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Siberian High (SH) is the dominant pressure system located in the mid-high latitudes of
Eurasia during boreal wintertime. This study reveals a triggering impact of SH variation in
preceding winter on the following ENSO events, and gives a possible explanation via
diagnosing the SH-associated air-sea response over the tropical Pacific and North Pacific.
When SH is anomalously enhanced (suppressed) during boreal winter, an Aleutian Low
enhanced (suppressed) response will occur over the downstream North Pacific. The
Aleutian Low response gradually evolves into a meridional dipole structure similar to the
negative (positive) phase of the North Pacific Oscillation (NPO) during the following spring
and early summer. Correspondingly, the oceanic response in the North Pacific features a
pattern similar to the negative (positive) phase of the Victoria mode. These SH-associated
air-sea responses over the subtropical North Pacific will be maintained and further
delivered into the tropical Pacific through the so-called seasonal footprinting
mechanism, which favors the Bjerknes feedback established around boreal summer
and finally grows into a La Niña (El Niño).
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INTRODUCTION

The El Niño-Southern Oscillation (ENSO) is the dominant interannual variability in the tropical
Pacific, which can directly impact the weather and climate in the tropical Pacific and adjacent
continents, and have remote effects worldwide through some teleconnection processes (Rasmusson
and Carpenter, 1982; Philander, 1983; Jin, 1996; Trenberth et al., 1998; Paegle and Mo, 2002).
Nowadays, ENSO plays an important role in seasonal and interannual climate predictions in plenty
of regions (e.g., Zhang et al., 1996; McPhaden et al., 2006a; Zhang et al., 2015; Infanti and Kirtman,
2016; Luo et al., 2016). Thus, it is of great value for sciences and social benefits to understand the
dynamics and climate impacts of ENSO.

In recent decades, substantial attention has been paid to the ENSO diversity and complexity, and one
important part is the diversity of ENSO triggers (Timmermann et al., 2018; Ren et al., 2020).Many studies
have indicated that the tropical Pacific air-sea interaction plays a fundamental role in the ENSO dynamics
(Bjerknes, 1969; Neelin et al., 1998; Wang, 2018; Ren et al., 2020). However, forcings from the
extratropical Pacific are also of great importance in modulating the ENSO outbreaks (e.g., Terray,
2011; Wang et al., 2011). For example, North Pacific Oscillation (NPO) can cause a sea surface
temperature (SST) “footprint” when its subtropical portion (0°–20°N) forces the overlying atmosphere,
resulting in zonal wind stress anomalies that favor the initiation of an ENSO event (Vimont et al., 2001,
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2003; Amaya, 2019). The Victoria Mode (VM), a vital interannual-
scalemode of theNorth Pacific SST anomaly, was also demonstrated
to be a potential ENSO precursor (Ding et al., 2015a; 2015b). In
addition, the anomalous SST warming in the Indian and Atlantic
Oceans could influence the ENSO development via interbasin
interactions (Li and Mu, 2000; Wang et al., 2017).

Previous studies were more like to seek the possible ENSO
triggers in oceans, while there was relatively little attention paid
to the impact from atmospheric circulation systems located on the
inner continent. The Siberian High (SH) is the most vital high-
pressure system in the lower troposphere over Mongolia-Siberia
during boreal wintertime, which dominates the low-level
atmospheric circulation and the associated anomalous events in
almost the whole Asian continent (Ding, 1990; Miyazaki et al., 1999;
Gong and Ho, 2002). Moreover, SH can modulate the hemispheric-
scale circulation over the downstream Pacific Ocean and more
distant regions (Cohen et al., 2001; Wu and Wang, 2002). Given
that the tropical air-sea interaction has been found closely tied to
variabilities in North Pacific (Bond et al., 2003), it is reasonable to
deduce that SH may also have a remote impact on ENSO.

This paper intends to examine the possible impact of the boreal
winter SH on the ENSO development in the subsequent year, and
explain how the SH-associated impacts maintain and propagate to
the tropical Pacific. The remainder of this paper is organized as
follows. Data and Methodology introduces the data and methods.
Relationship Between the Preceding SH and ENSO in the Following
Winter reveals the linkage between the preceding boreal winter SH
and the ENSO in the following winter. The associated physical
processes of how SH affects the following ENSO development are
described in PossibleMechanisms Linking the Preceding SH to ENSO.
Summary and Discussion gives a summary and brief discussion.

DATA AND METHODOLOGY

The present study employs monthly SST data from the Met
Office, Hadley Centre Sea Ice and Sea Surface Temperature

dataset (HadISST), with a horizontal resolution of 1° × 1°

(Rayner et al., 2003). Atmospheric variables, including
monthly sea level pressure (SLP), surface wind stress,
pressure-level winds, and surface upward latent heat flux are
obtained from the fifth-generation European Center for Medium-
Range Weather Forecasts (ECMWF) reanalysis of the global
climate (ERA5; Hersbach et al., 2020) at 1° × 1° resolution. All
analyses are conducted with a period of 1980–2020. Anomaly is
obtained as the departure from the climatological mean of
1981–2010. In order to remove the influence of climate
change, the long-term linear trend has been removed.

Following the previous studies (Gong and Ho, 2002), we focus
on the variation of SH during late winter (January-February-
March, JFM). Siberian High intensity (SHI) index is defined as
the mean SLP over a key region (70°–120°E, 40°–60°N), which
generally covers the central regions of SH (Figure 1). Niño-3.4
index, defined as the averaged SST anomalies over 5°S–5°N and
170°–120°W, is employed to represent the ENSO variability.
Regression, correlation, and composite analyses are used to
clarify the typical characteristics of the SH-associated air-sea
responses, and their statistical significance is determined with
the two-tailed Student’s t test.

RELATIONSHIP BETWEEN THE
PRECEDING SH AND ENSO IN THE
FOLLOWING WINTER
In this section, we first examined the relationship between the
winter SH and tropical Pacific SST anomalies in the following

FIGURE 1 | Winter (January-February-March) sea level pressure
climatology. Reference period is 1981–2010. Only pressures exceeding
1020hPa are shown as white lines. The values of SLP for the box region are
averaged to define the intensity index of the winter Siberian High.

FIGURE 2 | Evolution of equatorial (5°S–5°N-averaged) SST anomalies
(Unit: °C) obtained by correlation on the normalized JFM SHI index. Stippled
regions in green (purple) indicate anomalies significant at the 90% (95%)
confidence level according to the Student’s t test.
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year. Figure 2 shows the correlation evolution of the JFM SHwith
the lagged meridional mean (5°S–5°N) of tropical SST anomalies.
In total, it highly resembles a typical eastward propagation of
ENSO development. A significant negative correlation between
the winter SH and following SST anomalies in the equatorial
Pacific establishes in the late spring, firstly occurring in the
western and central Pacific. This negative correlation will be
rapidly enhanced and eastward spread in the following seasons.
The strongest correlation between SH and SST anomalies over the
Niño-3.4 region occurs at the end of the year (November-
December-January (1), NDJ (1), where (1) indicates time
comes to the next year). Therefore, the preceding SH variation
is likely to be a precursor of an ENSO development in the
following year.

Motivated by the high correlation between the winter SH and
tropical Pacific SST anomalies in the following winter, we then
examine the yearly correspondence of the normalized JFM SHI
and NDJ (1) Niño-3.4 indices during the period of 1980–2020, as
shown in Figure 3. The correlation coefficient of these two
indices is −0.46, which is statistically significant at the 99%
confidence level. In the previous winter of the three super El
Niño events after 1980 (i.e., El Niños in 1982/1983, 1997/1998,
and 2015/2016), the SHs were all relatively suppressed.
Meanwhile, preceding some typical La Niña events (e.g., La
Niñas in 1988/1989, 2010/2011), there were enhanced SHs in
winter (Figure 3A). In specific, after 12 enhanced SH winters
[JFM SHI index >0.5 standard deviations (STDs)], there are
6 years with a La Niña event (NDJ (1) Niño-3.4 index < -0.5
STDs) developed in the subsequent winter. Comparatively, in
9 years out of 15 suppressed winter SH years (JFM SHI index <
-0.5 STDs), the Niño-3.4 region becomes anomalous warming in
the following, and six of them grow into an El Niño winter (NDJ
(1) Niño-3.4 index >0.5 STDs) (Figure 3B). The high
correspondence of the two indices suggests again that there is
a close relationship between the SH variation in the preceding
winter and the development of ENSO in the following winter.
Moreover, the potential impact of preceding SH on ENSO is
generally symmetric between the enhanced and suppressed SH.

To explore the typical characteristics of the potential impacts
of the preceding SH, we select the historical years when apparent
SH variation leads to the following ENSO events and conduct a
composite analysis on the atmospheric and oceanic anomalies
during these years. The six La Niña years with enhanced SH
(1984, 1988, 2005, 2008, 2010, 2011) are identified as years with
the JFM SHI index exceeding 0.5 STDs and NDJ (1) Niño-3.4
index lower than -0.5 STDs. Similarly, six El Niño years with
suppressed SH (1982, 1997, 2002, 2004, 2009, 2015) are years with
the JFM SHI index lower than -0.5 STDs and NDJ (1) Niño-3.4
index higher than 0.5 STDs. As shown in Figure 4A, when the SH
is anomalously enhanced during the boreal wintertime, there is
no significant synchronized SST response in the tropical Pacific,
but some easterly wind anomalies occur over the warm pool. In
the North Pacific, there is a significant low-level westerly wind
anomaly over around 30°–40°N, with a strong anticyclonic
atmospheric circulation at its southern flank. Accordingly,
there are weak SST warming responses excited underlying the
anomalous winds (Figure 4A). Coming to the late spring (April-
May-June, AMJ), the subtropical anticyclone and corresponding
horseshoe-shaped SST response are further intensified. The
negative SST anomalies in the subtropical Pacific are enhanced
and southward extend to the tropical central Pacific and eastern
Pacific. In addition, the easterly wind anomalies only covering the
warm pool in the preceding season also extend to the tropical
central-eastern Pacific (Figure 4B).

Entering the second half of the year, the meridional horseshoe-
shaped pattern of SST response in the North Pacific shows little
changes except the westward extending of warming SST to the
Asian coasts and warm pool area. In the tropics, the negative SST
anomalies are further enhanced, and the center of anomalies
gradually extends from the western Pacific to the central-eastern
Pacific. Meanwhile, the easterly wind anomalies develop and
cover the whole Pacific equatorial band (Figures 4C,D). These
variations can be attributed to the positive feedback of zonal wind
and SST gradient, namely, the so-called Bjerknes feedback
(Bjerknes, 1969; Neelin et al., 1998; Wang, 2018; Ren et al.,
2020). The above composite analysis implies that the North

FIGURE 3 | (A) Time series of the JFM SHI index and NDJ (1) Niño-3.4 index during 1980–2020. The correlation coefficient shown in the upper right corner is the
correlation with JFM SHI index leading NDJ (1) Niño-3.4 index. (B) Scatter plots of the JFM SHI and NDJ (1) Niño-3.4 indices. Both indices are normalized by their
standard deviations (STDs), and the red (blue) points are the years with Niño-3.4 indices greater than 0.5 STDs (less than −0.5 STDs), indicating strong El Niño (La Niña)
events; grey spots are neutral events. The lines represent the regression fit. Dashed lines indicate that JFM SHI index is equal to 0.5 STDs.
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Pacific may be a critical passway of the SH impacts, where the
anomalous signal maintains and propagates before the Bjerknes
feedback established in the second half of the year.

POSSIBLE MECHANISMS LINKING THE
PRECEDING SH TO ENSO

The above results have shown that the JFM SH, as a precursor,
may influence the occurrence and development of ENSO. There
is no doubt that the strong tropical Bjerknes feedback dominates
the development of ENSO during the second half of the year.
However, how the preceding SH initiates the Bjerknes feedback in
the first half of the year remains unclear. Given that North Pacific
may be the vital passway, next, we examined the evolutionary
features of North Pacific air-sea anomalies associated with the SH
during the first half of the year to clarify the possible mechanisms.

Figure 5 illustrates regressions of the North Pacific SLP and
850-hPa wind anomalies in JFM and AMJ upon the JFM SHI
index. The JFM SLP anomalies exhibit a negative response over
the mid-latitude North Pacific, resembling an enhanced Aleutian
Low (AL) anomaly (Figure 5A) (Overland et al., 1999). The
corresponding variation between the SH and AL reflects the
connectivity among atmospheric centers of action. Referring to
previous work (Chen et al., 2020), an AL intensity (ALI) index is
defined to describe the strength variation of AL (Table 1). As
shown in Figure 6, the AL response over the North Pacific to the
JFM SH begins quickly and remains throughout the winter and
spring. The negative correlation reaches the highest when AL lags
SH about 1 month. Affected by the enhanced AL, significant low-

level westerly wind anomalies occur at the southern flank of AL.
Besides, there are easterly wind anomalies confined over the
warm pool (Figure 5A). Moreover, the westerly wind
anomalies at the southern flank of AL are opposite to the
background winds, which may cause the warm SST anomalies
observed in the central subtropical North Pacific (Figure 7A) by
weakening the local evaporation (Figure 8A) (Chen et al., 2020).

The anomalous AL response in the mid-latitude North Pacific
diminishes rapidly in spring (Figure 5B). The SH-related SLP
anomalies change from the anomalous AL pattern to ameridional
dipole pattern with centers in the 60°N and 30° N North Pacific,
respectively, which is similar to the pattern of NPO (Wallace and
Gutzler, 1981). Several studies have suggested that such variation
may be attributed to the interaction between the synoptic-scale
eddy activity and mean flow and associated vorticity
transportation. Westerly wind anomalies at the southern flank
of the enhanced AL are accompanied by an increased synoptic-
scale eddy activity, which will excite an anomalous anticyclonic
circulation in the subtropical North Pacific (Chen et al., 2014;
Chen et al., 2020). Connected with atmospheric circulation
changes, a remarkable northeast-southwest dipole mode of
SST anomalies occurs in the North Pacific in late spring
(AMJ), namely, the so-called VM pattern (Bond et al., 2003;
Ding et al., 2015b). The positive SST anomalies in the central
subtropical North Pacific are enhanced. Moreover, significant
negative SST anomalies occur at the northern and southern flanks
of the positive anomalies, extending from the coast of North
America to the central subtropical North Pacific (Figure 7B).

The correlation evolution of indices between the JFM SHI and
associated air-sea responses in the North Pacific also reflects the

FIGURE 4 | Composite SST (°C) and 850-hPa winds (vectors; m s−1) in the La Niña years with enhanced SH and El Niño years with suppressed SH (multiply by a
factor of -1) during (A) January-February-March (JFM), (B) April-May-June (AMJ), (C) July-August-September (JAS) and (D) October-November-December (OND).
Stippled regions indicate anomalies significant at the 90% confidence level. Only wind anomalies significant at the 90% confidence level are plotted.
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FIGURE 5 | Regression of 850-hPa winds (vectors; m s−1) and SLP (shading; hPa) anomalies in (A) JFM, (B) AMJ onto the normalized JFM SHI index. Stippled
regions indicate SLP anomalies significant at the 90% confidence level. Only wind anomalies significant at the 90% confidence level are plotted.

TABLE 1 | Definitions of the AL, NPO and VM indices.

Definitions Sources

AL area-averaged SLP anomalies over 30°–65°N, 160°E–140°W Chen et al. (2020)
NPO PC time series corresponding to EOF2 of SLP anomalies over 120°E–80°W, 20°–60°N Yu and Kim, (2011)
VM PC time series corresponding to EOF2 of the North Pacific (124.5°E–100.5°W, 20.5°N–65.5°N) monthly SST anomalies (after

removing the monthly mean global average SST anomalies)
Ding et al. (2015b)

FIGURE 6 | Lag correlation coefficients between the JFM SHI and the AL (blue), NPO (yellow), VM (red), U (black) indices during 1979–2020. The U index is defined
as the regional mean 10-m zonal wind anomaly in the equatorial eastern-central Pacific (10°S–10°N, 180° E–120°W). The horizontal axis represents the target month of
used AL, NPO, VM, and U indices. The dashed lines indicate the correlation coefficient significant at the 95% confidence level. Time notations indicate the year alongside
and (1) indicate time comes to the next year.

FIGURE 7 | Regression of SST anomalies (°C) and 10-m winds (vectors; m s−1) anomalies in (A) JFM and (B) AMJ onto the normalized JFM SHI index. Stippled
regions indicate anomalies significant at the 90% confidence level. Only wind anomalies significant at the 90% confidence level are plotted.
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aforementioned processes (Figure 6). The SHI index poorly
correlates with the NPO and VM indices in late winter. While
in spring, when the relationship between SH and AL decays, the
correlation between JFM SH and NPO becomes significant and
can last throughout the whole summer, indicating that the SH-
related atmospheric response gradually changes into an NPO-like
pattern. Meanwhile, the negative correlation between the VM and
JFM SH also becomes significant in late spring.

Previous studies suggested that the NPO-induced SLP
anomalies linking with the North Pacific trade winds can
excite surface and subsurface temperature anomalies in the
equatorial Pacific, which is beneficial to developing ENSO
events (Vimont et al., 2001; Vimont et al., 2003; Anderson
et al., 2013). Moreover, the SST anomalies featuring a VM
pattern can also transfer the anomaly from extratropical North
Pacific to equatorial Pacific and support the occurrence of ENSO
events (Ding et al., 2015a; Ding et al., 2015b). When SH is
enhanced in the preceding winter, the NPO-like pattern in late
spring features an anticyclonic circulation over the subtropical
North Pacific. The northeasterly wind anomalies at its southern
side strengthen the trade winds (Figure 5B), thus sharpening the
evaporation over the subtropical northeastern Pacific (Figure 8B)
and leading to the local cooling anomalies (Figure 7B). The
cooling anomalies can further strengthen the northeasterly wind
anomalies and evaporation through the so-called wind-
evaporation-SST feedback, which can sustain and stretch to
the central equatorial Pacific during the spring and summer
(Xie and Philander, 1994; Chiang and Vimont, 2004). The
coupled easterly winds and cooling SST anomalies extending
to the equator will enhance the zonal air-sea interaction over the
equatorial Pacific. Besides, the associated off-equatorial wind
stress curl anomalies may lead to a discharge of the subsurface
heat content (Ding et al., 2015b; Amaya, 2019). Both processes
contribute to establishing the tropical Bjerknes feedback, favoring
the subsequent ENSO development. As shown in Figure 6, the
negative correlation between zonal wind anomalies in the central-
eastern equatorial Pacific and JFM SHI is insignificant until
summer. With the development of ENSO, this negative
correlation will last in the second half of the year.

SUMMARY AND DISCUSSION

As one of the vital atmospheric circulation systems in the
northern hemisphere during boreal wintertime, SH has remote
impacts on the hemispheric-scale atmospheric circulation over
the downstream regions. Our study found that the SH variation in
the previous winter is well correlated with the tropical Pacific SST
anomalies in the following year, which can be used as an
atmospheric precursor of ENSO. An enhanced SH in the
previous winter is likely to trigger a La Niña-related SST
anomalous pattern in the central-eastern equatorial Pacific in
the following winter. Conversely, a suppressed SH may lead to an
El Niño event.

Through diagnosing the air-sea responses over the North
Pacific and tropical Pacific, we gave a possible explanation of
how the SH impacts maintain, propagate, and eventually
trigger an ENSO in the following year. As summarized
schematically in Figure 9, in response to a strengthened
boreal winter SH, an enhanced AL response will occur over
the downstream North Pacific. During the late spring (AMJ),
this anomalous AL response gradually evolves into an NPO-
like SLP structure. Correspondingly, the North Pacific SST
anomalies feature a typical VM pattern. In the subtropical
North Pacific, the NPO-like atmospheric circulation and VM-
associated SST anomalies cause a cooling SST “footprint.” This
cooling SST and associated northeasterly wind anomalies can
be enhanced and delivered to the central Pacific through the
seasonal footprinting mechanism. That contributes to the
rapid development of the tropical Bjerknes feedback in
summer and eventually results in a La Niña event.
Similarly, the North Pacific air-sea responses will be in the
opposite phase when a suppressed SH occurs, contributing to
an El Niño event.

This study links the preceding SH variation and following
ENSO development through air-sea interactions over North
Pacific. However, it should be noticed that these North Pacific
air-sea interactions may be sensitive to the background
interdecadal time scales. For example, the Arctic Oscillation
showing a substantial interdecadal variability could

FIGURE 8 | Regression of surface upward latent heat flux (shading; W m−2) anomalies in (A) JFM, (B) AMJ onto the normalized JFM SHI index. Stippled regions
indicate latent heat flux anomalies significant at the 90% confidence level. Downward fluxes are positive, indicating the transfer of energy from the atmosphere to
the ocean.
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significantly affect the seasonal footprinting mechanism (Yeo
et al., 2012; Chen et al., 2013). Some interdecadal variabilities,
such as Pacific Decadal Oscillation, can directly change the
linkage between North Pacific and tropical Pacific (Vimont
et al., 2003; Krishnamurthy and Krishnamurthy, 2014). How
the SH-ENSO relationship will change under different
interdecadal modulation, and the detailed mechanisms are
worthy of being further investigated. Besides, there may be
more possible ways of the SH impact on following ENSO. For
example, SH is one of the critical components of the East Asian
Winter Monsoon (EAWM) system. Associated with the EAWM
variation, there may be anomalous Madden-Julian Oscillation
activity and westerly winds over the western equatorial Pacific,
thus significantly impacting the following ENSO development
(Lengaigne et al., 2004; McPhaden et al., 2006b; Chen et al., 2017).
This hypothesis and its detailed mechanism need to be further
diagnosed in the future.

The impact of preceding SH on the following ENSO
complements the understanding of the complexity and
diversity of ENSO developments. It also provides a new
explanation for the onset of ENSO events without apparent
precursors in the tropical Pacific. However, this understanding
is still in infancy, and further numerical validation needs to be
carried out in the future. The SH variation is relatively easy to
monitor and represent compared to other extratropical ENSO
precursors, such as the NAO and VM. Besides, it precedes around
1 year before the following ENSO, which occurs even prior to the
spring predictability barrier of ENSO (Webster and Yang, 1992).
Thus, the SH variation promises to be an effective long-leading
predictor of ENSO, which can help improve the seasonal-

interannual ENSO prediction and weaken the predictability
barrier if reasonably used.
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