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Changes in the spatial expansion of urban built-up areas are of great significance for the
analysis of China’s urbanization process and economic development. Nighttime light data
can be used to extract urban built-up areas in a large-scale and long-time series. In this
article, we introduced the UNet model, a semantic segmentation network, as a base
architecture, added spatial attention and channel attention modules to the encoder part to
improve the boundary integrity and semantic consistency of the change feature map, and
constructed an urban built-up area extraction model—CBAM_UNet. Also, we used this
model to extract urban built-up areas from 2012 to 2021 and analyzed the spatial and
temporal expansion of China’s urban built-up areas in terms of expansion speed,
expansion intensity, expansion direction, and gravity center migration. In the last
decade, the distribution pattern of urban built-up areas in China has gradually changed
from “center” to “periphery-networked” distribution pattern. It reveals a trend from
agglomeration to the dispersion of urban built-up areas in China. It provides a
reference for China’s urban process and its economic development.

Keywords: urban built-up areas, deep semantic segmentation network, CBAM_UNet, spatial and temporal
expansion of China, center–periphery network

1 INTRODUCTION

In 2012, China’s economy ushered the “New Normal” period. After experiencing rapid growth,
China’s economic growth rate began to slow down (Yang and Zhao, 2020; Yu et al., 2020). In 1966,
J.R. Fridemna proposed the “center-periphery” theory, which emphasizes that regional economic
growth must be accompanied by changes in the spatial structure of the economy and is mainly used
as a theoretical model to explain the unbalanced development process between inter-regional or rural
and urban areas (Liu et al., 2018). Urban built-up area expansion provides resources and capital for
rapid industrialization and urbanization, thus promoting economic growth, which will drive the
agglomeration of resources and labor, promoting the further expansion of urban built-up areas, but
the expansion also brings various problems, such as endangering national food security and reducing
biodiversity (Yue et al., 2014; Yang et al., 2020). Urban built-up areas are the most rapidly changing
areas in China during the transition period, and the extent of urban built-up areas expansion affects
the quality of urbanization and the process of sustainable development in China significantly (Liu
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et al., 2016; Zhang et al., 2016; Li J. et al., 2017; Hu et al., 2018).
Therefore, accurate spatial change in urban built-up areas is
essential to detect the urbanization process and to analyze the
driving factors of urban development and its impact on the
environment in China.

The gradual development of the remote sensing technology
and big data technology offers the possibility of rapidly extracting
urban built-up areas (Zhang et al., 2018; Bramhe et al., 2020). In
recent years, a large number of high-resolution (12–30 m) built-
up area products have been released globally and regionally, such
as Fine Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) (Gong et al., 2013) and GlobeLand30 (Chen
et al., 2015), which contains built-up areas as of 2010. Although
these product data have high accuracy, due to the limitations of
remote sensing image quality and launch time, most of them have
only 1 year of built-up area data, and there is also the problem of
confusion with the classification of bare land (Liu et al., 2019).
The nighttime light data (NTL) can provide timely urbanization
information, and it reflects the regional light intensity of the
earth’s surface at night and the weak light emitted from cities or
even rural areas, traffic flow, etc. Therefore, it can also clearly
distinguish urban and non-urban areas, and nighttime light data
can frequently and quickly obtain information about the earth’s
surface at night. Simultaneously, it can largely avoid the spectral
confusion of traditional multispectral remote sensing, so it is
widely used in long time series urban monitoring research. In
recent years, with the continuous enrichment of nighttime light
remote sensing data products, especially the emergence of the
new generation of nighttime light data NPP/VIIRS (National
Polar-Orbiting Partnership’s Visible Infrared Imaging
Radiometer Suite), which has effectively improved the spatial
resolution, temporal resolution, radiative resolution (Shi et al.,
2014), and other deficiencies of DMSP/OLS (Defense
Meteorological Satellite Program Operational Linescan System)
nighttime light data, it expands the research direction and
application fields of nighttime light data (Li and Zhou, 2017).

The data selection methods to extract urban built-up areas
mainly include the following three ways: first, the nighttime light
data were used alone. However, the lower spatial resolution and
insufficient detailed information on urban built-up areas will lead
to lower accuracy of the extraction (Zhang and Seto, 2013).
Second, it extracted urban built-up areas by combining
nighttime light data with statistical data, but statistical data are
difficult to obtain and have low timeliness. Third, the method
combined nighttime light data and remote sensing images to
extract urban built-up areas, which is commonly used in small-
scale extraction (Ma, 2018; He et al., 2020; Li et al., 2020), for
example, combining the traditional remote sensing image
Landsat with nighttime light data. However, the Landsat image
has many bands, and extracting urban built-up areas on a large
scale requires a large amount of data, resulting in a more complex
and time-consuming experimental setup for extraction (Liu et al.,
2021; Mithun et al., 2021). Lu et al. (2008) found that combining
MODIS (moderate-resolution imaging spectroradiometer) and
NDVI (Normalized Difference Vegetation Index) data with
DMSP/OLS nighttime light data can improve the accuracy of
urban built-up area extraction. In our experiment, a new

generation of nighttime light data NPP/VIIRS combined with
MODIS NDVI data was selected to explore a fast and accurate
method to extract urban built-up areas on large-scale and long-
time series. Also, there are three main methods to extract urban
built-up areas from the aforementioned images. One is the
threshold segmentation method, which relies on the
determination of the best threshold for the data, and no
systematic and effective threshold determination rules have
been formed: the artificial threshold method has strong
subjectivity, and the accuracy of extracting urban built-up
areas is low through the cluster threshold method, and the
mutation detection method is inefficient, and the accuracy
stability is poor (Liu et al., 2019; Wang et al., 2021). The
second is the pixel classification method. At present, machine
learning methods such as K-means unsupervised classification
(Ju et al., 2017) and support vector machines (SVMs) (Ma et al.,
2017; Jiang C. et al., 2021) are mainly used. The traditional
machine learning methods are relatively simple, but the
feature learning ability is limited, resulting in lower accuracy.
Deep learning can use deep-architecture neural networks (e.g.,
CNN) to automatically learn features from the input raw data and
directly generate powerful deep features, making it rapidly
developed in the field of target detection and scene
classification (Tan et al., 2018, 2020; Sun et al., 2020). Fully
convolutional neural networks are the cornerstone of deep
learning in the image semantic segmentation field, and it
replaces the last fully connected layer of the convolutional
neural network with a convolutional layer, effectively
implementing end-to-end training of the convolutional neural
network for image semantic segmentation, but the disadvantage
is that the translation invariance of the convolutional network
does not consider useful global context information (Wang et al.,
2018; Karim et al., 2019; Tan et al., 2019). The UNet model based
on the encoder-decoder was proposed, which was widely used in
medical images in the early days (Navab et al., 2015; Kaur et al.,
2021; Zhou et al., 2021), and in recent years, it has also been
performed prominently in the classification of remote sensing
images. Themodel has a neural network with an encoder-decoder
structure that first encodes features from the raw data using an
encoder and then decodes the target result from the feature
encoding using a decoder, while high-level and low-level
image features are merged through skip connections to
maximize the extraction of context information (Peng et al.,
2019; Wu et al., 2021; Yang et al., 2021). The attention
module was originally proposed to solve machine translation
problems by automatically learning weights to capture the
correlation between the hidden states of the encoder and the
decoder, weighting the output of the encoder, and can achieve
alignment between input and output while utilizing more context
information about the original data, making it an integral part in
the encoder-decoder structure (Zhu and Yang, 2018; Kearney
et al., 2019; Yang et al., 2021).

Remote sensing data combined with deep learning can quickly
extract urban built-up areas, which brings the possibility to
measure the changes of urban built-up areas in both temporal
and spatial dimensions. Previously, the existing urban expansion
metrics mostly characterize the process and characteristics of
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urban land expansion from a single “temporal” or “spatial”
dimension. Among them, the “temporal” urban expansion
metrics refer to the use of urban built-up area land scale,
spatial form, and other characteristics of the temporal change,
the intensity of change, which mainly includes the expansion
intensity index, and the average annual expansion index. “Spatial”
urban built-up area expansion metrics are measured from the
geometry of urban built-up areas (graphical patterns, such as
shape and area), which mainly include the expansion direction
index, center of gravity offset index, and aggregation index (Liu
et al., 2018); domestic scholars mainly study the expansion
characteristics of urban built-up areas in central, eastern, and
central-western China on a large scale; representative regions
such as Yangtze River Delta, Pearl River Delta, Beijing, Tianjin,
and Tang (Liu et al., 2000) on a medium scale; studies of large
cities such as Beijing, Shanghai, and Guangzho (Liu et al., 2018; Li
et al., 2021) on a small scale; less research on the expansion of
construction land in small- and medium-sized cities (Jiang W.
et al., 2021), and less quantitative analysis of spatial and temporal
changes in the expansion of urban built-up areas in China. In this
article, based on Google Earth Engine (GEE), using NPP/VIIRS
nighttime light data and MOD13Q1 NDVI with the same spatial
resolution, the UNet deep semantic segmentation neural network
was selected, which added both spatial attention and channel
attention modules in the encoder to improve the boundary
integrity and semantic consistency of the change feature map.
Then, a deep semantic segmentation model—CBAM_UNet was
built and was trained and tuned by the Adam optimization
algorithm and Dice Loss function to get the best parameters.
With the proposed model, we could rapidly extract urban built-
up areas on a large scale. So, we effectively and rapidly extracted
China’s urban built-up areas based on the CBAM_UNet model.
Meanwhile, to deeply analyze the expansion of China’s urban
built-up areas during slow economic growth, NPP/VIIRS
nighttime light data and MOD13Q1 NDVI data in 2012, 2015,
2018, and 2021 were selected to calculate China’s urban built-up
areas. We also analyzed the expansion characteristics of China’s
urban built-up areas through expansion speed, expansion
intensity, expansion direction, and gravity center migration.
Therefore, the proposed model—CBAM_UNet can provide a
methodological guide for quickly obtaining the area of built-up
areas, and the analysis results of the long-term spatial expansion
of built-up areas can also provide a certain reference value for
urban construction in China.

2 STUDY AREA AND DATASETS

2.1 Study Area
The study area is located in China (longitude 73°33’~135°05′ East,
latitude 3°51’~53°33′ North). From 1980 to 2011 was a period of
high economic growth in China: the average annual growth rate
of GDP was 10.03%, and urban population had increased from
89.405 million to 354.256 million. Urban built-up areas of
provinces were shown a typical center-periphery distribution,
mostly concentrated around a pole, and the distribution of urban
built-up areas in the coastal was concentrated around Beijing-

Tianjin-Hebei urban agglomeration, Yangtze River Delta urban
agglomerations, and Pearl River Delta urban agglomerations.

After 2012, China’s economy had ushered in a period of
slow growth with a focus on high-quality development. From
2012 to 2018, the average annual growth rate of GDP was
7.24%, and urban population had increased from 369.897
million to 427.300 million. Based on the period from the
launch of VIIRS (2012) to the present, this experiment
researched the changes in China’s urban built-up area
expansion after the slowdown of economic growth. These
data come from the China Statistical Yearbook.

2.2 Datasets
2.2.1 Data Sources and Access
1) NTL data

We used VIIRS as the NTL data, derived from the National
Geophysical Data Center (NGDC) of the National Oceanic and
Atmospheric Administration (NOAA) and provided by the
Suomi National Polar-orbiting Partnership (Suomi-NPP)
Visible Infrared Imagining Radiometer Suite (VIIRS), with a
spatial resolution of 742 m. In this experiment, monthly
averaged radiometric composites images with the influence of
stray light were removed and used. The aim was to avoid a large
number of missing values in the summer at high latitudes in this
image version (Li X. et al., 2017); the research period was chosen
to be from January to March and from September to December
for each year, with seven images per year.

2) Reference data

This experiment’s remote sensing data are NDVI data, which
are from MOD13A1, a 16-day synthetic product with a spatial
resolution of 500 m. Meanwhile, to reduce the influence of cloud
cover, we used maximum value composite (MVC) (Holben,
1986) to get the NDVI images for each year.

Also, the sample data are the 2020 WorldCover product from
the European Space Agency (ESA), which provides a 10-m spatial
resolution global land cover map based on Sentinel-1 and
Sentinel-2 data, including 11 land cover categories, and we
selected the “built-up” label as the sample data for the
model input.

All data were acquired through Google Earth Engine (https://
code.earthengine.google.com/, GEE).

2.2.2 Data Reprocessing
We used the threshold method for NTL data to remove the
images’ extraordinarily high and low values and the mean value
method (Shi et al., 2014) to composite the annual images. In
addition, we logarithmically transform the composite annual
nighttime light images to reduce the influence of high values
and enhance the homogeneity of the overall radiation value
distribution in urban built-up areas.

All images were converted to Asia Lambert Conformal Conic
projection, where both VIIRS and WorldCover images were
resampled to 500 m spatial resolution by the nearest neighbor
method to avoid decreasing in DN values of the images with
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increasing latitude (Elvidge et al., 2009) and ensure the spatial
consistency across the datasets. In addition, based on
WorldCover data, all data layers were geometrically rectified.
An overview of the datasets is shown in Table 1.

3 METHODS

This experiment consists of extracting China’s urban built-up
areas and its spatial expansion analysis (Figure 1). The first part is
the time-series urban built-up areas extraction. First, the NTL
data andNDVI data in 2020 were chosen to build and train a deep
semantic segmentation model for rapidly extracting China’s
urban built-up areas, and then input the NTL data and NDVI
data in 2012, 2015, 2018, and 2021 into the calibrated model to
extract China’s urban built-up areas for the 4 years. The second
part is to analyze the expansion speed, intensity, and direction of
China’s urban built-up areas and gravity center migration of
urban construction based on the extracted time-series urban
built-up areas.

3.1 Construction and Training for Urban
Built-Up Area Extraction’s Model
3.1.1 Developing CBAM_UNet
1) Standard UNet

The UNet is based on the fully convolutional neural
network, which was first proposed for biomedical image
segmentation, overcoming the difficulty of predicting
boundaries with small training set images (Navab et al.,
2015). It mainly consists of an encoder part and a decoder
part. The encoder has four sub-modules: a convolutional layer
and a pooling layer, making the image features progressively
smaller and more abstract. The decoder corresponds to the
encoder layer by layer. With the decoder deconvolution layer,
the feature sizes were sequentially getting more extensive and
using skip connections to connect and merge the decoder part
deconvolution results in the output of the encoder part.
Finally, the probability map is output through a 1 × 1
convolution layer.

TABLE 1 | Dataset overview.

Dataset Data type Spatial resolution (m) Resampled spatial resolution
(m)

Year

VIIRS NTL 742 500 2012, 2015, 2018
MOD13A1 NDVI 500 500 2020, 2021
WorldCover LandCover 10 500 2020

FIGURE 1 | Overview of the workflow.
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The UNet model currently performs well in image
segmentation due to its excellent model architecture. The
combination of NTL data and NDVI used in this experiment
has fewer bands, which was consistent with the medical image
with fewer bands. In other words, this experiment can also be
regarded as a problem of the image extraction with small training
sets (urban built-up areas), so the model built in this experiment
chose the UNet model as the base architecture.

2) Convolutional Block Attention Module

The attention module is a simulation of the human brain
operation, which is designed to guide the deep neural network to
focus on the features that aremore relevant to the task. For the image
classification task, the attention module combines the important
features of the input image and the extracted feature spectrum, by
combining the true value and the loss function, together with the
backward propagation algorithm, to guide the network to
automatically find the features that improve the task performance
the most and assign a higher weight to that feature, thus improving
the performance of the model.

Generally, the attention module mainly used by the neural
network is divided into two categories: (1) soft attention, which
assigns a weight between 0 and 1 to each input item, indicating the
level of attention for each part. Soft attention is differentiable so that
the attention weights can be obtained by forward and backward
propagation (Xiao et al., 2015). However, since soft attention
considers most of the information to different degrees, the
amount of calculation is relatively large. (2) Hard attention, which
assigns a weight of either 0 or 1 to each input item, is different from
soft attention in that hard attention only considers which parts need
attention and which parts do not. Hard attention is not differentiable,
so the training process is usually carried out through reinforcement
learning (Mnih et al., 2014). The advantage is that the time and
computational cost can be reduced, but some information that should
be attended to may be lost.

Convolutional block attention module (CBAM), as a
lightweight attention module, belongs to soft attention and
contains two sequential sub-modules: channel attention
module (CAM) and spatial attention module (SAM), which
build attention modules on channel and space, respectively
(Figure 2) (Zhu and Yang, 2018).

CAM mainly focuses on “what” is meaningful in the input
image (Figure 3). To compute channel attention efficiently,

average-pooling and max-pooling are used to compress the
spatial dimension of the input feature map, realizing the
aggregation of spatial information. Then, the average pooled
features and max pooled features are forward propagated into
a shared multi-layer perceptron (MLP). Finally, the two output
feature vectors are merged by element summation to obtain the
channel attention map. The calculation formula of channel
attention is shown in Eq. 1.

SAM is different from CAM in that it is more concerned
with “where” being the more informative part, which
complements channel attention (Figure 3). Average-pooling
and max-pooling are first applied in the channel dimension,
and the two-channel features are concatenated to compute
spatial attention. A standard 7 × 7 convolutional layer then
convolves the concatenated features to obtain the spatial
attention map. The calculation formula of spatial attention
is shown in Eq. 2.

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W1(W0(Fc

avg)) +W1(W0(Fc
max))), (1)

Ms(F) � σ(f7×7([AvgPool(F);MaxPool(F)]))
� σ(f7×7([Fs

avg;F
s
max])), (2)

where Mc(F) denotes channel attention map, and Ms(F) denotes
spatial attention map; σ denotes the sigmoid function, MLP
denotes multi-layer perceptron and F denotes input features,
Fcavg and Fcmax denote average-pooled features and max-pooled
features, respectively, W0 and W1 denote the MLP weights, f 7×7

represents a convolution operation with the filter size of 7 × 7, F s
avg

and Fsmax denote average-pooled features and max-pooled
features across the channel.

3) CBAM_UNet

In this experiment, we constructed a CBAM_UNet neural
network for urban built-up areas extraction, which combined
channel and spatial attention modules (Figure 4). The main
structure of CBAM_UNet consists of two parts: the encoder and
decoder. The encoder part, which extracted the features of the image
layer by layer through convolution and pooling to obtain feature
information, consists of four blocks, and each block was convolved
twice with standard 3 × 3 convolution layer and batch normalization
and activated by the ReLU function. The CBAM attention module
was added before under-sampling the image. Each under-sampling
doubled the number of feature channels while compressing the
length and width of the image by half. Finally, the length and width
of the input raw imagewere compressed from128 × 128 to 8 × 8, and
the number of feature channels was increased from 2 to 1024
through the entire encoder part.

The decoder part also consists of four blocks (this part follows
the standard UNet), which were up-sampled by deconvolution to
recover the original size of the image and output the segmentation
result. It consists of eight 3 × 3 convolution layers, one 1 × 1
convolution layer, and four 2 × 2 up-sampling layers, with the
feature channels, were reduced from 1024 to 2, all using ReLU as
the activation finally got the classification results through the

FIGURE 2 | Overview of CBAM. The module has two sequential
submodules: channel and spatial (Woo et al., 2018).
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Sigmoid function. Since high-resolution feature information is
often lost in up-sampling, the UNet did not directly up-sample
high-level semantic features. It added skip connections to each
block. There has the advantage of merging more low-level
features into the up-sampling process, achieving feature fusion
at different scales, improving the information during up-
sampling, and complementing the contextual information of
the input image. Ultimately, this multi-scale prediction is
achieved, improving the segmentation’s accuracy.

Therefore, the main difference is in the encoder part between
the proposed model CBAM_UNet and the standard UNet
structure, and we added the CBAM attention module before
under-sampling the image.

3.1.2 Algorithm Implementation
The training part is mainly to train and calibrate the model, and
its purpose is to obtain the optimal tuning model. Essentially,

calibration uses an optimization algorithm to minimize the loss
function by iteratively estimating the weights of the parameters.
The process consists of determining the loss function, setting the
optimization algorithm, and iterating parameters.

In semantic segmentation, choosing the appropriate loss
function is crucial to the results of model training. Linear
cross-entropy loss was mostly used as the loss function in
binary image segmentation (Vi-de and Qing, 2004) and is
shown in Eq. 3:

L � − 1
N

∑
N

i�1
[yi · log(pi) + (1 − yi) · log(1 − pi)], (3)

where yi represents the label of sample, i and pi indicate the
probability that the sample i is predicted to be a positive class.

However, the linear cross-entropy loss function has an obvious
disadvantage. When the quantity of positive samples is
significantly less than that of negative samples, the results of

FIGURE 3 | Diagram of each attention sub-module (Woo et al., 2018).

FIGURE 4 | CBAM_UNet architecture.
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the model classification will be greatly biased toward the
background. So we used Dice Loss, which was proposed to
solve the problem of extremely unbalanced classification
samples (Milletari et al., 2016). Dice Loss is a function based
on the Dice coefficient and derived from binary classification. It is
a measure of the overlapping part of two samples, with the
measure ranging from 0 to 1. A dice coefficient equal to 1
means complete overlap. Dice Loss is defined as Eq. 4:

L � 1 −
2 ∑
pixels

ytrueypred

∑
pixels

(y2
true + y2

prd)
, (4)

where ytrue represents the label’s value, and ypred denotes the value
obtained from the model.

In summary, the steps of model training are as follows:

1) We combined the preprocessed NPP-VIIRS NTL data and
MOD13A1 NDVI data in 2020 into a two-band image data
through band composited and selected the “built-up” label
from WorldCover product in 2020 provided by ESA as the
label data for the model input.

2) Clipping the sample datasets: The “fishnet” function in
ArcGIS was used to clip both the composited two-band
image data and the label data into 128 × 128 size images.

3) Splitting the sample datasets: 1294 images were randomly
chosen as the training set, and the remaining 142 images were
used as the validation set. Both sets were the input data of
the model.

4) Model training process: The training set was input into the
CBAM_UNet model, the loss values of the training data and
label data were calculated through the Dice Loss function, and
the model parameters were optimized by the Adam optimizer
until the loss function was fitted (Kingma and Ba, 2015). The
initial learning rate of the model was 1e-3, and the total
number of iterations was 40 epochs.

3.1.3 Accuracy Evaluation
We introduced five accuracy evaluation indicators to verify the
model’s accuracy. These are precision (P), recall (R), F1-score
(F1), mean of class-wise intersection over union (mIoU), and
overall accuracy (OA). Among them, P evaluates the precision of
the model: the larger value means there are fewer misclassified
pixels. R evaluates the recall rate of the model: the larger the value
is, the fewer omitted pixels are. F1 represents the harmonic mean
of P and R, and it is a global indicator for evaluating the
classification accuracy: the higher the value indicates, the more
accurate the model is. Meanwhile, OA and mIoU show the
model’s overall performance: and their larger values reveal the
better performance. OA is the ratio of the number that correctly
classified category elements to the total number of categories.
mIoU is obtained by calculating the ratio of the intersection and
union of the two sets of the true values and the predicted values of
each category, then averaging the results. Intersection over union
(IOU) of urban built-up areas was not used in the evaluation
indicators. Because the number of samples in urban built-up
areas (foreground) and non-urban built-up areas (background)

was extremely unbalanced, it leads to low IOU values in urban
built-up areas. Therefore, it is reasonable to evaluate the accuracy
of the extraction results of urban built-up areas by p value, R
value, and F1, and to evaluate the model’s overall accuracy by OA
and mIOU. The calculation formula for each indicator is as
follows:

P � TP

TP + FP
, (5)

R � TP

TP + FN
, (6)

F1 � 2PR
P + R

, (7)

OA � TP + TN

TP + TN + FP + FN
, (8)

mIOU � 1
2
( TP

TP + FP + FN
+ TN

TN + FN + FP
), (9)

where TP, FP, TN, and FN denote the number of true positives,
the number of false positives, the number of true negatives, and
the number of false negatives.

Meanwhile, to verify the model’s accuracy in extracting built-
up areas from 2012 to 2021 without sample data, we introduced
the “China Statistical Yearbook” (stats.gov.cn) issued by the
National Bureau of Statistics to obtain the built-up area data
in 2012, 2015, and 2018 (excluding Hong Kong, Macau, and
Taiwan, but the data for 2021 have not yet been released), and the
experimental model extraction results are compared.

3.1.4 Comparison With Other Methods
To verify the model accuracy of the proposed CBAM_UNet, we
input the same sample data into the other three models, the
standard U-Net, support vector machine (SVM), random forest
(RF), and extracted urban built-up areas in China in 2020. Also,
to ensure the objectivity of the result comparison, the loss
function, optimizer, and training parameters of the basic UNet
were the same as the method proposed in this article. SVM is a
fast and reliable classification method for supervised learning. A
given training data achieve classification by finding the maximum
margin hyper-plane and using the cross-validation method to
determine the penalty factor C and the parameter γ of the kernel
function. RF is an ensemble learning algorithm based on a non-
parametric regression algorithm, which is an ensemble classifier
based on the decision tree. Parameters such as the number of
decision trees, the maximum number of leaf nodes, and the
minimum number of samples that can be divided by a node
are optimized through the accuracy curve.

3.1.5 Experimental Setup
This experiment was carried out in a Windows10 environment,
and the model was built by a deep learning framework—Pytorch.
The software and hardware environments are shown in Table 2.

3.2 Extraction of Urban Built-Up Areas
We downloaded the NPP-VIIRS NTL and the MOD13A1 NDVI
data from 2012 to 2021 through GEE (every 3 years). They were
preprocessed as described earlier to composite the datasets for
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semantic segmentation. Then, we extracted China’s urban built-
up areas in 2012, 2015, 2018, and 2021 through the calibrated
CBAM_UNet and analyzed the change in urban built-up areas
during the study period.

3.3 Spatial Expansion Analysis Method
1) Expansion speed and intensity

Using the urban expansion speed and intensity as indicators to
study the spatial and temporal characteristics of China’s urban
built-up areas expansion (Yin et al., 2021).

Urban expansion speed (Eq. 10): this indicates the growth of
China’s urban built-up areas.

Urban expansion intensity (Eq. 11): this indicates the rate of
China’s urban built-up areas in a period.

S � Mb −Ma

T
, (10)

P � Mb −Ma

Ma
×
1
T
, (11)

where S indicates the expansion speed of urban built-up areas, P is
the expansion intensity of urban built-up areas, T is the time
interval and Ma and Mb indicate the area of early and late urban
built-up areas.

2) Expansion directions

The direction of the country’s urban expansion determines the
development direction of the entire country to a certain extent
and provides a reference value for the country’s macro-
management work. In this section, we used the geometric
quadrant orientation method (Liu et al., 2021) to compare and
analyze the expansion differences of urban built-up areas in
different spatial orientations in each period, and different
spatial orientations reflected the spatial characteristics of urban
expansion, so the spatial form of China’s urban built-up areas
expansion can be described.

The area change of urban built-up areas in several regions of
China during the study period was calculated by the geometric
quadrant orientation method. The center was set at
34°32′27.00″N and 108°55′25.00″E. So China was divided into
north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW).

3) Gravity Center Migration

The change in the country’s urban built-up areas’ gravity
center is a significant indicator (Liu et al., 2013; Zeng et al.,
2015), which reflects the intensity and spatial characteristics of
China’s urban expansion and is also important for understanding
the compactness of modern urban development. With the
expansion of China’s urban built-up areas, we calculated the
coordinates of the gravity center and the migration distances of
China’s urban built-up areas in 2012, 2015, 2018, and 2021. As
shown in Eqs 12, 13:

Xt �
∑n
i�1
CtiXi

∑n
i�1
Cti

, (12)

Yt �
∑n
i�1
CtiYi

∑n
i�1
Cti

, (13)

where Xt denotes the longitude coordinate of the gravity center in
year t, and Yt denotes the latitude coordinate of the gravity center
in year t. Cti denotes the area of urban built-up areas patch i; Xi

and Yi denote the gravity center coordinates of patch i,
respectively; n denotes the number of patches.

4 RESULTS AND ANALYSIS

4.1 Experimental Results and Analysis
4.1.1 Model Training and Built-Up Area Extraction
Results in 2020

• Model training results

The learning rate is the hyperparameter of how the gradient of
the loss function is used to adjust the network weights in the gradient
descent method. A learning rate that is too large may cause the loss
function to cross the global optimum directly; a learning rate that is
too small will result in a slow change in the loss function, increase the
convergence complexity of the network, and make it easy to get
trapped in a local minimum. A suitable learning rate can reach the
loss minimum faster, while ensuring that the converged loss value is
the global optimal solution of the neural network. Therefore, the

TABLE 2 | Hardware and software parameters.

Parameter configuration

Hardware CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz
Memory 16 GB
Hard disk 1 TB
GPU NVIDIA GeForce RTX 2060 Video Memory: 6 GB CUDA Cores: 1920

Software Operating system Windows10
Computing platform CUDA11.2 + cudnn8.1.0
Programming language Python3.8
Processing platform and framework Image processing: ArcGIS10.8、Google Earth Engine Deep Learning: Pytorch 1.8.1
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learning rate in model training is an unavoidable and particularly
important hyperparameter. This experiment uses the Adam
optimizer to adjust the gradient adaptively, which effectively
balances the influence generated by the learning rate. Four initial
learning rates of 0.1, 0.01, 0.001, and 0.0001 were set for comparison,
all with 40 training cycles and a batch size of 16. The batch size refers
to the number of data samples crawled in one training, which will
have an impact on the stability of the network model. In this
experiment, two batch sizes of 8 and 16 are selected for training,
considering the effect of computer memory. Their accuracy
variations are shown in Figure 5.

As can be seen from Figure 5, the convergence speed of the
CBAM_UNet model for extracting the built-up area is mainly
influenced by the learning rate. During training, the convergence
speed obtained for small learning rate (0.0001, 0.001) than large
learning rate (0.1, 0.01) is smaller, but the converged loss value is
lower than that of large learning rate, but the loss value of small
learning rate 0.0001 is not as good as that of learning rate 0.001,
indicating that learning rate 0.0001 is trapped in the local
minimum, so the optimal initial learning rate for the proposed
CBAM_UNet model training is 0.001. When the batch size is
selected as 8, the network model still has large local fluctuations
after leveling off, while the network model with batch size 16 has
less fluctuation in classification accuracy after leveling off.

Based on the sensitivity test of the model, we can derive the
sensitivity analysis of this experiment for model training: the

optimal parameters for its hyperparameter learning rate and
batch size are learning rate 0.001 and batch size 16. According
to the hyperparameters, it can be concluded the extraction
accuracy urban built-up area in 2020.

Among the 34 provinces, Shanghai has the highest F1 value of
0.8095, followed by Guangdong, Taiwan, and Beijing, all of which
have F1 values greater than 0.70. Eighteen provinces have F1 values in
the range of 0.60–0.70, including Jiangsu, Sichuan, and Fujian. The
remaining 12 provinces have F1 values below 0.60. Overall, the image
segmentation accuracy is higher in economically developed regions.

To compare the differences between the areas extracted by the
four models and Ground Truth, we selected three cities with GDP
greater than 1 in 2012: Beijing, Shanghai, Guangzhou, three cities
with GDP between 0.1 and 1 in 2012: Chengdu, Zhengzhou,
Changchun, and two cities with GDP less than 0.1 in 2012:
Haikou, Xining, tracking their urban built-up area variation over
the past decade. As shown in Figure 6.

We can see that for the eight cities, the area extracted by traditional
machine learning algorithms is larger than that extracted by ground
truth, especially SVM, which shows that traditional machine learning
algorithms have more misclassifications and fewer wrong
classification areas, which is consistent with our conclusion that
the recall value of the classification accuracy is larger and the
precision is smaller; for the deep learning model, the area extracted
by the two models is smaller than the area extracted by the ground
truth, which is also consistent with the precision value we obtained for

FIGURE 5 | Sensitivity analysis. (A,B) Loss value with different learning rates. (C,D) Loss value with different batch sizes.
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its classification accuracy greater than its recall value. Meanwhile, the
area of our proposed CBAM_UNet model is the closest to the ground
truth, which also shows that our model has higher accuracy.

Also, we validated the accuracy of the model in 34 provinces in
China. Except CBAM_UNet proposed in this article, we also used
standard UNet, RF, and SVM, three models to extract China’s
urban built-up areas in 2020. To ensure the objectivity of the
result comparison, the loss function, optimizer, and training
parameters of standard UNet were the same as the method
proposed in this article. The various accuracy indicators
proposed in the previous section were calculated by comparing
the label data in 2020 with the image segmentation results
obtained by the four models. The results are shown in Table 3.

As shown in Table 3, the average OA value of CBAM_UNet
is 0.9969, p value is 0.7454, R value is 0.6016, F1 value is 0.6658,
and mIoU value is 0.7480; the average OA value of UNet is
0.9969, p value is 0.7655, R value is 0.5512, F1 value is 0.6409,
and mIoU value is 0.7342; the average OA value of RF is
0.9944, p value is 0.3573, R value is 0.8452, F1 value is 0.5023,
and mIoU value is 0.6648; the average OA value of SVM is
0.9943, p value is 0.3542, R value is 0.8567, F1 value is 0.5012,
and mIoU value is 0.6643. In the method proposed in this
article, except the p value is slightly lower than the standard
UNet (0.7655), the other four indicators are better than or
equal to the standard UNet, RF, and SVM. Compared with
traditional machine learning (RF and SVM), this model has a

FIGURE 6 | Accuracy assessment using ground truth.
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TABLE 3 | Accuracy assessment of urban built-up area results.

Province CBAM_UNet UNet RF SVM

OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU OA Precision Recall F1 mIoU

Heilongjiang 0.9966 0.8754 0.4468 0.5917 0.7084 0.9963 0.9199 0.3634 0.5210 0.6743 0.9933 0.4332 0.7217 0.5414 0.6822 0.9920 0.3911 0.8058 0.5266 0.6747
Xinjiang 0.9990 0.6016 0.4824 0.5354 0.6823 0.9989 0.5884 0.4762 0.5264 0.6781 0.9978 0.3127 0.6385 0.4198 0.6317 0.9971 0.2634 0.7230 0.3862 0.6182
Shanxi 0.9900 0.7312 0.5575 0.6326 0.7263 0.9901 0.8031 0.4786 0.5997 0.7092 0.9676 0.3040 0.8436 0.4469 0.6275 0.9702 0.3211 0.8277 0.4627 0.6354
Ningxia 0.9886 0.7073 0.4899 0.5788 0.6979 0.9888 0.7335 0.4725 0.5748 0.6960 0.9829 0.4720 0.6154 0.5343 0.6736 0.9783 0.3966 0.6835 0.5019 0.6566
Tibet 0.9999 0.4080 0.4090 0.4085 0.6283 0.9999 0.4111 0.3691 0.3890 0.6207 0.9997 0.1810 0.7880 0.2944 0.5861 0.9996 0.1465 0.8628 0.2505 0.5714
Shandong 0.9559 0.7953 0.5080 0.6200 0.7017 0.9525 0.8572 0.3960 0.5417 0.6613 0.9198 0.4612 0.7860 0.5813 0.6624 0.9241 0.4778 0.7689 0.5894 0.6688
Henan 0.9769 0.7372 0.5660 0.6403 0.7237 0.9773 0.7998 0.5020 0.6168 0.7114 0.9503 0.4071 0.8065 0.5411 0.6598 0.9496 0.4034 0.8097 0.5385 0.6582
Jiangsu 0.9445 0.7533 0.6236 0.6823 0.7294 0.9459 0.7969 0.5817 0.6725 0.7247 0.8529 0.3855 0.9095 0.5415 0.6051 0.8508 0.3832 0.9218 0.5413 0.6038
Anhui 0.9843 0.6629 0.6616 0.6623 0.7395 0.9854 0.7245 0.6039 0.6587 0.7382 0.9483 0.2955 0.8792 0.4423 0.6156 0.9521 0.3115 0.8725 0.4591 0.6245
Hubei 0.9891 0.6463 0.6077 0.6264 0.7225 0.9897 0.6973 0.5584 0.6202 0.7195 0.9709 0.3196 0.8311 0.4617 0.6353 0.9718 0.3277 0.8327 0.4703 0.6394
Zhejiang 0.9634 0.7111 0.6658 0.6877 0.7430 0.9647 0.7325 0.6556 0.6919 0.7461 0.8898 0.3466 0.9289 0.5048 0.6104 0.8857 0.3420 0.9627 0.5047 0.6081
Jiangxi 0.9904 0.6254 0.6069 0.6160 0.7177 0.9908 0.6569 0.5699 0.6103 0.7150 0.9794 0.3613 0.8250 0.5025 0.6573 0.9802 0.3717 0.8269 0.5129 0.6624
Hunan 0.9926 0.6595 0.6594 0.6594 0.7422 0.9926 0.6763 0.6189 0.6464 0.7350 0.9818 0.3627 0.8756 0.5129 0.6633 0.9821 0.3668 0.8737 0.5167 0.6652
Yunnan 0.9970 0.6828 0.6009 0.6392 0.7334 0.9970 0.7021 0.5749 0.6321 0.7296 0.9897 0.2845 0.8720 0.4290 0.6314 0.9895 0.2807 0.8805 0.4257 0.6299
Guizhou 0.9947 0.5070 0.4982 0.5026 0.6651 0.9947 0.5131 0.4512 0.4802 0.6553 0.9825 0.2210 0.8894 0.3540 0.5987 0.9813 0.2130 0.9137 0.3454 0.5950
Fujian 0.9823 0.6515 0.6073 0.6286 0.7202 0.9820 0.6449 0.6003 0.6218 0.7164 0.9441 0.3007 0.9534 0.4572 0.6196 0.9476 0.3142 0.9488 0.4721 0.6277
Guangxi 0.9940 0.6352 0.6418 0.6385 0.7315 0.9942 0.6563 0.6140 0.6344 0.7294 0.9839 0.3216 0.8649 0.4688 0.6450 0.9831 0.3119 0.8800 0.4606 0.6411
Guangdong 0.9752 0.7653 0.7521 0.7586 0.7926 0.9745 0.7481 0.7670 0.7574 0.7915 0.9156 0.3777 0.9667 0.5432 0.6420 0.9151 0.3774 0.9764 0.5444 0.6423
Hainan 0.9914 0.7284 0.5082 0.5987 0.7093 0.9910 0.7052 0.5020 0.5865 0.7030 0.9438 0.1740 0.9152 0.2924 0.5572 0.9455 0.1790 0.9208 0.2998 0.5606
Jilin 0.9946 0.8317 0.5465 0.6595 0.7433 0.9942 0.8930 0.4480 0.5966 0.7097 0.9879 0.4322 0.8247 0.5671 0.6918 0.9850 0.3779 0.8658 0.5262 0.6709
Liaoning 0.9858 0.8266 0.5110 0.6316 0.7236 0.9847 0.8933 0.4025 0.5549 0.6843 0.9707 0.4391 0.8443 0.5777 0.6881 0.9687 0.4224 0.8612 0.5668 0.6818
Tianjin 0.9091 0.7964 0.6171 0.6954 0.7158 0.9026 0.8549 0.5068 0.6364 0.6801 0.7742 0.4210 0.9137 0.5764 0.5690 0.7918 0.4418 0.9033 0.5933 0.5882
Qinghai 0.9995 0.6187 0.3703 0.4633 0.6505 0.9995 0.6381 0.3393 0.4430 0.6421 0.9991 0.2769 0.4924 0.3544 0.6072 0.9988 0.2422 0.5697 0.3398 0.6018
Gansu 0.9976 0.7017 0.4026 0.5116 0.6707 0.9977 0.7132 0.4156 0.5252 0.6769 0.9953 0.3583 0.6549 0.4632 0.6484 0.9948 0.3372 0.7108 0.4574 0.6457
Shaanxi 0.9931 0.6883 0.5997 0.6410 0.7324 0.9933 0.7196 0.5663 0.6338 0.7286 0.9805 0.3264 0.8538 0.4723 0.6447 0.9770 0.2925 0.8828 0.4394 0.6292
Neimenggu 0.9985 0.8084 0.4733 0.5970 0.7120 0.9984 0.8643 0.4042 0.5508 0.6893 0.9970 0.4154 0.6212 0.4979 0.6642 0.9968 0.3983 0.7284 0.5150 0.6718
Chongqing 0.9895 0.5221 0.6750 0.5888 0.7033 0.9895 0.5212 0.6711 0.5867 0.7023 0.9627 0.2240 0.9562 0.3630 0.5920 0.9636 0.2288 0.9595 0.3695 0.5949
Hebei 0.9707 0.8512 0.3965 0.5410 0.6705 0.9690 0.9094 0.3200 0.4734 0.6393 0.9500 0.4492 0.6452 0.5296 0.6544 0.9526 0.4678 0.6260 0.5355 0.6585
Shanghai 0.8635 0.8461 0.7759 0.8095 0.7438 0.8596 0.8680 0.7364 0.7968 0.7342 0.7624 0.6187 0.9500 0.7493 0.6154 0.6444 0.5127 0.9847 0.6743 0.4729
Beijing 0.9305 0.8530 0.6087 0.7104 0.7374 0.9292 0.8870 0.5669 0.6917 0.7259 0.8131 0.4262 0.9664 0.5915 0.6019 0.8204 0.4360 0.9629 0.6003 0.6106
Taiwan 0.9694 0.7209 0.7396 0.7302 0.7715 0.9693 0.7057 0.7760 0.7391 0.7771 0.7593 0.1886 0.9993 0.3173 0.4668 0.7612 0.1898 0.9994 0.3190 0.4684
Hong Kong 0.9404 0.8796 0.5250 0.6575 0.7133 0.9463 0.9071 0.5649 0.6962 0.7384 0.6804 0.2537 0.9960 0.4044 0.4475 0.4622 0.1682 0.9980 0.2879 0.2824
Macao 0.8824 0.6500 0.6300 0.6398 0.6752 0.8137 0.6231 0.5482 0.5833 0.4309 0.6311 0.0556 0.3000 0.0938 0.2317 0.3627 0.1333 1.0000 0.2353 0.2134
Sichuan 0.9963 0.6362 0.6763 0.6556 0.7420 0.9964 0.6520 0.6625 0.6572 0.7429 0.9856 0.2561 0.9322 0.4018 0.6185 0.9858 0.2579 0.9315 0.4040 0.6194
total 0.9969 0.7454 0.6016 0.6658 0.7480 0.9969 0.7655 0.5512 0.6409 0.7342 0.9944 0.3573 0.8452 0.5023 0.6648 0.9943 0.3542 0.8567 0.5012 0.6643

The bold values in table highlight the optimal values for each precision indicator when extracted from each province and for the total urban built-up areas.
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reduction in R value, which means the omitted urban built-up
areas have increased, but the significant improvement in p
value is useful for analyzing the changes of urban built-up
areas over a period. Excessive misclassification of RF and SVM
models will lead to overestimating urban built-up areas each
year, thus weakening inter-annual growth.

4.1.2 The Extraction Results of Urban Built-Up Areas in
China From 2012 to 2020
We used the calibrated model for extracting urban built-up areas,
and the proposed built-up areas for 2012 to 2020 are shown in
Table 4 as follows.

On a province scale: Guangdong has the largest urban built-
up areas, with 10,221.25 km2 in 2021, making it the only
province with over 10000 km2, followed by Jiangsu,
Shandong, and Zhejiang, which have urban built-up areas
over 5000 km2. Hong Kong and Macau have the smallest
urban built-up areas, especially due to their small

administrative districts. In addition, urban built-up areas of
Tibet, Qinghai, Hainan, and Ningxia are less than 500 km2,
relatively smaller than other provinces.

From the above Table 4, it is worth noting that we can
conclude that Guangdong, Shandong, Zhejiang, Jiangsu, and
Henan have the largest growth area. Since 2011, these five
provinces have introduced a series of policies that encourage
farmers to buy houses in cities, providing preferential loans to
promote the “citizenization” of migrant workers. The demand for

TABLE 4 | Expansion of urban built-up areas in all provinces from 2012 to 2021.

Province Urban built-up areas in 2012 Urban built-up areas in 2021 Urban built-up areas expansion from
2012 to 2021

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Growth percentage
(%)

Heilongjiang 1006.5 1.97 1225.25 1.57 218.75 0.81
Xinjiang 738.5 1.45 1497 1.92 758.5 2.80
Shanxi 1201.5 2.36 1761.25 2.26 559.75 2.07
Ningxia 326 0.64 496.5 0.64 170.5 0.63
Tibet 64.25 0.13 111.5 0.14 47.25 0.17
Shandong 3,868.75 7.59 6,208.25 7.95 2,339.5 8.64
Henan 2,659.25 5.22 4,295.25 5.50 1636 6.04
Jiangsu 5,399.5 10.59 7,072.25 9.06 1672.75 6.18
Anhui 1897.25 3.72 3,214.75 4.12 1317.5 4.87
Hubei 1391.25 2.73 2,492.25 3.19 1101 4.07
Zhejiang 3,346.25 6.56 5,288.25 6.78 1942 7.17
Jiangxi 970 1.90 2047 2.62 1077 3.98
Hunan 1258.75 2.47 2,249.75 2.88 991 3.66
Yunnan 946 1.86 1625.5 2.08 679.5 2.51
Guizhou 384.5 0.75 958.5 1.23 574 2.12
Fujian 1655.5 3.25 3,040 3.89 1384.5 5.11
Guangxi 998 1.96 2,212 2.83 1214 4.48
Guangdong 7,174.5 14.07 10,221.25 13.10 3,046.75 11.25
Hainan 241.25 0.47 387.25 0.50 146 0.54
Jilin 817.25 1.60 1061 1.36 243.75 0.90
Liaoning 1514.25 2.97 1881.5 2.41 367.25 1.36
Tianjin 1079 2.12 1266.25 1.62 187.25 0.69
Qinghai 141.25 0.28 208.25 0.27 67 0.25
Gansu 383 0.75 676.75 0.87 293.75 1.09
Shaanxi 1161 2.28 1724.75 2.21 563.75 2.08
Neimenggu 904 1.77 1457.25 1.87 553.25 2.04
Chongqing 664.5 1.30 1375.5 1.76 711 2.63
Hebei 1867.25 3.66 3,287 4.21 1419.75 5.24
Shanghai 1843.25 3.62 1953.5 2.50 110.25 0.41
Beijing 1194.75 2.34 1447.25 1.85 252.5 0.93
Taiwan 2,128.5 4.18 2,269.5 2.91 141 0.52
Hong Kong 83.25 0.16 83.75 0.11 0.5 0.00
Macao 12.5 0.02 14.5 0.02 2 0.01
Sichuan 1660.25 3.26 2,944 3.77 1283.75 4.74
Total 50,981.5 100.00 78,054.5 100.00 27,073 100.00

The bold values in table highlight the values with the largest area and percentage of urban built-up areas in 2012 and 2020 for each province and the values with the largest increase in
urban built-up areas and percentage of built-up areas from 2012 to 2020.

TABLE 5 | Comparison of extracted areas to statistical data.

Year CBAM_UNet (km2) Statistical_data (km2) Relative error (%)

2012 48,757.25 45,565.90 7.00
2015 54,964.75 52,102.60 5.49
2018 66,446.50 58,455.70 13.67
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commercial housing in cities has increased, which has also led to
the expansion of urban built-up areas. Therefore, the relationship
between urban built-up area expansion and population
geography is also particularly close.

On the other hand, we compared the built-up area extracted by
the corrected CBAM_UNet with the built-up area data obtained
from the National Bureau of Statistics’ China Statistical Yearbook
(stats.gov.cn) in 2012, 2015, and 2018 (excluding Hong Kong,

FIGURE 7 | Expansion of urban built-up areas in China from 2012 to 2021. (A) Expansion of urban built-up areas in some cities (including developed, moderately
developed, and underdeveloped). (B) Urban built-up area expansion by provinces.
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TABLE 6 | Expansion of China’s urban built-up areas from 2012 to 2021.

Period Expansion area (km2) Expansion speed (km2/year) Expansion intensity (%)

2012–2015 6,364.75 2,121.58 4.16
2015–2018 11,562 3,854.00 6.72
2018–2021 9,146.25 3,048.75 4.42
2012–2021 27,073 3,008.11 5.90

The bold values in table highlight the values with the largest increase in the Expansion area, Expansion speed, and Expansion intensity in the three periods.

FIGURE 8 | (A–C) Expansion of urban built-up areas in all orientations from 2012 to 2021. (D)Gravity center migration of China’s urban built-up areas, 2012–2021.
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Macau, and Taiwan, and 2021 data not yet available); results are
shown in Table 5.

By comparison, we can see that the area we extracted can achieve
more than 85% accuracy without labels, proving that our model has
strong generalization ability and can also ensure a certain accuracy.
Then, we can also be seen that the area we extracted is generally
larger than the area of the statistical yearbook, indicating that there is
a certain misclassification in our model.

Tomore intuitively see the expansion in the built-up area from2012
to 2020, we compared the urban built-up areas in 2012 with the urban
built-up areas in 2021 and obtained the figure as shown in Figure 7.

During the study period, there were 12 provinces with a
growth of urban built-up areas over 1000 km2, and
Guangdong has the most significant growth area, with an
increase of 3,046.75 km2, accounting for 11.25% of China’s
urban built-up areas growth. From a geographical point of
view, these provinces are primarily found in the east and
southeast of the country. There are nine provinces with the
growth of urban built-up areas of less than 200 km2, except
for Tibet, Hainan, and Ningxia. The others are provinces with
relatively developed economies and high-level of urbanization.
Their limited constructible space leads to less growth (Table 4).

4.2 Spatial-Temporal Variation Analysis of
China’s Urban Built-Up Areas
4.2.1 Spatial Variation Analysis

• Expansion speed and intensity

China has experienced fast urbanization and economic growth in
the past decade. Urban built-up areas had increased from
50,981.5 km2 in 2012 to 78,054.5 km2 in 2021, an increase of
27,073 km2, increased by 53.10% (Table 4) and calculated the
expansion speed and intensity of urban built-up areas by period
(Eqs 10,11) . The expansion speed in 2015–2018 was higher than
that of 2012–2015 and 2018–2021, indicating that the speed of urban
construction in China had increased and then had slowed down in
the past decade, and the expansion intensity also had changed, from
4.16% in 2012–2015 to 6.72% in 2015–2018, and then slowed down
to 4.42%, but overall, China’s urban built-up areas had consistently
expanded at a high rate over the past 10 years (Table 6).

4.2.2 Temporal Variation Analysis
• Expansion Directions

The spatial quadrant orientation method was used to calculate
the expansion in urban built-up areas of each region in China
during the study period, with the center set at 34°32′27.00″N and
108°55′25.00″E. We divide China into north (N), northeast (NE),
east (E), southeast (SE), south (S), southwest (SW), west (W), and
northwest (NW) through eight quadrants (Figure 8A). The
urban built-up area images in 2012, 2015, 2018, and 2021
were, respectively, divided into eight orientations through the
spatial quadrant orientation method and counted the
information of urban built-up areas of each quadrant in each
(Figures 8B,C; Table 7).

The results show that in 2021, the E orientation has the largest
urban built-up areas of all orientations, with areas of 23719 km2.
The W orientation has the smallest urban built-up areas of all
orientations, only 1028 km2.

During the study period, the E orientation urban built-up areas
increased the most, from 16,259.00 km2 in 2012 to 23,719.00 km2 in
2021, an increase of 7460 km2, increased by 45.88%. N orientation
increased the least, by only 374.75 km2, but with a growth rate of
45.07%. The fastest growth rate was in the S orientation, where urban
built-up areas in 2021 have increased by 98.53% compared to 2012
and high during the study period (Table 7).

We can conclude that the distribution of urban built-up areas
gradually showed a scattered trend. Jiangsu, Zhejiang, and Shanghai
have formed a trend of group development with Anhui. Meanwhile,
the urban built-up areas between Chengdu and Chongqing have
gradually spread and connected. After 2018, the spread and
integration in Chengdu and Chongqing have been further
strengthened. At the same time, Henan, Anhui, and northern
Jiangxi have gradually connected to Jiangsu, Zhejiang, and Shanghai.

To represent the expansion direction more intuitively, we used
the standard ellipse difference to visualize the expansion direction
according to the expansion area from 2012 to 2020. From Figure 8A,
we can see that, generally, the distribution pattern of China’s urban
built-up areas has gradually migrated from the “center-periphery”
distribution around the growth pole to a networked distribution
pattern, showing a trend from agglomeration to dispersion, which is
satisfied by the “center-periphery” theory proposed by J.R.

TABLE 7 | Urban built-up areas in all orientations from 2012 to 2021.

2012 2015 2018 2021 Total changes

Orientation Area
(km2)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Area
(km2)

Growth
area
(km2)

Growth
rate
(%)

Growth
area
(km2)

Growth
rate
(%)

N 831.50 879.25 47.75 5.74 987.00 107.75 12.25 1206.25 219.25 22.21 374.75 45.07
NE 11,300.75 12,572.75 1272 11.26 14,171.50 1598.75 12.72 16,016.25 1844.75 13.02 4,715.5 41.73
E 16,259.00 18,032.50 1773.5 10.91 22,092.00 4,059.5 22.51 23,719.00 1627 7.36 7,460 45.88
SE 14,130.00 15,344.50 1214.5 8.60 18,324.00 2,979.5 19.42 21,327.00 3,003 16.39 7,197 50.93
S 3,491.50 4,496.00 1004.5 28.77 5,718.25 1222.25 27.19 6,931.75 1213.5 21.22 3,440.25 98.53
SW 3,166.75 3,834.25 667.5 21.08 4,706.25 872 22.74 5,618.75 912.5 19.39 2,452 77.43
W 618.25 684.50 66.25 10.72 926.50 242 35.35 1028.00 101.5 10.96 409.75 66.28
NW 1183.75 1502.50 318.75 26.93 1982.75 480.25 31.96 2,207.50 224.75 11.34 1023.75 86.48

The bold values in table highlight the maximum values of urban built-up areas, percentage and growth rate for each orientation in 2012, 2015, 2018, and 2021.
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Fridemna: from the center of the North-South-Guangzhou triangle
in 2012, we gradually migrated to the North-South-Guangzhou-
Chengdu-Chongqing economic zone. At the same time, we selected
regions from the North-South-Guangdong and Chengdu-
Chongqing economic zones, respectively, and their local trends
are also “center-periphery,” which also satisfies the “center-
periphery” theory proposed by J.R. Fridemna.

• Gravity Center Migration

We calculated the center of gravity for 2012–2020 based on the
center of gravity migration index proposed earlier, as shown in
Figure 8D.

As we can see, the gravity center of China’s urban built-up areas
has migrated to the southwest in the past decade, with a linear
migration distance of 60.82 km, including 57.37 km to the west and
20.21 km to the south. The results show that China’s support policies
for the west impact the gravity center of urban built-up areas.

Generally, the analysis results show that China’s urban built-
up areas have been overgrowing in recent years, but the
development in various orientations is quite different. The
main growth orientations of urban built-up areas are E and
SE; the sum of increased areas in these two orientations
exceeds 50% of China’s urban built-up areas, which are the
two regions with the fastest urbanization in China. The
increase in the urban built-up areas in W and N is less than
500 km2, accounting for 1.51% and 1.38% of the increase in
China’s urban built-up areas, respectively. With a large disparity
with other orientations, especially because there are fewer cities in
these two orientations, but in terms of growth speed, these two
orientations have grown fast. Overall, the degree of urbanization
in the economically developed regions is higher, and the
economically underdeveloped regions are currently chasing.

5 CONCLUSION

In this article, CBAM_UNet deep semantic segmentation
network was built, which combined NTL data and NDVI data
to realize the automatic extraction of long-time series in China’s
urban built-up areas and analyze the spatial and temporal
expansion changes of China’s urban built-up areas over the
past 10 years. The results show the following:

1) We selected the UNet model in the field of biomedical
segmentation and added the CBAM attention module into
the encoder part of UNet to build CBAM_UNet; the model
can merge multiple features. Then the NTL data were merged
with NDVI data, and taking the 2020 WorldCover as the
sample data, we assigned a semantic label to each pixel in the
image, realizing end-to-end, pixel-level classification of
remote sensing images. [not available in Crossref]

2) Compared with other models, CBAM_UNet shows higher
accuracy, the F1 value is 0.6658, and the mIoU value is 0.7480.
In addition, through the calibrated CBAM_UNet, the
experiment automatically extracted China’s urban built-up
areas in 2012, 2015, 2018, and 2021, saving a lot of workforce

and time. Thus, the model can realize the annual urban built-
up areas extraction in China by combining annual NTL data
and NDVI data, which provides a feasible method for long-
time series change analysis. [not available in Crossref]

3) Based on urban built-up areas extracted from the calibrated
CBAM_UNet model in 2012, 2015, 2018, and 2021, the spatial
and temporal expansion ofChina’s urban built-up areaswas analyzed
from four indicators: expansion speed, expansion intensity, expansion
direction, and gravity center migration. China’s urban built-up area
expansion speed in 2015–2018 was higher than that of 2012–2015
and 2018–2021, indicating that China’s urban construction speed
increased first and then slowed down in the past decade; the
expansion intensity increased from 4.16% in 2012–2015 to 6.72%
in 2015–2018 and then slowed down to 4.42%. However, overall,
China’s urbanbuilt-up areas have consistently expanded at a high rate
over the past 10 years. From the view of expansion direction: the E
orientation urban built-up areas have increased the most, from
16,259.00 km2 in 2012 to 23,719.00 km2 in 2021, an increase of
7460 km2, increased by 45.88%. Urban built-up areas in the N
orientation increased the least, by only 374.75 km2, but with a
growth rate of 45.07%. The gravity center of China’s urban built-
up areasmigrated to the southwest,with a linearmigrationdistance of
60.82 km, including 57.37 km to the west and 20.21 km to the south.
The results show that China’s support policies for thewest impact the
gravity center of urban built-up areas.

The CBAM_UNet model proposed in this experiment can
quantitatively and accurately extract urban built-up areas in a
long-time series. The findings of this article would help
understand the spatial and temporal expansion of urban built-
up areas. Such an understanding would help analyze China’s
urban development changes in the past 10 years in a relatively
macroscopic manner and provide specific scientific decision-
making for China’s economic development.
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