
Confining Stress
Based on the above calculation method, the energy evolution
curves of rock specimens under different confining pressures are
given in Figure 7. It can be seen that the evolution curves of the
specimen under different confining pressures exhibit great
similarity. The total strain energy absorbed by the rock sample
and the dissipated strain energy show a nonlinear increasing
trend. The elastic strain energy presented a trend of first

FIGURE 8 | Energy evolution curve of the specimen under different confining stiffness. (A) ρs � 0.37; (B) ρs � 0.55; (C) ρs � 0.74; (D) ρs � 0.92.

FIGURE 9 | Energy evolution curve of elastic energy under different confining conditions. (A) Constant confining stress; (B) constant confining stiffness.
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increasing and then decreasing. The evolution process can be
divided into several stages. In the initial stage, the total absorbed
strain energy was mainly converted into elastic strain energy, and
the dissipated strain energy was very low. With the crack
initiation and plastic deformation, the dissipated strain energy
begins to increase when the axial strain reaches about 0.015.
Before the peak point, the dissipated strain energy is much
smaller than the elastic strain energy. The elastic strain energy
reaches its peak at the peak strength of the specimen and is then
released quickly. In the post-peak stage, the dissipated strain
energy increases rapidly until the failure of the specimen.

It can also be found thatU,Ue, andUd corresponding to the peak
point are all increased with the increase in confining pressure. When
the confining pressure is increased from 8 to 32MPa, the total strain
energy absorbed by the rock sample at failure increases by 102.7%. The
elastic strain energy corresponding to the peak point increased by
104%. Itmeans that the stored energy of the confined specimen before
failure increases appreciably with the increase in confining pressure.

Evolution of Strain Energy Under Constant
Confining Stiffness
The energy evolution curves of rock specimens under different
confining stiffness ratios are given in Figure 8. It can be seen that

different energy evolution characteristics are exhibited for the
specimen under constant confining stiffness. The total strain
energy U and the dissipated strain energy Ud show a nonlinear
increasing trend, which is similar to the condition of constant
confining stress. However, the evolution trend of the elastic strain
energy is greatly affected by the magnitude of confining stiffness.
When the confining stiffness is small, the elastic strain energy
decreases gradually after reaching its peak. But the magnitude of
the decrease is less than the condition of constant confining stress.
As the confining stiffness increases, the elastic strain energy will not
decrease but continue to increase until the failure of the specimen.

It can also be noted thatU,Ue, andUd are all increased with the
increase in confining stiffness. When the confining stiffness ratio is
increased from 0.37 to 0.92, the total strain energy absorbed by the
rock sample and the elastic strain energy corresponding to the peak
point increase by 104% and 127%, respectively.

COMPARISON UNDER DIFFERENT
CONFINING CONDITIONS

It is well-known that the failure mode of the rock is to a large
extent dependent on the release of the stored elastic strain
energy. In order to analyze the difference between the two

FIGURE 10 | Comparison of energy evolution curve between the two conditions under the same confining stress standard. (A) Total absorbed energy (8 MPa); (B)
elastic energy (8 MPa); (C) total absorbed energy (16 MPa); (D) elastic energy (16 MPa).
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conditions, the evolution curve of elastic strain energy under
different confining conditions is compared in Figure 9. For the
constant confining stress, there is a declining stage of elastic
strain energy after reaching its peak. In this stage, the volume
of the specimen expands gradually with the initiation,
propagation, and coalescence of new cracks. The elastic
strain energy decreases gradually with an axial strain
increase. The failure process of the specimen exhibits
ductile failure behavior. For the constant confining stiffness,
the elastic strain energy continues to increase with the increase
of axial strain until the sudden rupture of the CFRP jacket. At
this stage, the confining stress increases with the increase of
dilatational strain of the specimen because of the constant
confining stiffness. And then the increased confining stress
further limits the internal crack propagation of the specimen.
A proportion of the absorbed energy is converted to the elastic
energy of the CFRP jacket. When the strain of CFRP reaches
the ultimate tensile strain, failure occurs in a sudden and
explosive way, and the failure process of the specimen
exhibits brittle failure behavior.

In order to compare the energy evolution characteristics
between the two conditions under the same confining
pressure standard, according to the measured hoop strain,
the confining stress provided by the CFRP jacket can be
calculated by using Eq. 3 and Eq. 4. Considering that the
confining stress of the CFRP jacket changes continually in
the loading process, the maximum confining stress
corresponding to the ultimate strain of the CFRP jacket
before failure was selected to compare with the constant
stress condition. Based on the measured ultimate strain of
the CFRP jacket, the ultimate confining stresses are about 8
and 16 MPa for the specimen, with a confining stiffness ratio of
0.79 and 1.33, respectively. Figure 10 shows the comparison of
the total absorbed and elastic energy evolution curve between
the two confining conditions. It can be found that the total
absorbed energy of the specimen under the confining condition
of constant stress is greater than that of constant stiffness when
the confining stiffness is low. But for the high confining stiffness,
an opposite conclusion can be observed. It indicated that
confining stiffness conditions should be simulated reasonably
in the laboratory to obtain the actual mechanical behavior of the
rock in situ. In addition, it can be noted that the maximum
elastic strain energy under the condition of constant stiffness is
greater than that of constant stress by a factor of 1.4–2,
corresponding to confining stress from 8 to 16 MPa. The
confining stiffness of the rock has a significant effect on the
storage and release of the energy. It is difficult to obtain the true
mechanical behavior when only taking into consideration the
confining stress conditions.

CONCLUSION

The stress–strain curve and failure mode of the samples are
significantly influenced by the confining conditions. The
stress–strain curves under the confining conditions of constant
stress and constant stiffness exhibit strain softening and strain
hardening, respectively. Under constant stress confining conditions,
the specimen failed in the ductile mode with the generation of the
macroscopic shear fracture surface. Under constant stiffness confining
conditions, the specimen failed in a sudden and violent way, and the
failure process exhibits brittle failure behavior.

The total absorbed strain energy, the dissipated strain energy,
and elastic energy are all increased with the increase in confining
stiffness. The evolution trend of the elastic strain energy is greatly
affected by the magnitude of confining stiffness. When the
confining stiffness is small, the elastic strain energy decreases
slightly after reaching its peak. As the confining stiffness
increases, the elastic strain energy will not decrease but
continue to increase until the failure of the specimen.

Taking the ultimate confining stresses as a standard, the total
absorbed energy of the specimen under the confining condition of
constant stress is greater than that of constant stiffness when the
confining stiffness is low. But for the high confining stiffness, an
opposite conclusion can be observed. The maximum elastic strain
energy under the condition of constant stiffness is greater than that of
constant stress.
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