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The perfectly matched layer (PML) is one of the most popular absorbing boundary
conditions for simulating seismic waves. In theory, the PML can absorb incident waves
at any incident angle and any frequency in amedium. However, numerical reflections will be
generated after the PML has been discretized. Therefore, how to reduce the reflections of
discrete PML has been a research topic for more than 2 decades. In this paper, we adopt
the reflectionless discrete PML (RD-PML) for seismic wave and implement the RD-PML
based on the acoustic wave equation, and then compare its absorbing performance with
that of the conventional discrete PML. Our numerical experiments show that the RD-PML
has advantages over the conventional discrete PML. In homogeneous model, a thick
enough RD-PML can effectively eliminate reflections. In heterogeneous model, a thin-layer
RD-PML can obtain better absorbing performance even than the thick-layer conventional
discrete PML. The absorbing performance of the RD-PML can be improved by using the
periodic boundary without increasing the amount of computation and memory. RD-PML
provides a new perspective to understand the discretization of PML, and may play an
important role in promoting the development of PML technology.

Keywords: absorbing boundary, perfectly matched layer, discrete complex analysis, periodic boundary, boundary
reflection

INTRODUCTION

Perfectly matched layer (PML) is one of the most widely used artificial absorbing boundaries that
are used to deal with the artificial boundary truncation in the numerical simulation of seismic
wave propagation. It was proposed by Bérenger (1994) for electromagnetic wave simulations, and
was applied to the wave equation using complex coordinate stretching through the modification
of spatial partial derivatives, which introduces an imaginary part of the coordinate that is
associated with an attenuation factor (Chew and Weedon, 1994). After its introduction, the PML
found widespread use in various fields of numerical simulation due to its good applicability to
different types of equations. For example, it is commonly implemented for seismic wave
simulation (Chew and Liu, 1996), which includes both the acoustic wave simulation (Liu and
Tao, 1997; Yuan et al., 1997; Qi and Geers, 1998; Katsibas and Antonopoulos, 2002; Diaz and Joly,
2006; Bermúdez et al., 2007; Ma et al., 2014) and the elastic wave simulation (Chew and Liu, 1996;
Hastings et al., 1996; Collino and Tsogka, 2001; Komatitsch and Tromp, 2003; Pled and
Desceliers, 2021).

In theory, the PML can absorb the incident waves of any incident angle and any frequency under
continuous medium. However, numerical reflections will still be generated after the PML has been
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discretized. In order to improve the absorbing performance of
discrete PML, several methods have been proposed, which are
briefly reviewed in the following paragraphs.

Collino and Monk (1998) optimized the discrete PML by
suitable design of the layer, which includes the selection for the
number of layers and attenuation coefficients. After that, people
carried out further optimization work to choose the layer
parameters of PML (Fang and Wu, 1996; Winton and
Rappaport, 2000; Travassos et al., 2006; Bermúdez et al., 2007;
Nissen and Kreiss, 2011).

The absorbing performance of the discrete PML is proven to
vary with the angle of the incident wave, and will continue to
decrease as the angle of the incident wave gradually increases
(Gao et al., 2017); thus its absorbing performance on grazing
incident waves is not satisfactory (Roden and Gedney, 2000;
Winton and Rappaport, 2000). Furthermore, the grazing incident
waves can be converted into evanescent waves, which cannot be
absorbed by the PML and will generate spurious reflections
(Drossaert and Giannopoulos, 2007b; Komatitsch and Martin,
2007). Kuzuoglu and Mittra (1996) modified the PML by
introducing two new parameters to the complex coordinate
stretching operator of PML, which can shift the pole of the
complex coordinate stretched operator to a non-zero value.
The modified PML is called as complex frequency-shifted
PML (CFS-PML), and can improve the absorbing performance
of the PML for grazing incident waves (Festa and Vilotte, 2005,
Komatitsch and Martin, 2007, Drossaert and Giannopoulos,
2007a, b).

The PML and CFS-PML were both originally implemented
based on split-field formulations, which adopts a nonphysical
splitting of the variables in the wave equations and lead to two
different sets of equations for the inner wavefield simulation
area and the outer PML area. Furthermore, the split-field
formulation is mathematically weakly well-posed (Abarbanel
and Gottlieb, 1997), and will be unstable for long time
simulations (Festa et al., 2005). Different unsplit-field
implementations of the CFS-PML were developed by using
convolutional algorithms (Roden and Gedney, 2000; Wang
and Tang, 2003; Wang et al., 2005; Drossaert and
Giannopoulos, 2007a, b; Komatitsch and Martin, 2007; Li
and Matar, 2010; Pasalic and McGarry, 2010; Matzen,
2011), integral terms (Zeng and Liu, 2004; Drossaert and
Giannopoulos, 2007b), matched Z-transform (Shi et al.,
2012), and auxiliary differential-equation (ADE) algorithm
(Ramadan, 2003; Rejiba et al., 2003; Wang and Liang, 2006;
Kristek et al., 2009; Gedney and Zhao, 2010; Martin et al., 2010;
Zhang and Shen, 2010; Xie et al., 2014; Deng et al., 2018; He
et al., 2019). Among the above methods, the convolutional
algorithm and the ADE algorithm are the most widely used in
seismic numerical simulations. The ADE algorithm is
implemented by introducing auxiliary differential equations,
which are a series of first-order partial derivative equations; in
contrast, the convolutional algorithm is implemented by
convolutional operations, which are solved by recursive
convolution technique (Luebbers and Hunsberger, 1992).

For an isotropic medium, the unsplit CFS-PML will be a
sufficient choice for long time simulation because of its weak

reflections and excellent stability (Komatitsch and Martin,
2007), but in an anisotropic viscoelastic medium, the unsplit
CFS-PML suffers from instabilities for long-time simulation.
The multi-axial PML (M-PML) was developed to guarantee the
long-time stability of PML in an anisotropic medium, which is
efficient and stable without dependences on frequencies and
directions of wave propagation (Meza-Fajardo and
Papageorgiou, 2008, 2010, 2012; Ping et al., 2014, 2016; Gao
and Huang, 2017). But it was soon proven that the M-PML is
not perfectly matched and thus is not a PML (Dmitriev and
Lisitsa, 2011, 2012). Rather, it can be seen as an improved
sponge boundary (Xie et al., 2014).

The numerical implementations of the traditional PML and
CFS-PML are based on the first-order system of wave equations,
and they cannot be directly applied to the second-order wave
equation. The second-order wave equation is usually transformed
into the first-order form to just to be able to use the PML or CFS-
PML, which significantly increases both the memory requirement
and computational cost (Liu and Tao, 1997; Yuan et al., 1997; Qi
and Geers, 1998; Yuan et al., 1999). Komatitsch and Tromp
(2003) were the first to try and construct the PML for the second-
order elastic wave equation, and a series of studies were followed
(Pasalic and McGarry, 2010; Duru and Kreiss, 2012; Ma et al.,
2014; Xie et al., 2014; Gao et al., 2015; Ma et al., 2018, 2019a,
2019b).

It was shown that the CFS-PML could be understood as a
low-pass Butterworth filter, which can absorb waves with
frequency higher than the cut-off frequency, but cannot
efficiently absorb low-frequency waves below the cut-off
frequency (Festa and Vilotte, 2005). To absorb both the
low-frequency propagating waves and evanescent waves,
high-order CFS-PML was proposed (Correia and Jin, 2005,
2006). Unlike the conventional CFS-PML (or called the first-
order CFS-PML) that only has a single pole in the coordinate
stretching operator, the higher-order CFS-PML has multiple
poles that consist of two or more stretching operators. The
higher-order CFS-PML has the advantages of both the
conventional PML and the CFS-PML in terms of absorbing
performance, since the conventional PML is great at the low
frequencies but poor at grazing incidences, while the CFS-PML
is poor at low frequencies but great at grazing incidences
(Martin et al., 2010; Feng and Li, 2013). Feng et al. (2015)
proved that the second-order PML is an optimal choice, since it
provides almost the same absorbing performance as the third-
order PML, while requiring less computational time and
memory. Feng et al. (2017) analyzed the different roles of
the second-order CFS-PML parameters and proposed optimal
selections of these parameters to get satisfactory results for
broad-band seismic wave simulations.

The above-mentioned research works have continuously
promoted the development of PML technology, both in terms
of absorbing performance and realization form. However, none of
them has achieved “mechanical zero” absorbing performance
after discretization. Chern (2019) presented a new approach to
deriving the discrete PML equations using Discrete Complex
Analysis (Duffin, 1956; Lovász, 2004; Bobenko et al., 2005;
Bobenko and Günther, 2016). Instead of seeking a high-order
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discretization of the continuous PML equations, Chern (2019)
took the discrete wave equation and found its associated PML
equations by mimicking the continuous theory but solely in the
discrete setting. The resulted discrete PML for the first time
“perfectly matches” the discrete wave equation, and it is called
reflectionless discrete PML (RD-PML). Furthermore, Chern
(2019) proposed to use a constant attenuation coefficient to
replace the conventional gradually increasing attenuation
coefficients. The RD-PML gained good absorbing performance,
but it was originally proposed based on a homogeneous model
with the velocity v � 1 m/s (Chern, 2019), and the cases of
arbitrary velocity and heterogenous model have not been
considered and researched yet.

In this paper, we adopt the RD-PML to solve the boundary
truncation problem for acoustic equation modelling. Firstly, we
briefly introduce the RD-PML algorithm and give the attenuation
coefficient with arbitrary velocity v. Themodel design for periodic
boundary is also discussed. Then, we compare the absorbing
performance of RD-PML with that of the conventional discrete
PML, and verify the improvement effect of the periodic boundary
on the absorbing performance. The case of heterogenous model is
also considered. Numerical experiments demonstrate the
superiority of RD-PML method over conventional methods.

METHODOLOGY

We start with the 2-dimensional acoustic wave equation

1
v2

z2u

zt2
� z2u

zx2
+ z2u

zz2
+ s, (1)

where u(x, z, t) is the wavefield, v(x, z) is the velocity, and
s(x, z, t) is the source term. Research on the implementation
for the PML algorithmmainly focuses on taking operation for the
spatial partial derivatives in the wave equation. For simplicity,
here we only discuss the PML algorithm along the x-direction as
an example in the text, and the operation along the z-direction
can be similarly obtained.

To implement the PML, the spatial partial derivative in the
wave equation can be extended to complex coordinate by the
stretching operator (Johnson, 2008):

sx(x) � 1 + idx(x)
ω

, (2)

where sx(x) is the complex stretching function, dx(x) is the
attenuation coefficient of the PML, and i � ���−1√

(Collino and
Tsogka, 2001); thus, we have

z

zx
→ z

z~x
� 1
sx

z

zx
, (3)

The expression for the complex coordinate is

~x � x + i

ω
∫x

0
dx(x)dx. (4)

The plane wave solution can be expressed as

U � u0 exp[i(kxx − ωt)], (5)

where u0 is the amplitude of the wave and kx is the
wavenumber along the x-direction. The plane wave solution
would be modified by complex stretching in the complex
coordinate as

Û � u0 exp[i(kx~x − ωt)]

� u0 exp{i[kx(x + i

ω
∫x

0
dx(x)dx) − ωt]}. (6)

After further sorting, Eq. 6 can be written as

Û � u0 exp[i(kxx − ωt)] exp( − kx
ω

∫x

0
dx(x)dx)

� U exp( − kx
ω

∫x

0
dx(x)dx).

(7)

Compared with the original expression of the plane wave
solution in Eq. 5, Eq. 7 has an extra item
exp(−kx/ω ∫x

0
dx(x)dx), which is the attenuation term of the

PML. If we don’t consider the time term and only consider the
space term in Eq. 6, the expression can be simplified as

exp(ikx~x) � exp[ikx(x + i

ω
∫x

0
dx(x)dx)]

� exp{ikx[Re(~x) + iIm(~x)]}
� exp[ikxRe(~x)] exp[ − kxIm(~x)],

(8)

where Re(~x) and Im(~x) represent the real and imaginary parts
of ~x, respectively. According to Euler’s formula
exp[ikxRe(~x)] � cos[kxRe(~x)] + i sin[kxRe(~x)], the values of
exp[ikxRe(~x)] distribute along a unit circle in the complex
coordinate. The real part of exp[ikxRe(~x)] is a cosine function
cos[kxRe(~x)], and the real part of exp(ikx~x) in Eq. 8 can be
expressed as:

Re[exp(ikx~x)] � cos[kxRe(~x)] exp[ − kxIm(~x)], (9)
With a positive wavenumber kx, the values of exp[−kxIm(~x)]
range from 1 to 0 when Im(~x)> 0, and this will lead to
attenuation for the wave amplitude. The values of Eq. 9 are
shown in Figure 1A, which shows the principle of the
attenuation for the PML. The negative real coordinate of ~x
represents the normal wavefield propagation area, and the
positive real coordinate of ~x represents the PML attenuation
area. The amplitude of the waveform does not attenuate when
the wave propagating along the real axis of ~x (the blue dashed
line in Figures 1B,C), while the amplitude of the waveform
would decrease as the wave propagating along the stretched
coordinate (the red dashed line in Figures 1D,E).

In theory, the PML can absorb the incident waves of any angle
and any frequency before discretization (Bérenger, 1994;
Komatitsch and Martin, 2007). However, after the
discretization, the numerical reflections will arise at the
interface of PML due to the discretization error (Bérenger,
2002; Gao et al., 2017). Here, we analyse why the conventional
discrete PML will produce reflected waves. The corresponding
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discrete format complex coordinate path for ~x in Eq. 4 can be
expressed as

~x(j) � x(j) + i

ω
∑N
j�1
dx(j)Δx, (10)

which is shown by the blue line in Figure 2A. The finite-
difference (FD) operators for the spatial partial derivative
z2u/z~x2 along the blue path that in the PML area cannot

“perfectly matched” with the original finite-difference
operators for z2u/zx2 that along the real x axis in the non-
attenuation area. In addition, the conventional discrete PML
uses gradual increasing attenuation coefficients (Collino and
Tsogka, 2001; Komatitsch and Martin, 2007; Zhang and Shen,
2010; Gao et al., 2015), which will lead adjacent grid-spacing
difference in complex coordinates and the unequal-spacing
finite-difference operator would introduce new calculation
errors.

FIGURE 1 | Sketch map of the attenuation principle for the plane waves in the PML region. The coordinate that corresponds to Re(~x) < 0 represents the normal
wave propagation region and no attenuation considered, and the region that corresponds to Re(~x) > 0 represents the PML region. (A) The attenuation process of the
plane waves along different stretching directions in the PML region. (B) The direction along the real axis in the complex coordinate (the dashed blue line in (A). (C) Real
part of oscillating solution exp(ikx ~x) that corresponds to the stretching direction in (B). (D) The stretching direction along a deformed contour in the complex
coordinate (the dashed red line in (A)). (E) Real part of oscillating solution exp(ikx ~x) that corresponds to the stretching direction in (D).
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Chern (2019) presented the reflectionless discrete PML
(abbreviated as RD-PML) using Discrete Complex Analysis
(Duffin, 1956; Lovász, 2004; Bobenko et al., 2005; Bobenko and
Günther, 2016), and this new form discrete PML for the first time
“perfectly matches” the discrete wave equation. For example, the FD
operator at Û(3) along the blue line in Figure 2A is transformed to
an operator that parallel to the real x axis by the equivalent projection
method (i.e., Discrete Complex Analysis). In this way, the direction
of the projected FD operators in the PML region can be kept parallel
with the original FD operators in the normal wave propagation
region. Ordinarily the second-order discretization for the FD
operator of z2u/z~x2 at Û(3) involves Û(2), Û(3), and Û(4).
Instead if we project Û(2) and Û(4) to the red points Û′(2)
and Û′(4) on the horizontal line that passing Û(3) using
Discrete Complex Analysis, respectively (shown by the red
quadrilateral in Figure 2B). In this way, the original diagonal FD
operator composed of Û(2), Û(3), and Û(4) is transformed into a
horizontal FD operator composed of Û′(2), Û(3), and Û′(4). After

transforming this horizontal FD operator from the frequency
domain back to the time domain, it can well match with the
original FD operator.

Furthermore, Chern (2019) proposed to use a constant
attenuation coefficient to replace the conventional gradually
increasing attenuation coefficients. In the example given by
Chern (2019), the constant attenuation coefficient is dx � 2/Δx
for a homogeneous model with the velocity v � 1 m/s. To obtain
the attenuation coefficient for the model with the velocity v, we
begin with the geometric decay rate ρ, which can be expressed as
(Chern, 2019):

ρ � 2 + i dxω (1 − e−ikxΔx)
2 + i dxω (1 − eikxΔx) . (11)

The ρ represents the decay rate for a single grid of PML. When
kxΔx ~ O(Δx) (symbol ~ represents smooth asymptotics), we
can obtain (Chern, 2019):

FIGURE 2 | Sketch map of the stretching path for the PML in the complex coordinate after discretization and sketch map of the projection method using discrete
complex analysis. (A) The discrete stretching path for the PML in the complex coordinate using gradually increasing attenuation coefficients. (B) The quadrilateral for the
projection using discrete complex analysis for the discrete path in (A). (C) The discrete stretching path for the PML in the complex coordinate using constant attenuation
coefficients. The quadrilaterals of different colors represent the projection quadrilaterals of the 2nd-order FD operator corresponding to the respective center points.
(D) Sketch map the projection method of the quadrilateral corresponding to Û(i) using discrete complex analysis. Symbol + represents compound function operation
(e.g., f̂+Γ(x) � f̂[Γ(x)]) and f̂+Γ represents the stretching path of PML. τx and τ−1x are the positive and negative shift operators, respectively.
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ρ ~
2 − dxΔx kx

ω

2 + dxΔx kx
ω

. (12)

Smooth waves with 0 incident angle can be eliminated within
one grid when ρ ~ 0. Combined with ω � kxv, we obtain the
attenuation coefficient for the model with the velocity v as

dx � 2v
Δx (13)

With the constant attenuation coefficient, the projection method
is shown as Figure 2C, the quadrangles with different colours
mean different projection unit for each 2nd-order FD operator.
Figure 2D, which refers to Chern (2019), shows the projection
method for the quadrangle of Û(i). By introducing the auxiliary
variables f̂, ϕ̂x, and ψ̂x, τ

−1
x Û and τxÛ can be projected to τ−1x f̂

and τxf̂ using Discrete Complex Analysis, where τx and τ−1x are
the positive and negative shift operators along x-direction (i. e.,
τxÛ(j) � Û(j + 1) and τ−1x Û(j) � Û(j − 1)), respectively. Chern
(2019) gave the detailed process derive the RD-PML expression.
Here, we briefly introduce the algorithm and extend this
algorithm to the numerical simulation of seismic wavefield.
The expressions for ϕ̂x and ψ̂x can be obtained as following
(Chern, 2019)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−iωϕ̂x � −1

2
[(τ−1x dx)(τ−1x ϕ̂x) + dxϕ̂x] − 1

2Δx (τxÛ − τ−1x Û),
−iωψ̂x � −1

2
[(τ−1x dx)ψ̂x + dx(τxψ̂x)] − 1

2Δx (τxÛ − τ−1x Û).
(14)

Further, the expression of τ−1x f̂ and τxf̂ can be written as
(Chern, 2019)

{ τ−1x f̂ � τ−1x Û − Δx(τ−1x dx)(τ−1x ϕ̂x),
τxf̂ � τxÛ + Δxdx(τxψ̂x). (15)

Now, we can convert the 2nd-order FD operator for the spatial
partial derivative z2Û/z~x2 as

z2Û

z~x2 � τxÛ − 2Û + τ−1x Û

Δ~x2 → z2f̂

zx2
� τxf̂ − 2f̂ + τ−1x f̂

Δx2
. (16)

Substituting Eq. 15 into the latter expression of Eq. 16, we can
obtain

z2f̂

zx2 �
τxf̂ − 2f̂ + τ−1x f̂

Δx2

� τxÛ − 2Û + τ−1x Û

Δx2 + dx(τxψ̂x) − (τ−1x dx)(τ−1x ϕ̂x)
Δx ,

(17)

where the attenuation term of the RD-PML is simply added to
the original FD operator. This form does not require special
treatment of the original wave equation to implement the RD-
PML, and we only need to add the corresponding attenuation
term in the PML attenuation area during programming,
which is very convenient for the realization of numerical
simulation.

After transforming Eqs 14, 17 back to the time domain
using the inverse Fourier transform, and introducing the
derivation along the z-direction, we can obtain the whole
expressions of the RD-PML for Eq. 1:

FIGURE 3 | Sketch map of the periodic boundary condition. (a1) The conventional aperiodic boundary condition for 1-dimensional model. (a2) The periodic
boundary condition for 1-dimensional model. (B) Sketch map of the periodic boundary condition for 2-dimensional model. (b1) and (b2) are the sketch map of the
periodic boundaries settled in the four directions of up, down, left, and right. (b3) and (b4) are the sketch map of the periodic boundary condition with the free boundary
condition for the up boundary and the PML boundaries for the other three directions. periodic boundary is used only for the left and right boundaries.
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FIGURE 4 | Snapshots and wave reflections obtained using different types of PML. (A), (C), and (E) are the snapshots obtained at 550, 750, and 1,000 ms,
respectively. The areas in the black boxes are the normal wavefield simulation area, and the areas outside the black boxes are the absorbing area of PML. (B), (D), and (F)
are the wave reflections obtained at 550, 750, and 1,000 ms in the normal wavefield simulation area, respectively.
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FIGURE 5 | Snapshots and wave reflections obtained using different types of PML using periodic boundary. (A), (C), and (E) are the snapshots obtained at 550,
750, and 1,000 ms, respectively. (B), (D), and (F) are the wave reflections obtained at 550, 750, and 1,000 ms, respectively.
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FIGURE 6 |Waveforms along the horizontal dashed line in Figure 4 and Figure 5 at different time. (A), (C), and (E) are the waveforms obtained at 550, 750, and
1,000 ms, respectively. (B), (D), and (F) are the logarithmic display of waveforms in (A). (C), and (E), respectively.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

v2
z2u

zt2
� 1

Δx2 (τxu − 2u + τ−1x u) + 1

Δz2 (τzu − 2u + τ−1z u)
+ 1
Δx [dx(τxψx) − (τ−1x dx)(τ−1x ϕx)] + 1

Δz [dz(τzψz) − (τ−1z dz)(τ−1z ϕz)],
zϕx

zt
� −1

2
[(τ−1x dx)(τ−1x ϕx) + dxϕx] − 1

2Δx (τxu − τ−1x u),
zψx

zt
� −1

2
[(τ−1x dx)ψx + dx(τxψx)] − 1

2Δx (τxu − τ−1x u),
zϕz

zt
� −1

2
[(τ−1z dz)(τ−1z ϕz) + dzϕz] − 1

2Δz (τzu − τ−1z u),
zψz

zt
� −1

2
[(τ−1z dz)ψz + dz(τzψz)] − 1

2Δz (τzu − τ−1z u),
(18)

where ψx, ϕx, ψz and ϕz are the variables in the time domain after
inverse Fourier transform applied to ψ̂x, ϕ̂x, ψ̂z and ϕ̂z,
respectively. Compared with the expressions for RD-PML in
Chern (2019), Eq. 18 directly introduces the velocity v in the
first expression, and there is no change in the other expressions.
To implement RD-PML, our target is to handle the discretization
and calculation for the spatial partial derivatives of the wave
equation in PML region. The introduced auxiliary variables ψ̂x,
ϕ̂x, ψ̂z and ϕ̂z actually serve spatial partial derivatives and velocity
v is not required to participate in this progress. This form can
refer to the previous approach in introducing auxiliary variables
for PML (Komatitsch and Martin, 2007; Pasalic and McGarry,
2010; Zhang and Shen, 2010).

In a homogeneous medium, since the PML attenuation
coefficient of each layer is the same, Chern (2019) adopted the
periodic boundary, which greatly improved the absorbing
performance of the RD-PML. Figure 3 shows the sketch map
of the periodic boundary. Figure 3A1 shows the conventional
Dirichlet boundary for 2nd-order FD scheme in 1-dimansional
situation, while Figure 3A2 shows the corresponding periodic
boundary processing method, which connects the outmost FD
operators on the two sides of discrete grid points. Figure 3B
shows the sketch maps of the periodic boundary condition in the

two-dimensional model, in which Figures 3B1, 3B2 with the
boundaries set in the four directions of up, down, left, and right
and Figure 3B3, 3B4 with the free boundary condition for the up
boundary and the PML for the other three boundaries. Neither
the top boundary nor the bottom boundary has been specially
processed, and the periodic boundaries are only used for the left
and right boundaries.

NUMERICAL EXPERIMENTS

Homogenous Model
We perform numerical experiments on a homogeneous square
model using different types of PML. The wave velocity is v =
3,000 m/s. The spatial grid interval is Δx =Δz = 10 m, and the grid
number is 301 × 301. The source is a Ricker wavelet with a
dominant frequency of 15 Hz, which is located at the center of the
square model. We use the 2nd-order FD method for the spatial
discretization and 4-stage Runge Kutta method for the temporal
discretization, and the time step is Δt = 1 ms. We compare the
boundary reflections using various types of PML: the AED CFS-
PML using collocated grid (abbreviated as CFS-PML-1, Gao et al.,
2015) with 20 layers; the convolutional CFS-PML using staggered
grid (abbreviated as CFS-PML-2, Pasalic and McGarry, 2010)
with 20 layers; and the RD-PML with 10 layers and 20 layers,
respectively. We use a very large model to simulate the theoretical
wavefield to avoid boundary reflections, which can be regarded as
a reference to check the performance of the above-mentioned
artificial absorbing boundaries.

Figure 4 shows the snapshots obtained by different types of
PML. At 550 ms, the wavefield has not reached the attenuation
area of PML, and the reflected waves have not yet arisen, so the
value of the reflections in Figure 4B1–4B4 are all zero. At 750 ms,
conspicuous reflections appear in 20-layer CFS-PML-1, and weak
reflections appear in 20 CFS-PML-2. This is because the latter one
is implemented based on the staggered grid method, and its

FIGURE 7 | Schematic map of the narrow slice model and wave field record. (A) Snapshots of a point source for the narrow slice model at 0, 500, and 1,000 ms.
The snapshots are obtained by 20-layer RD-PML. (B) Shot records by the receivers along the horizontal line of blue triangles in (A). The shot records are obtained using a
very large model to avoid boundary reflections, which can be regarded as a reference to check the performance of different types of PML.
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absorbing performance is better than that of the former one,
which is implemented based on the collocated grid method.
Neither 10-layer RD-PML nor 20-layer RD-PML shows any

reflections in the current color scale. At 1,000 ms, there are
slight reflections in 10-layer RD-PML, but there are still no
visible reflections in 20-layer RD-PML. At the same time, by

FIGURE 8 |Wavefield difference between the shot records of different types of PML with the theoretical shot records that shown in Figure 7B. (A), (B), (C), and (D)
are the wavefield difference between the shot records of 20-layer CFS-PML-1, 20-layer CFS-PML-2, 10-layer RD-PML, and 20-layer RD-PML with the theoretical
records, respectively. (E), (F), (G), and (H) are the wavefield difference that the shot records using periodic boundaries for the corresponding types of PML in (A), (B), (C),
and (D), respectively.

FIGURE 9 |Comparison of the reflection coefficient computed by numerical simulations. (A) Absolute values of numerical reflection coefficient. (B) The decibel (dB)
values of numerical reflection coefficient.
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comparing the reflections of 10-layer RD-PML with that of 20-
layer CFS-PML-1 and 20-layer CFS-PML-2, we find that the
reflected waves of the conventional discrete PML (20-layer CFS-
PML-1 and 20-layer CFS-PML-2) mainly consist of two parts:
one part is the reflected wave from the inner boundary of PML,
and the other is the reflected wave from the outer boundary
of PML.

The reflections of 10-layer RD-PML mainly consist of the
reflected waves from the outer boundary, which is caused by the

outer boundary of PML due to insufficient thickness. Considering
that the parameter settings of each layer of 10-layer RD-PML and
20-layer RD-PML are all the same, which also explains why the
latter performs better than the former. At the same time, this
conclusion leads to experiments using periodic boundaries.

Figure 5 shows the snapshots obtained by different types of
PML after the periodic boundaries used. After adopting the
periodic boundaries refer to Figure 3B1, the reflections from
outer boundary of the conventional discrete PML (20-layer CFS-

FIGURE 10 |Numerical test on a heterogeneousmodel. (A)ModifiedMarmousi model. (B) Shot records by the receivers along the horizontal line of blue triangles in
(A). (C) and (D) are the waveforms along the horizontal dashed line and the vertical dashed line in (B), respectively.
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PML-1 and 20-layer CFS-PML-2) have been significantly
reduced; while the reflections from inner boundary of the
conventional discrete PML have not changed (as shown in
Figure 5F). This is because the periodic boundary can be
regarded as a thickening of the original boundary, which
cannot improve the absorbing performance of the reflections
from the inner boundary and can only improve the absorbing
performance of the reflections from the outer boundary. As
analyzed above, the reflections of the 10-layer RD-PML mainly
consist of the reflections from the outer boundary. Therefore, its
absorbing performance has been significantly improved after
adopting the periodic boundary. The reflected waves of 10-
layer RD-PML are no longer visible in the color scale of
Figure 5F.

Figure 6 shows the waveforms along the horizontal dashed
lines in Figures 4, 5. Figure 6A shows the waveforms for different
types of PML before reaching the boundaries, and all the
unattenuated waveforms are all the same. Figures 6D,F are
the logarithmic displays for the reflected waves of Figures

6C,E, respectively. At 1,000 ms, the reflected waves of the 10-
layer RD-PML are the smallest among all the reflections (shown
in Figure 6F). At the same time, we find that the reflected waves
of the 20-layer RD-PML, periodic 10-layer RD-PML, and
periodic 20-layer RD-PML all disappear. This is because their
reflections are zero and the corresponding logarithmic values
don’t exist, which demonstrate that the absorbing performance of
these three boundaries indeed reach “mechanical zero” (Chern,
2019).

For the convenience of comparing the absorbing
performances of different boundary conditions, we further
perform numerical experiments using a long model, which can
be seen as a narrow strip model (shown in Figure 7A). The
farther the distance between the receiver and the seismic source,
the greater the incident angle of the wave field, and the harder it is
to absorb the incident waves for the absorbing boundary. Grazing
incident wave would appear in the long model when the wavefield
is far from the source (Komatitsch and Martin, 2007; Gao et al.,
2017), so we can compare the absorbing performance for the

FIGURE 11 |Wavefield difference between the shot records of different types of PML with the reference shot records that shown in Figure 10B. (A), (B), (C), and
(D) are the wavefield difference between the shot records of 20-layer CFS-PML-1, 20-layer CFS-PML-2, 10-layer RD-PML, and 20-layer RD-PML with the theoretical
records, respectively. (E), (F), (G), and (H) are the wavefield difference that the shot records using periodic boundaries for the corresponding types of PML in (A), (B), (C),
and (D), respectively.
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grazing incident wave of different PML. The wave velocity is v =
3,000 m/s. The spatial grid interval is Δx =Δz = 10 m, and the grid
number is 601 × 81. The source is a Ricker wavelet with a
dominant frequency of 10 Hz. Seismic source is located at
1,000 m along x-direction and 100 m in depth. We obtain the
wavefield records along the line composed of blue inverted
triangles in Figure 7A. We use a very large model to simulate
the theoretical wavefield records to avoid boundary reflections,
which can be regarded as a reference (shown in Figure 7B).

Figure 8 shows the wavefield difference between the shot
records of different types of PML with the theoretical shot records
that shown in Figure 7B. For absorbing the grazing incident
waves, 10-layer RD-PML performs better than 20-layer CFS-
PML-1 and 20-layer CFS-PML-2 (shown in Figures 8A,B), but
performs not as good as Periodic 20-layer CFS-PML-1 and
Periodic 20-layer CFS-PML-2 (shown in Figures 8E,F). Weak
reflected waves appear in 20-layer RD-PML (shown in
Figure 8D), while no obvious reflected waves appear in
Periodic 10-layer RD-PML and Periodic 20-layer RD-PML
(shown in Figures 8D,H).

Because RD-PML still uses the conventional PML coordinate
stretching operator expression (shown as Eq. 2), broom-like
evanescent waves still appear (shown in Figures 8C,D,G,H),
which are caused by grazing incident waves. Due to the

advantages of the coordinate stretching operator expression of
CFS-PML type boundary for grazing waves (Komatitsch and
Martin, 2007), no broom-like reflected wave appears (shown in
Figures 8A,B,E,F). Compared with the main reflected waves, the
evanescent waves are very weak and their amplitudes are
negligible. The RD-PML here, especially after adopting the
periodic absorbing boundary, has obvious advantages over
conventional methods.

In order to further compare the absorbing performances, we
calculated the numerical reflection coefficients for different
types of PML. We calculate the numerical reflection
coefficient by

Rp �
∣∣∣∣∣∣∣∣∣∣
max(uref) −max(umod)

max(uref)
∣∣∣∣∣∣∣∣∣∣, (19)

where uref are the theoretical wavefield records at the outer
boundary without artificial reflections, and umod are the wavefield
records at the upper boundary with different artificial boundary
conditions. For a given spatial position, themaximum value of the
wavefields along the whole temporal duration are taken to
compute the numerical reflection coefficient. Figure 9B shows
the decibel (dB) values of numerical reflection coefficient at
different incident angles, where. dB(Rp) � 20 log10Rp.

FIGURE 12 | Artificial reflections obtained by the wavefield difference between the shot records and the reference shot records. (A) and (B) are the waveforms
along the horizontal dashed line and the vertical dashed line in Figure 11, respectively. (C) and (D) are the enlarged portions of the frame in (A) and (B), respectively.
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Obviously, the periodic boundary performs better than the
corresponding non-periodic boundary. Periodic-10-layer RD-
PML performs even better than 20-layer RD-PML, and
periodic 20-layer RD-PML performs the best among all the
absorbing boundaries. The jitters in the reflection curve of
periodic 20-layer RD-PML is caused by the broom-like
evanescent waves in Figure 8H, whose amplitudes are negligible.

Heterogenous Model
To illustrate the numerical performance of the proposed method
for heterogeneous media, we test on the modified Marmousi
model, as shown in Figure 10A. The grid spacing is 10 m and
the grid number is 737 × 751. The upper boundary of the model
is a free surface, and the other three edges are absorbing
boundaries. The source is a Ricker wavelet and the dominant
frequency is of 8 Hz. The source is added on the free surface and
middle of the model. A group of receivers are located along the
upper boundary. Eight kinds of boundary conditions are
compared. There is no theoretical wavefield available as a
reference for the Marmousi model; thus, we take the
wavefield generated by 50-layer RD-PML as a reference
instead (shown in Figure 10B). The periodic boundaries for
different types of PML are settled refer to Figure 3B3.

Figure 11 shows the wavefield difference, which can be
regarded as the reflected waves from the boundaries, between
the shot records of different types of PML with the reference
shot records that shown in Figure 10B. Figures 12A, B show
the waveforms along the horizontal dashed line and the vertical

dashed line in Figure 11, respectively. The performances of 10-
layer RD-PML are better than that of 20-layer conventional
CFS-PML, which demonstrates that RD-PML still has a good
absorbing effect and applicability for heterogeneous media.
Here we focus on the internal comparison of different layers of
RD-PML. There are two points that require special analysis: 1)
periodic 10-layer RD-PML performs better than 10-layer RD-
PML, but not better than 20-layer RD-PML, which is different
from the homogeneous medium. Taking the left and right
boundaries as an example, the speed setting of the PML region
is a one-dimensional extension of the speed along the
outermost boundary of the model. Though we set a
constant attenuation coefficient dx � 2vmax/Δx, the velocity
fields in the left and right boundaries are different, which
would lead to reflection at the interface of the left and right
boundaries when the periodic boundary is adopted. 2) The
reflected waves at the left and right boundaries of the 10-layer
periodic RD-PML seem to have reversed positions, compared
with that of the 10-layer RD-PML. This is due to the periodic
boundary that makes part of the reflected wave propagate to
the opposite side.

In summary, the improvement of the absorbing performance
in heterogeneous media by the periodic boundary is not as
obvious as in a homogeneous medium both for the
conventional discrete PML and the RD-PML, but RD-PML is
still superior to the conventional discrete PML. Considering that
there is almost no increase in the amount of calculation, we
recommend the use of RD-PML with periodic boundary.

DISCUSSION

The expression of the coordinate stretching operator used in this
article (shown as Eq. 2) has a sign difference compared with the
regular expression (Collino and Tsogka, 2001; Komatitsch and
Martin, 2007; Zhang and Shen, 2010; Gao et al., 2017):

sx(x) � 1 + dx(x)
iω

. (19a)

This is because that Eq. 2 is proposed based on the plane wave
expression: U � u0 exp[i(kxx − ωt)], while Eq. 19 is proposed
based on the plane wave expression: U � u0 exp[−i(kxx − ωt)]
(Johnson, 2008; Chern, 2019). Therefore, Eq. 2 is actually equal to
Eq. 19. We adopt Eq. 2 in this article to maintain continuity with
Chern’s method.

The RD-PML is implemented by directly adding the decay
terms to the original wave equation and the original spatial partial
derivatives have not been modified (shown as the first expression
in Eq. 18), which is very easy for programming. In addition, since
RD-PML is suitable for periodic boundary, the scheme in Figures
3B2, 3B4 can be used in programming, which is very easy to load
RD-PML outside the normal simulation area. These two
advantages make RD-PML have good application prospects in
both reverse time migration (RTM) and full waveform inversion
(FWI). To implement the RD-PML for an existing RTM or FWI
program, we don’t have to rewrite the original program; instead,

FIGURE 13 | Stability regions for different temporal discretization
methods. The stability regions for the 2nd-order FD scheme and the 4-stage
Runge Kutta scheme are the regions inside the red curve and the blue curve,
respectively; while the instability regions for the 2nd-order FD scheme
and the 4-stage Runge Kutta scheme are the regions outside the red curve
and the blue curve, respectively. λ represents the eigenvalue of the discrete
wave equation.
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we only need to add a corresponding RD-PML calculation
module and load it in the main program.

For the temporal discretization, we tried to implement the
RD-PML using the conventional 2nd-order FD method for the
temporal discretization. However, a very small time-step size is
required to ensure the stability of the wave field iteration,
otherwise the wavefield iteration would fail. Instead, we adopt
the 4-stage Runge Kutta method for the temporal
discretization of the seismic wave equation according to
Chern (2019). We give a rough analysis for the reason here.
The stability area of the 4-stage Runge Kutta method is larger
than that of the second-order FD method (shown in
Figure 13), which means that the CFL stability condition of
the former are more relaxed (Karim, 1966; Frank, 2008). In the
case of the same spatial model parameters, the former can use a
larger time step, and we can use the time step as we routinely
use for simulation. This shows that the stability conditions of
the RD-PML method are relatively harsh, although it has been
proven to be stable by Chern (2019). The research on the
stability conditions of RD-PML can also be a future
research work.

CONCLUSION

We introduce the RD-PML to the seismic wave numerical
simulation. Firstly, we introduce the principle of PML
attenuation in detail and analyze the cause of reflections
that produced by conventional discrete PML. Then, we
compare the absorbing performance of the RD-PML with
that of the conventional discrete PML. Numerical
experiments demonstrate the superiority of the RD-PML. In
homogenous model, RD-PML with sufficient thickness (e.g.,
20 layer) can make the reflected waves reach the effect of
mechanical zero; in heterogenous model, 10-layer RD-PML
performs better than the 20-layer conventional discrete PML.
Furthermore, we adopt periodic boundary to the RD-PML,
which can improve the absorbing performance of RD-PML

without increasing the amount of memory and calculation.
Although in the inhomogeneous medium, the periodic
boundary has a very limited improvement in the absorbing
performance, it doesn’t increase the amount of calculation.
Another point is that RD-PML is directly implemented based
on the 2nd-order equation, and the attenuation term is directly
added to the original wave equation. This kind of system does
not need to be rewritten as a first-order system, which is very
convenient for programming. The method in this paper
provides a new idea to realize discrete PML, and has an
important role in promoting the development of PML
technology.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article
will be made available by the authors, without undue
reservation.

AUTHOR CONTRIBUTIONS

YG derives the equations, writes the program, and does the
numerical experiments. MZ checks the formula derivation and
takes analysis for the numerical experiments.

ACKNOWLEDGMENTS

We are especially grateful to Albert Chern for his helpful
introduction and discussion on RD-PML. This research is
supported by the Science and Technology Development
Fund, Macau SAR (grant nos. 0002/2019/APD, 0079/2018/
A2). YG is also supported by the National Natural Science
Foundation of China (grant no. 41704063, 11773087) and the
General Financial Grant from the China Postdoctoral science
foundation (grant no. 2017M610980).

REFERENCES

Abarbanel, S., and Gottlieb, D. (1997). A Mathematical Analysis of the
PML Method. J. Comput. Phys. 134 (2), 357–363. doi:10.1006/jcph.
1997.5717

Bérenger, J. P. (1994). A Perfectly Matched Layer for the Absorption of
Electromagnetic Waves. J. Comput. Phys. 114 (2), 185–200. doi:10.1006/
jcph.1994.1159

Bérenger, J. P. (2002). Numerical Reflection from FDTD-PMLs: A Comparison of
the Split PML with the Unsplit and CFS PMLs. IEEE Trans. Antennas Propag.
50 (3), 258–265. doi:10.1109/8.999615

Bermúdez, A., Hervella-Nieto, L., and Prieto, A. (2007). An Optimal Perfectly
Matched Layer with Unbounded Absorbing Function for Tim/
j.jcp.2006.09.018

Bobenko, A. I., and Günther, F. (2016). “Discrete Complex Analysis on Planar
Quad-Graphs,” in Advances in Discrete Differential Geometry (Berlin,
Heidelberg: Springer), 57–132. doi:10.1007/978-3-662-50447-5_2

Bobenko, A. I., Mercat, C., and Suris, Y. B. (2005). Linear and Nonlinear Theories
of Discrete Analytic Functions. Integrable Structure and Isomonodromic

Green’s Function. J. für die reine Angew. Math. (Crelles J.) 2005, 117–161.
doi:10.1515/crll.2005.2005.583.117

Chern, A. (2019). A Reflectionless Discrete Perfectly Matched Layer. J. Comput.
Phys. 381, 91–109. doi:10.1016/j.jcp.2018.12.026

Chew,W. C., and Liu, Q. H. (1996). PerfectlyMatched Layers for Elastodynamics: a
New Absorbing Boundary Condition. J. Comp. Acous. 04 (04), 341–359. doi:10.
1142/s0218396x96000118

Chew, W. C., and Weedon, W. H. (1994). A 3D Perfectly Matched Medium from
Modified Maxwell’s Equations with Stretched Coordinates. Microw. Opt.
Technol. Lett. 7 (13), 599–604. doi:10.1002/mop.4650071304

Collino, F., and Monk, P. B. (1998). Optimizing the Perfectly Matched Layer.
Comput. Methods Appl. Mech. Eng. 164 (1-2), 157–171. doi:10.1016/s0045-
7825(98)00052-8

Collino, F., and Tsogka, C. (2001). Application of the Perfectly Matched
Absorbing Layer Model to the Linear Elastodynamic Problem in
Anisotropic Heterogeneous media. Geophysics 66 (1), 294–307. doi:10.
1190/1.1444908

Correia, D., and Jian-Ming Jin, J.-M. (2005). On the Development of a Higher-
Order PML. IEEE Trans. Antennas Propagat. 53 (12), 4157–4163. doi:10.1109/
tap.2005.859901

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 88316016

Gao and Zhu RD-PML for Acoustic Wave Modelling

https://doi.org/10.1006/jcph.1997.5717
https://doi.org/10.1006/jcph.1997.5717
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1109/8.999615
https://doi.org/10.1007/978-3-662-50447-5_2
https://doi.org/10.1515/crll.2005.2005.583.117
https://doi.org/10.1016/j.jcp.2018.12.026
https://doi.org/10.1142/s0218396x96000118
https://doi.org/10.1142/s0218396x96000118
https://doi.org/10.1002/mop.4650071304
https://doi.org/10.1016/s0045-7825(98)00052-8
https://doi.org/10.1016/s0045-7825(98)00052-8
https://doi.org/10.1190/1.1444908
https://doi.org/10.1190/1.1444908
https://doi.org/10.1109/tap.2005.859901
https://doi.org/10.1109/tap.2005.859901
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Correia, D., and Jin, J.-M. (2006). Performance of Regular PML, CFS-PML, and
Second-Order PML for Waveguide Problems. Microw. Opt. Technol. Lett. 48
(10), 2121–2126. doi:10.1002/mop.21872

Deng, C., Luo, M., Yuan, M., Zhao, B., Zhuang, M., and Liu, Q. H. (2018). The
Auxiliary Differential Equations Perfectly Matched Layers Based on the Hybrid
SETD and PSTD Algorithms for Acoustic Waves. J. Theor. Comput. Acoust. 26
(1), 1–19. doi:10.1142/s2591728517500311

Diaz, J., and Joly, P. (2006). A Time Domain Analysis of PMLModels in Acoustics.
Comput. Methods Appl. Mech. Eng. 195 (29), 3820–3853. doi:10.1016/j.cma.
2005.02.031

Dmitriev, M. N., and Lisitsa, V. V. (2011). Application of M-PML Reflectionless
Boundary Conditions to the Numerical Simulation of Wave Propagation in
Anisotropic media. Part I: Reflectivity. Numer. Analys. Appl. 4 (4), 271–280.
doi:10.1134/s199542391104001x

Dmitriev, M. N., and Lisitsa, V. V. (2012). Application of M-PML Absorbing
Boundary Conditions to the Numerical Simulation of Wave Propagation in
Anisotropic media. Part II: Stability. Numer. Analys. Appl. 5 (1), 36–44. doi:10.
1134/s1995423912010041

Drossaert, F. H., and Giannopoulos, A. (2007a). Complex Frequency Shifted
Convolution PML for FDTD Modelling of Elastic Waves. Wave Motion 44
(7), 593–604. doi:10.1016/j.wavemoti.2007.03.003

Drossaert, F. H., and Giannopoulos, A. (2007b). A Nonsplit Complex Frequency-
Shifted PML Based on Recursive Integration for FDTD Modeling of Elastic
Waves. Geophysics 72 (2), T9–T17. doi:10.1190/1.2424888

Duffin, R. J. (1956). Basic Properties of Discrete Analytic Functions. Duke Math. J.
23 (2), 335–363. doi:10.1215/s0012-7094-56-02332-8

Duru, K., and Kreiss, G. (2012). A Well-Posed and Discretely Stable Perfectly
Matched Layer for Elastic Wave Equations in Second Order Formulation.
Commun. Comput. Phys. 11 (5), 1643–1672. doi:10.4208/cicp.120210.240511a

Fang, J., and Wu, Z. (1996). Closed-form Expression of Numerical Reflection
Coefficient at PML Interfaces and Optimization of PML Performance. IEEE
Microw. Guid. Wave Lett. 6 (9), 332–334. doi:10.1109/75.535836

Feng, N., and Li, J. (2013). Novel and Efficient FDTD Implementation of Higher-
Order Perfectly Matched Layer Based on ADE Method. J. Comput. Phys. 232
(1), 318–326. doi:10.1016/j.jcp.2012.08.012

Feng, N., Yue, Y., Zhu, C., Wan, L., and Liu, Q. H. (2015). Second-order PML:
Optimal Choice of Nth-Order PML for Truncating FDTDDomains. J. Comput.
Phys. 285, 71–83. doi:10.1016/j.jcp.2015.01.015

Feng, H., Zhang, W., Zhang, J., and Chen, X. (2017). Importance of Double-
Pole CFS-PML for Broad-Band Seismic Wave Simulation and Optimal
Parameters Selection. Geophys. J. Int. 209 (2), 1148–1167. doi:10.1093/gji/
ggx070

Festa, G., and Vilotte, J.-P. (2005). The Newmark Scheme as Velocity-Stress Time-
Staggering: an Efficient PML Implementation for Spectral Element Simulations
of Elastodynamics. Geophys. J. Int. 161 (3), 789–812. doi:10.1111/j.1365-246x.
2005.02601.x

Festa, G., Delavaud, E., and Vilotte, J. P. (2005). Interaction between SurfaceWaves
and Absorbing Boundaries for Wave Propagation in Geological Basins: 2D
Numerical Simulations. Geophys. Res. Lett. 32, 1–4. doi:10.1029/2005gl024091

Frank, J. (2008). Numerical Modelling of Dynamical Systems. Lecture Notes. URL:
https://webspace.science.uu.nl/~frank011/Classes/numwisk/ (Accessed 2008).

Gao, K., and Huang, L. (2017). Optimal Damping Profile Ratios for Stabilization of
Perfectly Matched Layers in General Anisotropic media. Geophysics 83 (1),
T15–T30. doi:10.1190/geo2017-0430.1

Gao, Y., Zhang, J., and Yao, Z. (2015). Unsplit Complex Frequency Shifted
Perfectly Matched Layer for Second-Order Wave Equation Using Auxiliary
Differential Equations. J. Acoust. Soc. Am. 138 (6), EL551–EL557. doi:10.1121/
1.4938270

Gao, Y., Song, H., Zhang, J., and Yao, Z. (2017). Comparison of Artificial Absorbing
Boundaries for Acoustic Wave Equation Modelling. Explor. Geophys. 48 (1),
76–93. doi:10.1071/eg15068

Gedney, S. D., and Zhao, B. (2010). An Auxiliary Differential Equation
Formulation for the Complex-Frequency Shifted PML. IEEE Trans.
Antennas Propagat. 58 (3), 838–847. doi:10.1109/tap.2009.2037765

Hastings, F. D., Schneider, J. B., and Broschat, S. L. (1996). Application of the
Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic
Wave Propagation. J. Acoust. Soc. Am. 100 (5), 3061–3069. doi:10.1121/1.
417118

He, Y., Chen, T., and Gao, J. (2019). Unsplit Perfectly Matched Layer Absorbing
Boundary Conditions for Second-Order Poroelastic Wave Equations. Wave
Motion 89, 116–130. doi:10.1016/j.wavemoti.2019.01.004

Johnson, S. G. (2008). “Notes on Perfectly Matched Layers (PMLs),” in Lecture
Notes (Massachusetts: Massachusetts Institute of Technology), 29.

Karim, A. I. A. (1966). Stability of the Fourth Order runge-kutta Method for the
Solution of Systems of Differential Equations. Comput. J. 9 (3), 308–311. doi:10.
1093/comjnl/9.3.308

Katsibas, T. K., and Antonopoulos, C. S. (2002). “An Efficient PML Absorbing
Medium in FDTD Simulations of Acoustic Scattering in Lossy media,” in
Proceedings of the 2002 IEEE Ultrasonics Symposium (Munich, Germany:
IEEE).

Komatitsch, D., and Martin, R. (2007). An Unsplit Convolutional Perfectly
Matched Layer Improved at Grazing Incidence for the Seismic Wave
Equation. Geophysics 72 (5), SM155–SM167. doi:10.1190/1.2757586

Komatitsch, D., and Tromp, J. (2003). A Perfectly Matched Layer Absorbing
Boundary Condition for the Second-Order Seismic Wave Equation. Geophys.
J. Int. 154 (1), 146–153. doi:10.1046/j.1365-246x.2003.01950.x

Kristek, J., Moczo, P., and Galis, M. (2009). A Brief Summary of Some PML
Formulations and Discretizations for the Velocity-Stress Equation of Seismic
Motion. Stud. Geophys. Geod. 53 (4), 459–474. doi:10.1007/s11200-009-
0034-6

Kuzuoglu, M., and Mittra, R. (1996). Frequency Dependence of the Constitutive
Parameters of Causal Perfectly Matched Anisotropic Absorbers. IEEE Microw.
Guid. Wave Lett. 6 (12), 447–449. doi:10.1109/75.544545

Li, Y., and BouMatar, O. (2010). Convolutional Perfectly Matched Layer for Elastic
Second-Order Wave Equation. J. Acoust. Soc. Am. 127 (3), 1318–1327. doi:10.
1121/1.3290999

Liu, Q., and Tao, J. (1997). The Perfectly Matched Layer for Acoustic Waves in
Absorptive media. J. Acoust. Soc. Am. 102 (4), 2072–2082. doi:10.1121/1.419657

Lovász, L. (2004). Discrete Analytic Functions: an Exposition. Surv. Differ. Geom. 9
(1), 241–273. doi:10.4310/SDG.2004.v9.n1.a7

Luebbers, R. J., and Hunsberger, F. (1992). FDTD for Nth-Order Dispersive Media.
IEEE Trans. Antennas Propagat. 40 (11), 1297–1301. doi:10.1109/8.202707

Ma, Y., Yu, J., and Wang, Y. (2014). A Novel Unsplit Perfectly Matched Layer for
the Second-Order Acoustic Wave Equation. Ultrasonics 54, 1568–1574. doi:10.
1016/j.ultras.2014.03.016

Ma, X., Yang, D., Huang, X., and Zhou, Y. (2018). Nonsplit Complex-Frequency
Shifted Perfectly Matched Layer Combined with Symplectic Methods for
Solving Second-Order Seismic Wave Equations—Part 1: Method. Geophysics
83 (6), 1–49. doi:10.1190/geo2017-0603.1

Ma, X., Yang, D., He, X., Huang, X., and Song, J. (2019a). Nonsplit Complex-
Frequency-Shifted Perfectly Matched Layer Combined with Symplectic
Methods for Solving Second-Order Seismic Wave Equations—Part 2:
Wavefield Simulations. Geophysics 84 (3), T167–T179. doi:10.1190/geo2018-
0349.1

Ma, X., Li, Y., and Song, J. (2019b). A Stable Auxiliary Differential Equation
Perfectly Matched Layer Condition Combined with Low-Dispersive Symplectic
Methods for Solving Second-Order Elastic Wave Equations. Geophysics 84 (4),
T193–T206. doi:10.1190/geo2018-0572.1

Martin, R., Komatitsch, D., Gedney, S. D., and Bruthiaux, E. (2010). A High-Order
Time and Space Formulation of the Unsplit Perfectly Matched Layer for the
Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML).
Comput. Model. Eng. Sci. (Cmes) 56 (1), 17–41.

Matzen, R. (2011). An Efficient Finite Element Time-Domain Formulation for the
Elastic Second-Order Wave Equation: A Non-split Complex Frequency Shifted
Convolutional PML. Int. J. Numer. Meth. Engng. 88 (10), 951–973. doi:10.1002/
nme.3205

Meza-Fajardo, K. C., and Papageorgiou, A. S. (2008). A Nonconvolutional, Split-
Field, Perfectly Matched Layer for Wave Propagation in Isotropic and
Anisotropic Elastic media: Stability Analysis. Bull. Seismol. Soc. Am. 98 (4),
1811–1836. doi:10.1785/0120070223

Meza-Fajardo, K. C., and Papageorgiou, A. S. (2010). On the Stability of a Non-
convolutional Perfectly Matched Layer for Isotropic Elastic media. Soil Dyn.
Earthquake Eng. 30 (3), 68–81. doi:10.1016/j.soildyn.2009.09.002

Meza-Fajardo, K. C., and Papageorgiou, A. S. (2012). Study of the Accuracy of the
Multiaxial Perfectly Matched Layer for the Elastic-Wave Equation. Bull.
Seismol. Soc. Am. 102 (6), 2458–2467. doi:10.1785/0120120061

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 88316017

Gao and Zhu RD-PML for Acoustic Wave Modelling

https://doi.org/10.1002/mop.21872
https://doi.org/10.1142/s2591728517500311
https://doi.org/10.1016/j.cma.2005.02.031
https://doi.org/10.1016/j.cma.2005.02.031
https://doi.org/10.1134/s199542391104001x
https://doi.org/10.1134/s1995423912010041
https://doi.org/10.1134/s1995423912010041
https://doi.org/10.1016/j.wavemoti.2007.03.003
https://doi.org/10.1190/1.2424888
https://doi.org/10.1215/s0012-7094-56-02332-8
https://doi.org/10.4208/cicp.120210.240511a
https://doi.org/10.1109/75.535836
https://doi.org/10.1016/j.jcp.2012.08.012
https://doi.org/10.1016/j.jcp.2015.01.015
https://doi.org/10.1093/gji/ggx070
https://doi.org/10.1093/gji/ggx070
https://doi.org/10.1111/j.1365-246x.2005.02601.x
https://doi.org/10.1111/j.1365-246x.2005.02601.x
https://doi.org/10.1029/2005gl024091
https://webspace.science.uu.nl/%7Efrank011/Classes/numwisk/
https://doi.org/10.1190/geo2017-0430.1
https://doi.org/10.1121/1.4938270
https://doi.org/10.1121/1.4938270
https://doi.org/10.1071/eg15068
https://doi.org/10.1109/tap.2009.2037765
https://doi.org/10.1121/1.417118
https://doi.org/10.1121/1.417118
https://doi.org/10.1016/j.wavemoti.2019.01.004
https://doi.org/10.1093/comjnl/9.3.308
https://doi.org/10.1093/comjnl/9.3.308
https://doi.org/10.1190/1.2757586
https://doi.org/10.1046/j.1365-246x.2003.01950.x
https://doi.org/10.1007/s11200-009-0034-6
https://doi.org/10.1007/s11200-009-0034-6
https://doi.org/10.1109/75.544545
https://doi.org/10.1121/1.3290999
https://doi.org/10.1121/1.3290999
https://doi.org/10.1121/1.419657
https://doi.org/10.4310/SDG.2004.v9.n1.a7
https://doi.org/10.1109/8.202707
https://doi.org/10.1016/j.ultras.2014.03.016
https://doi.org/10.1016/j.ultras.2014.03.016
https://doi.org/10.1190/geo2017-0603.1
https://doi.org/10.1190/geo2018-0349.1
https://doi.org/10.1190/geo2018-0349.1
https://doi.org/10.1190/geo2018-0572.1
https://doi.org/10.1002/nme.3205
https://doi.org/10.1002/nme.3205
https://doi.org/10.1785/0120070223
https://doi.org/10.1016/j.soildyn.2009.09.002
https://doi.org/10.1785/0120120061
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Nissen, A., and Kreiss, G. (2011). An Optimized Perfectly Matched Layer for the
Schrödinger Equation. Commun. Comput. Phys. 9 (1), 147–179. doi:10.4208/
cicp.010909.010410a

Pasalic, D., and McGarry, R. (2010). “Convolutional Perfectly Matched Layer for
Isotropic and Anisotropic Acoustic Wave Equations,” in Paper read at 80th
Annual International Meeting (Denver, CO: Society of Exploration
Geophysicists). doi:10.1190/1.3513453

Ping, P., Zhang, Y., and Xu, Y. (2014). A Multiaxial Perfectly Matched Layer
(M-PML) for the Long-Time Simulation of Elastic Wave Propagation in the
Second-Order Equations. J. Appl. Geophys. 101 (1), 124–135. doi:10.1016/j.
jappgeo.2013.12.006

Ping, P., Zhang, Y., Xu, Y., and Chu, R. (2016). Efficiency of Perfectly Matched
Layers for Seismic Wave Modeling in Second-Order Viscoelastic Equations.
Geophys. J. Int. 207 (3), 1367–1386. doi:10.1093/gji/ggw337

Pled, F., and Desceliers, C. (2021). Review and Recent Developments on the
Perfectly Matched Layer (PML) Method for the Numerical Modeling and
Simulation of Elastic Wave Propagation in Unbounded Domains. Arch.
Comput. Methods Eng. 29, 471–518. doi:10.1007/s11831-021-09581-y

Qi, Q., and Geers, T. L. (1998). Evaluation of the Perfectly Matched Layer for
Computational Acoustics. J. Comput. Phys. 139 (1), 166–183. doi:10.1006/jcph.
1997.5868

Ramadan, O. (2003). Auxiliary Differential Equation Formulation: an Efficient
Implementation of the Perfectly Matched Layer. IEEE Microw. Wireless
Compon. Lett. 13 (2), 69–71. doi:10.1109/lmwc.2003.808706

Rejiba, F., Camerlynck, C., and Mechler, P. (2003). FDTD-SUPML-ADE
Simulation for Ground-Penetrating Radar Modeling. Radio Sci. 38 (1), 5-
1–5-13. doi:10.1029/2001rs002595

Roden, J. A., and Gedney, S. D. (2000). Convolution PML (CPML): An Efficient
FDTD Implementation of the CFS-PML for Arbitrary media. Microw. Opt.
Technol. Lett. 27 (5), 334–339. doi:10.1002/1098-2760(20001205)27:5<334::
aid-mop14>3.0.co;2-a

Shi, R., Wang, S., and Zhao, J. (2012). An Unsplit Complex-Frequency-Shifted
PML Based on matchedZ-Transform for FDTD Modelling of Seismic Wave
Equations. J. Geophys. Eng. 9 (2), 218–229. doi:10.1088/1742-2132/9/2/218

Travassos, X. L., Avila, S. L., Prescott, D., Nicolas, A., and Krahenbuhl, L. (2006).
Optimal Configurations for Perfectly Matched Layers in FDTD Simulations.
IEEE Trans. Magn. 42 (4), 563–566. doi:10.1109/tmag.2006.871471

Wang, L., and Liang, C. (2006). A New Implementation of CFS-PML for ADI-
FDTDMethod.Microwave Opt. Technol. Lett. 48 (10), 1924–1928. doi:10.1002/
mop.21816

Wang, T., and Tang, X. (2003). Finite-Difference Modeling of Elastic Wave
Propagation: A Nonsplitting Perfectly Matched Layer Approach. Geophysics
68 (5), 1749–1755. doi:10.1190/1.1620648

Wang, Y., Wang, J., and Zhang, D. (2005). Application of CPML to Truncate the
Open Boundaries of Cylindrical Waveguides in 2.5-dimensional Problems. Sci.
China Ser. F 48 (5), 656–669. doi:10.1360/04yf0186

Winton, S. C., and Rappaport, C. M. (2000). Specifying PML Conductivities by
Considering Numerical Reflection Dependencies. IEEE Trans. Antennas
Propagat. 48 (7), 1055–1063. doi:10.1109/8.876324

Xie, Z., Komatitsch, D., Martin, R., and Matzen, R. (2014). Improved Forward
Wave Propagation and Adjoint-Based Sensitivity Kernel Calculations Using a
Numerically Stable Finite-Element PML. Geophys. J. Int. 198 (3), 1714–1747.
doi:10.1093/gji/ggu219

Yuan, X., Borup, D., Wiskin, J. W., Berggren, M., Eidens, R., and Johnson, S. A.
(1997). Formulation and Validation of Berenger’s PML Absorbing
Boundary for the FDTD Simulation of Acoustic Scattering. IEEE
Trans. Ultrason. Ferroelect., Freq. Contr. 44 (4), 816–822. doi:10.1109/
58.655197

Yuan, X., Borup, D., Wiskin, J., Berggren, M., and Johnson, S. A. (1999).
Simulation of Acoustic Wave Propagation in Dispersive media with
Relaxation Losses by Using FDTD Method with PML Absorbing Boundary
Condition. IEEE Trans. Ultrason. Ferroelect., Freq. Contr. 46 (1), 14–23.
doi:10.1109/58.741419

Zeng, Y. Q., and Liu, Q. H. (2004). A Multidomain PSTD Method for 3D Elastic
Wave Equations. Bull. Seismol. Soc. Am. 94 (3), 1002–1015. doi:10.1785/
0120030103

Zhang, W., and Shen, Y. (2010). Unsplit Complex Frequency-Shifted PML
Implementation Using Auxiliary Differential Equations for Seismic Wave
Modeling. Geophysics 75 (4), T141–T154. doi:10.1190/1.3463431

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gao and Zhu. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 88316018

Gao and Zhu RD-PML for Acoustic Wave Modelling

https://doi.org/10.4208/cicp.010909.010410a
https://doi.org/10.4208/cicp.010909.010410a
https://doi.org/10.1190/1.3513453
https://doi.org/10.1016/j.jappgeo.2013.12.006
https://doi.org/10.1016/j.jappgeo.2013.12.006
https://doi.org/10.1093/gji/ggw337
https://doi.org/10.1007/s11831-021-09581-y
https://doi.org/10.1006/jcph.1997.5868
https://doi.org/10.1006/jcph.1997.5868
https://doi.org/10.1109/lmwc.2003.808706
https://doi.org/10.1029/2001rs002595
https://doi.org/10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a
https://doi.org/10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a
https://doi.org/10.1088/1742-2132/9/2/218
https://doi.org/10.1109/tmag.2006.871471
https://doi.org/10.1002/mop.21816
https://doi.org/10.1002/mop.21816
https://doi.org/10.1190/1.1620648
https://doi.org/10.1360/04yf0186
https://doi.org/10.1109/8.876324
https://doi.org/10.1093/gji/ggu219
https://doi.org/10.1109/58.655197
https://doi.org/10.1109/58.655197
https://doi.org/10.1109/58.741419
https://doi.org/10.1785/0120030103
https://doi.org/10.1785/0120030103
https://doi.org/10.1190/1.3463431
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Application of the Reflectionless Discrete Perfectly Matched Layer for Acoustic Wave Simulation
	Introduction
	Methodology
	Numerical Experiments
	Homogenous Model
	Heterogenous Model

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


