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The central part of the Shaluli Mountains is located in the Ganzi area, Sichuan

Province, China, bordered by the Jinsha River and adjacent to Tibet. Frequent

avalanches pose a serious threat to human activities and engineering

construction such as the Sichuan-Tibet Railway under construction.

Therefore, the evaluation of avalanche susceptibility in this area can not only

help define the spatial pattern of avalanches on the Qinghai-Tibet Plateau but

also provide references for the recognition and early warning of regional

avalanche disasters. In this study, avalanche samples were selected by

remote sensing interpretation supplemented by a detailed field survey, GIS

spatial analysis, and data mining. Two statistical models [evidence confidence

function (EBF) and certainty coefficient (CF)] combined with two machine

learning models [logistic regression (LR) and multilayer perceptron (MLP)]

were used to establish four integrated models (EBF-LR, CF-LR, EBF-MLP,

and CF-MLP) as well as the traditional frequency ratio model (FR) for

avalanche susceptibility evaluation. Finally, the results were checked for

accuracy by Kappa coefficients and ROC curves. The CF-MLP (Kappa =

0.606, AUC = 0.910) model was the best avalanche susceptibility evaluation

model for this study, the FR (Kappa = 0.584, AUC = 0.894) model had the next

highest accuracy, and the combination of the CF algorithm and the machine

learning model performed better than the EBF. The most important influencing

factors were elevation, slope orientation, terrain moisture index, and January

average temperature. The five models showed a high degree of consistency in

the sensitivity to topographic factors during the evaluation of susceptibility. The

avalanche susceptibility zoning map based on the CF-MLP model was obtained

by the natural breakpoint method, and the areas with very high and high

susceptibility accounted for about 10.01% and 15.33% of the total area,

respectively.
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Highlights

An integrated machine learning model is built for avalanche

susceptibility mapping.

The avalanche influencing factors is analyzed.

The CF-MLP model can well evaluate the avalanche

susceptibility.

1 Introduction

Snow avalanches are snow masses that rapidly descend steep

slopes, which is the complex interaction between terrain,

snowpack, and meteorological conditions leading to

avalanching (Schweizer et al., 2003). It is a generally dispersed

normal wonder and mass stream structure in the frigid mountain

areas (Schweizer et al., 2015). Regular snow torrential slides

compromise human existence, development, transportation,

environments (Podolskiy et al., 2014).

Early avalanche research began from 18th century. People

mainly concerned the environmental conditions such as climate

change and snow cover features through remote sensing and field

surveys in the past (Conway and Wilbour 1999; Lehning et al.,

1999; Huggel et al., 2004). With the development of

measurement technology, UAV tilt photography and optical

remote sensing images have been widely used in the

avalanche research (Bühler et al., 2016; Hafner et al., 2021).

Landsat TM satellite imagery was used to characterize the

composition, direction, and dimension of selected avalanche

paths in Montana’s Glacier National Park (Walsh et al., 1990).

Remote sensing reconstruction of avalanche paths through

multi-temporal remote sensing images combined with the

natural characteristics of tree annual rings can obtain the

spatial extent of multiple avalanche occurrences in the same

area (Lato et al., 2012; Mesesan et al., 2019). The study of zoning

and mapping of avalanche hazards began in Europe, where snow

damage was frequent. The concepts of avalanche cycle and

maximum avalanche throw appeared on zoning maps of the

Alps in 1953, and the term avalanche climate, which appeared

later in 1987, has been widely used by many scholars (Dent and

Lang, 1983; Ancey et al., 2004). Snowy countries such as

Switzerland establish avalanche risk zoning and mapping

criteria based on avalanche frequency and impact force

(Schweizer et al., 2015). Based on this, these snow-prone

countries plan and manage land use in mountainous areas

according to the degree of avalanche risk. This standard has

been widely used in countries with avalanche hazards in Europe

and North America, such as Russia, Canada, and the

United States, and has reduced the avalanche risk to an

acceptable level (Jamieson and Stethem, 2002; Seliverstov

et al., 2008).

In recent years, with the rapid development of artificial

intelligence technology, machine learning has been widely

used in landslide susceptibility evaluation, earthquake

prediction, rainfall correction, constitutive models, and

groundwater storage change prediction (Youssef et al., 2016;

Ghorbani Nejad et al., 2017; Hao et al., 2017; Choubin et al.,

2019a; Choubin et al., 2019b; Li et al., 2021; Xiong et al., 2021; Xi

et al., 2022). Some studies have tried to apply machine learning

algorithms to the automatic detection of regional avalanches

(Techel et al., 2015; Yang et al., 2020), avalanche transport

material susceptibility evaluation (Choubin et al., 2020), and

avalanche susceptibility mapping (Rahmati et al., 2019; Mosavi

et al., 2020; Wen et al., 2022). In this study, based on remote

sensing interpretation and field survey, a learning sample library

is constructed, and a model combining machine learning and

traditional statistical methods is used to explore avalanche

susceptibility mapping under different combinations of

methods, which can provide an important reference for

regional disaster risk prediction.

In this study, we identified 536 channeled avalanche

samples by field investigation in the central Shaluli

Mountain that flowed across the timberline, where the

Sichuan-Tibet railway under construction will cross this

study area. 14 evaluation factors were selected to examine

the multicollinearity of evaluation factors by a variance

inflation factor (VIF). The two statistical models of

Evidence Confidence Function (EBF) and Certainty

Coefficient (CF) were used to combine the two methods. A

machine learning model—logistic regression (LR) and multi-

layer perceptron (MLP) to establish four integrated models of

EBF-LR, CF-LR, EBF-MLP, and CF-MLP, as well as the

traditional frequency ratio model (FR) for avalanche

susceptibility evaluation research.

2 Study area

Shaluli Mountain is the watershed of the Jinsha River and

Yalong River, located in the west of Ganzi Tibetan Autonomous

Prefecture and Liangshan Yi Autonomous Prefecture, separated

from the Bayan Kala Mountains and entering the western

Sichuan Plateau in the southeast, running through Ganzi and

stretching through the Yangtze River. The central part of the

Shaluli Mountains is located in the eastern part of the Qinghai-

Tibet Plateau and belongs to the middle part of the central

mountains at the northern end of the Hengduan Mountains.

Gnie Mountain is the highest peak of the Shaluli Mountain

System, with an elevation of 6204m. National Roads G318 and

G215 pass through the study area. The geographical coordinates

are 29°37′12″N~30°47′24″N, 98°54′06″E~99°51′36″E, 91.8 km
wide from east to west, 131.8 km long from north to south,

and the total area of the study area is about 7124.46 km2

(Figure 1).

The Shaluli Mountain system belongs to the semi-humid

climate sub-region of the Qinghai Tibet Plateau, with a large
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topography and obvious zonal distribution in a small range. The

changes in temperature, precipitation, and vegetation in the

valley, hillside, and mountain top are different. The basic rule

is that with the increase of altitude (Castebrunet et al., 2012), the

temperature decreases, and the precipitation increases.

According to the observation data of meteorological stations,

the average annual temperature is generally 7–10°C, the average

temperature in the coldest month (January) is −6~0°C, and the

extreme minimum temperature is −26°C (Litang). The annual

average precipitation is generally 474 mm (Batang) ~725 mm

(Litang). The rainy season runs from June to August, and there

are 5–6 months of frozen snowfall in the winter half year.

According to the meteorological data of 30 years, the annual

maximum snowfall in the research area is 70–143 mm, the

annual maximum wind speed is 11.5–15.8 m/s, and the

annual relative humidity accounts for 53–56%. The average

humidity index of the study area in recent 57 years is 0.5–0.75

(Wang et al., 2019). With the increase of precipitation and water

vapor evapotranspiration caused by climate warming, the dry

and hot valley area in Batang County has a trend of warming and

drying, and the valley area in the east of the study area has the

characteristics of warm and humid type with the increase of

altitude. The Asian monsoon system is the main replenishment

of the precipitation in the Shaluli Mountains. The humid Indian

Ocean monsoon enters the interior of the Plateau from the

Yarlung Zangbo River valley and moves westward driven by

the easterly air flow, which enables the rainfall entering the

Qinghai-Tibet Plateau from east to west (Wang et al., 2010;

Peng et al., 2017).

3 Data and methodology

3.1 Snow avalanche inventory

Based on the field investigations from the winter of 2018, a

total of 536 channeled snow avalanches that flowed across the

timberline were collected to establish a research sample database.

The samples are related to the location of the snow avalanche and

are marked by coordinates (Figure 2).

For the traditional analysis model, 536 (100%) avalanche

samples are taken as modeling samples, while 161 (30%)

FIGURE 1
Topographic map of the study area (A), location of the study area in China (B) and overview map of the study site in Sichuan Province, south-
western China (C).
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avalanche samples and 161 randomly generated non-avalanche

samples are taken as test samples. For the machine learning

model, the system randomly generates the same number of non-

avalanche samples (536) as avalanche samples, a total of

1072 samples, of which 750 (70%) samples are randomly

selected for machine learning modeling, and the remaining

322 (30%) samples are used for model verification. The

number of avalanche samples and non-avalanche samples in

training samples and test samples are the same. Both methods

follow the random principle to avoid the influence of human

factors (Laxton and Smith 2009; Cui et al., 2017; Hao et al., 2017;

Choubin et al., 2020).

3.2 Snow avalanche conditioning factors

The formation process of snow avalanche is affected by many

factors, including snowfall, snow density, snow layer structure,

snow depth, snow temperature, and temperature gradient, slope,

vegetation type, and coverage, wind speed and direction,

FIGURE 2
Distribution of investigated avalanche locations in study area.

TABLE 1 Selected conditioning factors of a snow avalanche.

Categories Factors

Terrain Elevation, Slope, Aspect, Surface Roughness, Curvature relief amplitude, Earth’s surface incision

Meteorological condition Average annual snowfall, Average temperature of January

Snowpack stratigraphy Maximum snow depth

Others Distance to rivers, distance to faults, distance to roads, Normalized difference vegetation index, Topographic Wetness Index
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FIGURE 3
Snow avalanche conditioning factors, within the research area, Elevation (A), Slope (B), Aspect (C), Roughness (D), Curvature (E), Surface (F),
Average annual snowfall (G), Maximum snow depth (H), Temperature (I), NDVI (J), TWI (K), Road distance (L), River distance (M), Fault distance (N).
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elevation, landform (Schweizer et al., 2003; Steinkogler et al.,

2014; Fischer et al., 2015). These factors constitute a unique snow

avalanche disaster-pregnant environment. Generally speaking,

the above factors can be divided into three categories: terrain,

meteorological condition, snowpack stratigraphy (Bühler et al.,

2013; Bartelt et al., 2018). After the Pearson correlation

coefficient analysis and variance inflation factor diagnostics,

14 factors are selected which can be quantitatively extracted

by remote sensing and GIS (Table 1). The structure and flow

pattern of avalanches are greatly influenced by the topographic

conditions in the formation area. Its dynamic characteristics are

usually controlled by the physical and mechanical parameters of

snow, and the physical and mechanical parameters of snow will

change during the avalanche flow process. Various climatic,

topographic, and hydrological variables can also affect the

occurrence of avalanches. Thus, the selection of evaluation

factors comprehensively considers the availability of data,

whether it can be expressed quantitatively and reflect the

formation conditions of avalanche comprehensively.

The elevation, slope, aspect, surface roughness,

Curvature Relief Amplitude, and Earth’s surface incision

in elevation were (Figures 3A–F) extracted by the ALOS

(Advanced Land Observing Satellite) DSM with a 12.5 m

resolution.

The average annual snowfall, maximum snow depth, and

the average temperature of January (Figures 3G–I) are obtained

through the weather stations nearby the study area in recent

30 years. Landsat 8 OLI images were adopted to extract the

NDVI maps by ENVI (Figure 3J). The TWI (Topographic

Wetness Index) is derived from the GIS hydrological analysis

module (Figure 3K). The distance to roads is based on China’s

publicly available basic geographic information data

(Figure 3L). The distance to rivers is based on the 1:250

000 open version of basic geographic data of the National

Geographic Information Resources Directory Service System

(Figure 3M). The faults are vectored according to a 1:200

000 regional geological map (https://www.ngac.org.cn)

(Figure 3N).

FIGURE 4
Flowchart of the methodology employed for snow avalanche susceptibility analysis.
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3.3 Snow avalanche modeling

In recent years, machine learning methods have been widely

used in the fields of phenomena prediction research due to their

fast and accurate predictive performance. Most of the multi-

hazard studies such as landslides, extreme precipitation, and

forest fires have been conducted by data mining and using

mathematical-statistical methods as well as machine learning

models to evaluate the disaster susceptibility. The typical

methods are frequency ratio model (FR), information model

(I), deterministic coefficient model (CF), support vector machine

(SVM), random forest (RF), and plain Bayesian (NB).

In order to reduce uncertainty and increase the accuracy of

avalanche susceptibility zonation, mathematical-statistical

methods combined with machine learning models are used in

this study. Moreover, the evaluation result is analyzed

comparatively with the traditional frequency ratio model (FR).

This paper on avalanche susceptibility evaluation mainly

includes the following five steps, and the evaluation process is

shown in Figure 4.

3.3.1 Database preparation: analysis of
avalanche impact factors and data collection

The impact factor layers were created to vector and

statistically analyze the impact factor data in the study area to

prepare sample data for model training and validation. All factor

layers are 12.5 m × 12.5 m raster layers with spatial location

information.

3.3.2 Training and testing sample selection:
536 avalanche samples and 536 non-avalanche
samples of the dataset

The random selection principle was strictly followed, and the

dataset was divided into two subsets for model training (70%)

and model testing (30%) according to different model properties.

3.3.3 Pearson correlation coefficient and
variance inflation factor diagnostics

Pearson correlation analysis examined the degree of

correlation between two of these factors, while variance

inflation factor diagnostics were used to ensure that there was

no linear relationship between the factors.

3.3.4 Model building and implementation:
classification of each mode

The traditional model uses the frequency ratio method to

weight the influence factor hierarchical states and then calculates

them by GIS layer overlay; the machine learning model first uses

two statistical calculations to assign weights to the factors: EBF

(Evidential belief function) and CF, and then combines them

with two models, LR (logistic regression)and MLP (multilayer

perceptron), respectively, to form four integrated models EBF-

LR, CF-LR, EBF-MLP and CF-MLP, and the modeling process is

performed using training sample data.

3.3.5 Model validation: accuracy check
Based onthe test samples, the Kappa coefficient and area

under the ROC curve (AUC) values were used to test the model

accuracy.

3.3.6 Avalanche susceptibility evaluation and
analysis: avalanche susceptibility zonation maps
were drawn and analyzed

The model-generated susceptibility maps were classified into

five levels: very low, low, medium, high, and very high using the

natural breakpoint method. The model results were compared

and analyzed.

3.3.6.1 Frequency ratio

The frequency ratio index FR is used to classify the evaluation

factors and calculate the influence degree of each factor on

avalanche under the grading state. It is often used as the basic

index to establish mathematical models such as the analytic

hierarchy process and logical regression. It is the basis of

sensitivity analysis based on the statistical analysis method.

This method can improve the accuracy of classification and

grading state. The contribution rate of different influencing

factors to avalanche occurrence is represented here, and

compared with the integrated model as the traditional

evaluation model (Pham et al., 2020). The calculation formula

can be expressed as follows:

FR � A/B
C/D � F

R
(1)

FIGURE 5
MLP model structure diagram.
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A indicates avalanche graded area; B indicates total avalanche

area in the study area; C indicates the graded area in the study

area; D indicates the total area in the study area; F indicates the

percentage of avalanche graded area; R indicates the percentage

of graded area in the study area. When FR > 1 it indicates that the

graded interval is favorable to avalanche development; when

FR < 1 it indicates that the graded interval is unfavorable to

avalanche development; when FR = 1 it indicates that the

probability of avalanche development in the graded interval is

the same as the average development probability of the whole

study area. The greater the value of this ratio, the greater the

contribution of the class to avalanche development.

3.3.6.2 Evidential belief function
The Evidential belief function is derived from the Dempster-

Shafer theory, a statistical approach to data proposed by Dempster

and supplemented by Schaefer (Dempster, 1968; https://www.

tandfonline.com/doi/full/10.1080/10106049.2015.1132481; Shafer,

1976). The most obvious advantage of this theory is that it is

flexible enough to accept and integrate the uncertainty of various

factors themselves. The Dempster-Shafer theory is therefore suitable

for estimating the likelihood of an avalanche, which is a combination

of four indicators: suspicion, trust, uncertainty, and plausibility. The

calculation formula can be expressed as follows:

Belcij � WcijB/∑m
j�1
WcijB (2)

WcijB � N(Cij

∣∣∣∣D)/N(Cij)
N(D) −N(Cij

∣∣∣∣D)/N(T) −N(Cij) (3)

Discij � WcijD/∑m
j�1
WcijD (4)

WcijD � N(Cij

∣∣∣∣D)/N(Cij)
N(T) −N(D) − [N(Cij) −N(Cij

∣∣∣∣D)]/N(T) −N(Cij)
(5)

Unc � [1 − (Belcij) − (Discij)] (6)
Pls � [1 − (Discij)] (7)

Belcij indicates the degree of confidence in the occurrence of

avalanches; Discij indicates the degree of doubt in the occurrence

of avalanches;N(Cij|D) indicates the area of avalanches occurring

FIGURE 6
FR model susceptibility zoning map (A); FR model susceptibility zonation map was segmented by the natural discontinuity method (B).

Frontiers in Earth Science frontiersin.org08

Bian et al. 10.3389/feart.2022.880711

https://www.tandfonline.com/doi/full/10.1080/10106049.2015.1132481
https://www.tandfonline.com/doi/full/10.1080/10106049.2015.1132481
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.880711


in a graded (D) state of the factor;N(Cij) indicates the total area of
avalanches occurring in the study area; N(D) indicates the area of
the study area in a graded D state of the factor; N(T) indicates the
total of the study area;Unc reflects the uncertainty of the event; and

Pls characterizes the plausibility of the event.

3.3.6.3 Certainty factor
The certainty factor method was first proposed by Shortliffe and

Buchanan (1975). Its essence is a kind of probability and statistics

method. At present, it has been widely used in the study of landslide

susceptibility. It is a relatively mature and high-precision research

method. The basic assumption is: according to the function

statistical relationship between the avalanche activity and its

influencing factors, the avalanche susceptibility in the future can

be predicted. The range of CF is [−1, 1]. When CF is positive, it

means that the certainty of avalanche occurrence increases in the

state of influence factor classification. The closer to 1, the higher the

certainty of avalanche occurrence. If CF is negative, the certainty of

avalanche occurrence in the state of influence factor classification is

reduced. The closer to—1, the certainty of avalanche occurrence is

lower. The calculation formula is as follows:

CF �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PPa − PPs

PPs(1 − PPa), PPa <PP

PPa − PPs

PPa(1 − PPs), PPa ≥PP

(8)

CF is the certainty coefficient of avalanche occurrence; PPa is the

probability of avalanche occurrence in the influence factor, and

PPs is the prior probability of avalanche occurrence in the whole

study area. PPa can be expressed by the ratio of the avalanche

area (or quantity) in factor grading state a to the study area in

factor grading state a; PPs can be expressed by the ratio of the

total area (or number) of avalanches in the whole study area to

the total area of the study area. Generally, because the area of the

study area is determined, PPs is usually a fixed value.

3.3.6.4 Logistic regression
Logistic regression is a nonlinear multivariate statistical

prediction method, which is suitable for solving the binary

classification problem of multivariable control. At present, the

disaster susceptibility assessment in the field of Geosciences has

been widely used and has high accuracy (Fischer, 2013). In this

FIGURE 7
EBF-LRmodel susceptibility zoningmap (A); EBF-LRmodel susceptibility zonationmapwas segmented by the natural discontinuity method (B).
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model, the value of the dependent variable is usually 0 or 1, which

means that the event does not occur or occurs. The range of the

predicted value is [0, 1]. The closer the number is to zero, the lower

the probability of the event. The function expression of logistic

regression is as follows:

P � 1/(1 + e−Y) (9)
Y � β0 + β1X1 + β2X2 +/βnXn (10)

ln(P/(1 − P)) � β0 + β1X1 + β2X2 +/βnXn (11)

P is the probability of avalanche occurrence, P/(1 − P) is the

probability of no avalanche occurrence, and each influence factor

is taken as the independent variable Xi; βi is the logistic

regression coefficient; Y is the sum of the weights of the variables.

3.3.6.5 Multilayer perceptron
The function of the neural network is realized by the

interconnection and communication of a large number of

processing units (neurons) (Ramchoun et al., 2016). The neural

network is adaptive, nonlinear, machine learning and fault-tolerant.

It is suitable for dealing with nonlinear problems such as the natural

geological disaster and the nonlinear complex system which has

complex formation mechanisms and multiple influencing factors

(Karlik and Olgac, 2011). To solve the linear separability problem,

Rumelhart and Zisper. (1985) proposed a multi-layer perceptron

model based on the single-layer perceptron classification neural

network model. In the process of MLP modeling, forward

propagation is carried out from the input layer to get the output

value and calculate the error of the output layer. Then error

backpropagation is carried out to update the weights of neurons

in each layer. Finally, the target is gradually approached in the

direction of decreasing the slope of the error function. The structure

of the MLP model is shown in Figure 5.

4 Results

4.1 Evaluation of avalanche susceptibility
based on FR model

The frequency ratio model first obtains the contribution

values of all evaluation factors to the avalanche occurrence

FIGURE 8
CF-LR model susceptibility zoning map (A); CF-LR model susceptibility zonation map was segmented by the natural discontinuity method (B).
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according to the Eq. 1, and then maps the FR values of all

evaluation factors to the grid layer for spatial superposition by

using the map algebra tool of GIS (Figure 6). The essence is to

accurately stack the contribution values of all evaluation

factors to the avalanche occurrence on the grid cell scale.

The larger the FR stack value, the easier the avalanche is. The

spatial layers of the FR value of each factor are superimposed,

and the result is the distribution map of FR comprehensive

evaluation value of susceptibility of Shaluli Mountain system.

The FR comprehensive evaluation value is used as the

evaluation index of avalanche susceptibility in the study

area, and the index interval is [1.877, 51.677]. The natural

discontinuity method (the most appropriate grouping of

similar values) is used, which is characterized by the

maximum difference between the intervals. According to

the minimum difference in the interval, it can be divided

into five susceptibility levels: very low (1.877–9.885), low

(9.885–14.377), medium (14.377–19.845), high

(19.845–28.634) and very high (28.634–51.677).

4.2 Evaluation of avalanche susceptibility
based on EBF-LR model

The values of each graded state of the 14 influence factors are

calculated according to the evidence confidence function (EBF)

Eq. 3, and the Bel values need to be normalized according to Eq. 2

before building the LR model and the MLP model, which is to

avoid transition oscillations in the LR model calculation and

machine overtraining in the MLPmodel. This solves the problem

of determining the weights of each hierarchical state of the

influence factor and the integration of data of different metrics.

The integration operation of the model can also attenuate the

effect of subjective grading on a single model. The specific idea is that

the influence factors weighted by EBF are input into the logistic

regression model as independent variables, and the logistic regression

coefficients of each independent variable are obtained according to

the logistic regression equation, and then the layer space calculation is

carried out according to Eq. 11 using the GIS platform to finally

obtain the probability of avalanche susceptibility p-value. It is used as a

FIGURE 9
EBF-MLP model susceptibility zoning map (A); EBF-MLP model susceptibility zonation map was segmented by the natural discontinuity
method (B).
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FIGURE 10
CF-MLP model susceptibility zoning map (A); CF-MLP model susceptibility zonation map was segmented by the natural discontinuity
method (B).

TABLE 2 Impact factor importance.

Impact
factors

FR EBF-LR CF-LR EBF-MLP CF-MLP

Importance Sort Importance Sort Importance Sort Importance Sort Importance Sort

Elevation 0.239 1 0.031 10 0.066 7 0.027 10 0.156 1

Slope 0.047 9 0.048 6 0.007 14 0.068 5 0.046 10

Aspect 0.056 7 0.181 2 0.122 2 0.162 3 0.096 4

Curvature 0.021 14 0.044 7 0.056 9 0.111 4 0.068 8

Surface roughness 0.035 13 0.050 5 0.064 8 0.037 8 0.051 9

Surface incision 0.037 11 0.032 9 0.032 12 0.029 9 0.045 11

TWI 0.042 10 0.090 4 0.113 3 0.165 2 0.100 3

NDVI 0.094 3 0.025 12 0.014 13 0.025 11 0.125 2

Distance to river 0.078 4 0.091 3 0.088 6 0.064 6 0.033 12

Distance to road 0.070 6 0.048 6 0.053 10 0.003 14 0.015 14

Distance to fault 0.113 2 0.090 4 0.090 5 0.041 7 0.077 6

Average annual snowfall 0.055 8 0.009 11 0.048 11 0.008 13 0.079 5

Maximum snow depth 0.036 12 0.041 8 0.107 4 0.024 12 0.032 13

Average temperature of January 0.077 5 0.222 1 0.139 1 0.236 1 0.075 7

Bold values are the top five impact factors for each model.
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comprehensive index of avalanche susceptibility zoning in the study

area with an index interval of (0.001, 0.999), which is also divided into

five susceptibility class intervals: very low (0.001–0.118), low

(0.118–0.283), medium (0.283–0.490), high (0.490–0.729), and

very high (0.729–0.999) using the natural intermittent method,

and the results are shown in Figure 7.

4.3 Evaluation of avalanche susceptibility
based on CF-LR model

According to the CF formula 3-8, the CF values of

14 influencing factors in each classification state are calculated,

which also need to be standardized before establishing the LRmodel

and MLP model. Similar to the processing process of the EBF-LR

model, the final avalanche susceptibility probability value is taken as

the comprehensive index of avalanche susceptibility zoning in the

study area, and the index interval is (0, 0.999). The natural

discontinuity method is used to divide it into five susceptibility

level intervals: very low (0–0.098), low (0.098–0.282), medium

FIGURE 12
Histogram of area proportion of susceptibility grade zoning.

FIGURE 11
ROC curve used to test the model accuracy.
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(0.282–0.513), high (0.513–0.760), and very high (0.760–0.999). The

zoning results are shown in Figure 8.

4.4 Evaluation of avalanche susceptibility
based on EBF-MLP model

According to the theory of the multi-layer perceptron model,

14 influence factors weighted by EBF are used as the input layer

for partition training. To prevent overtraining, a hidden layer is

selected, and the maximum number of cells is controlled within

10. The hidden layer is activated by the hyperbolic tangent

function, and the softmax function is used as the output layer

activation function. Finally, the EBF-MLP prediction model

based on training samples is obtained. Before calculating the

avalanche susceptibility probability value for the whole study

area, the whole study area needs to be divided into fishing nets,

and the center of the fishing net grid is the basis for the model to

calculate the avalanche occurrence probability. The study area is

divided into fishnets with the size of 100 m × 100 m which is

much smaller than the avalanche size, and generate

715006 samples to be calculated. 14 weighted evaluation

factors extracted from the numerous samples are calculated

according to the constructed EBF-MLP model to obtain the

avalanche susceptibility probability values of the study area.

The probability values are ranging from (0, 1). When the

value is less than 0.5, it means a low probability of avalanche

occurrence. Conversely, the probability of avalanche occurrence

increases higher when the value is close to 1. The study area

avalanche susceptibility zoning index interval is (0.067, 0.945),

FIGURE 13
Avalanche susceptibility zoning map of the study area by CF-MLP.
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and finally through the GIS platform to accurately assign to the

fishing network to achieve the entire study area avalanche

susceptibility zoning mapping. The natural discontinuity

method was used to divide it into five susceptibility intervals:

very low (0–0.259), low (0.259–0.373), medium (0.373–0.486),

high (0.486–0.614), and very high (0.614–0.945), as shown in

Figure 9.

4.5 Evaluation of avalanche susceptibility
based on CF-MLP model

The 14 CF-weighted impact factors are used as the input

layer of the MLP model, and the EBF-MLP model is

established and implemented in the same way. The final

avalanche susceptibility probability value is used as a

comprehensive index of avalanche susceptibility zoning in

the study area, and the probability value ranges from (0, 1).

The avalanche susceptibility index interval of the CF-MLP

model is (0, 0.988), which is divided into five susceptibility

intervals: very low (0–0.116), low (0.116–0.286), medium

(0.286–0.473), high (0.473–0.655), and very high

(0.655–0.988) using the natural intermittent method, and

the results are shown in Figure 10.

4.6 Result test

4.6.1 Kappa coefficient
The kappa coefficient is a consistency test for binary

classification prediction problems, and the model performance

is evaluated by judging whether the model classification

prediction results are consistent with the actual classification

results (Kraemer, 2014). Kappa coefficient is calculated based on

the confusion matrix with a value range of (−1, 1), but is usually

greater than 0. The Kappa coefficient greater than or equal to

0.8 is almost perfect, 0.6–0.8 is substantial, 0.4–0.6 is moderate,

0.2–0.4 is fair and lower than 0.2 is slight. The kappa coefficients

are calculated as follows. The Kappa coefficient of the five

evaluation models were 0.584 (FR), 0.552 (EBF-LR), 0.522(CF-

LR), 0.433 (EBF-MLP), and 0.606 (CF-MLP).

Kappa � po − pe

1 − pe
(12)

Po is actual agreement rate, Pe is theoretical agreement rate.

4.6.2 ROC curve
The receiver operating characteristic curve (Receiver

Operating Characteristic curve) has been widely used to test

the accuracy of models in many research fields (Cantarino et al.,

2019; Merghadi et al., 2020). The ROC curve is based on the

graphs generated at different thresholds (or critical points) of

true positive rate (sensitivity) and false positive rate (1-

specificity) on the X-axis to visually express the model

evaluation accuracy.

Sensitivity and specificity essentially indicate the probability

that the model correctly judges avalanche and non-avalanche,

but these two indicators do not show the overall accuracy of the

model performance, so the AUC value of the area under the ROC

curve is generally used to test the model accuracy, and the value

range of AUC is (0, 1), when AUC ≤0.5. This indicates that the
model has no predictive value. If 0.5 <AUC ≤0.7, it indicates that
the model accuracy is low; while 0.7 < AUC<0.9, indicates a high
the model accuracy; An AUC value is closer to 1 shows the a

higher model prediction accuracy (Mandrekar, 2010).

In order to ensure the reliability of the machine learning

model, the CF-MLP and EBF-MLP models randomly

segmented the training samples for five times respectively, and

the mean values of the AUC after five segmented times were close

to that of the first sample segmentation. Therefore, CF-MLP and

EBF-MLP adopt the model and results obtained from the first

sample segmentation training in this paper. The probability of

avalanche occurrence and the actual state of the test sample in the

evaluationmodel were tested by ROC curve, and the test results are

shown in Figure 11. The AUC values of the five evaluation models

were 0.894 (FR), 0.858 (EBF-LR), 0.872 (CF-LR), 0.781 (EBF-

MLP), and 0.910 (CF-MLP). The results showed that the

minimum value of AUC for the five models was 0.781, and all

models could pass the accuracy test.

5 Discussion

5.1 Model accuracy comparison analysis

The avalanche susceptibility evaluation was conducted for

the central part of the Shaluli Mountain system based on

traditional models and four machine learning integrated

models. All five models passed the accuracy test.

The results show that all five models are suitable for

avalanche susceptibility evaluation in the study area, among

which CF-MLP (Kappa = 0.606, AUC = 0.910) is the most

accurate and the most effective model.

Compared with the traditional single FR model, the different

integrated models showed significant differences in terms of

consistency and accuracy tests, which reflect the performance

of the combination of mathematical-statistical algorithms and

machine learning models was not necessarily better than that of

the traditional models. For the same statistical algorithm, the

effect of EBF-LR is better than that of EBF-MLP model. This

indicates that there are various possibilities for the combined

performance of different algorithms and different machine

learning models (Seliverstov et al., 2008).

In this study, the model with EBF-MLP (Kappa = 0.433,

AUC = 0.781) had the worst performance, but in fact, the EBF

model has been widely used in other studies and usually shows

Frontiers in Earth Science frontiersin.org15

Bian et al. 10.3389/feart.2022.880711

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.880711


good accuracy, and it cannot be said that EBF does not work well

when combined with a neural network model. For example,

Tehrany et al. (2019) used EBF in combination with SVM to map

flood susceptibility and obtained highly accurate results. This

suggests that models or methods that performing well in other

hazard susceptibility evaluations are not necessarily applicable to

regional avalanche susceptibility studies.

The model accuracy of CF-LR improved nearly 1.63% over

that of EBF-LR, and the model accuracy of CF-MLP improved

nearly 4.36% over that of CF-LR, indicating that CF andMLP are

the optimal combinations in this study.

In summary, the CF-MLP model is the best avalanche

susceptibility evaluation model in this study. The FR

(Kappa = 0.584, AUC = 0.894) model has the next highest

accuracy, and the combination of CF algorithm and machine

learning model performs better than the EBF algorithm.

5.2 Comparative analysis of impact factor
importance

The importance of the influencing factors in the evaluation

models reflect the degree of contribution of the different factors

to the occurrence of avalanches. The importance of the factors in

the FR model can be determined by the total value of the

frequency ratio of each factor. The importance of the factors

in the EBF-LR and CF-LR models can be determined by logistic

regression coefficients, and the importance of the factors in the

EBF-MLP and CF-MLP models can be obtained after machine

learning modeling. The importance and importance ranking of

the five model impact factors are shown in Table 2.

The importance of each evaluation factor obtained by the five

models is different. The most important factor in FR and CF-

MLP models is altitude. Altitude represents the topographic

conditions of avalanche formation and often provides

potential energy and temperature conditions for avalanche

formation. The most important factor for EBF-LR, CF-LR and

EBF-MLP is the average temperature in January. The average

temperature in January represents the cold storage conditions in

the avalanche development area, which is also an important

feature different from the area where avalanches are not easy to

occur. The second most important factor of EBF-LR and CF-LR

models is the slope aspect. The factors ranking second in

importance in FR, EBF-MLP and CF-MLP models are

distance from fault, topographic humidity index and

vegetation index respectively. Based on the results of each

model, it can be seen that the main influencing factors

affecting the formation of avalanches are altitude, monthly

average temperature, slope direction, distance from fault,

topographic humidity index and vegetation index.

The correlation between avalanche and the most important

factors shows that although the model evaluation results vary, the

sensitivity of the five models to the terrain factor presents a high

degree of consistency in the evaluation process of susceptibility

involving the three key factors of terrain, climate, and snowpack

through the analysis of the influence factor importance, which

also mutually verifies the accuracy of the five models.

The importance of feature factors can be obtained by

modeling the training samples through machine learning

algorithm. The selection and importance of feature factors

have a great influence on the reliability of the model. It is

agreed that the selection of appropriate factors is the key to

the reliability of the model (Huynh et al., 2012; Wu and Liu,

2021). Through field investigation, it is found that avalanches in

the Shaluli mountain are mostly developed in the narrow gully

zone on the snow line, and the intensity and frequency of

snowfall in the area are higher than other areas. At the same

time, referring to previous studies on avalanche formation

mechanism and susceptibility (Schweizer et al., 2015; Mosavi

et al., 2020), it is shown that terrain, climate and snow conditions

are the three main aspects of avalanche formation and feature

selection. Therefore, the selection of feature factors in this paper

is credible.

5.3 Comparative analysis of avalanche
susceptibility zoning results

Through the above tests of model accuracy, the

deterministic coefficient-multi-layer perceptron (CF-MLP)

model is the best evaluation model for this study, and the

accuracy-test has judged the model performance. It is easy to

see that the avalanche susceptibility zoning maps of the five

models have different degrees of differences, so it is necessary to

further analyze the area and distribution of the avalanche

susceptibility zoning classes in the study area, and through

the zoning area data. The histogram of the area share of

susceptibility classes of the FR model and the four integrated

models is shown in Figure 12.

In terms of the area share of each class of the model

susceptibility zones (Figure 12), the total area share of the very

low and low susceptibility zones of the five models is generally

larger than the total area share of the very high and high zones,

which is consistent with the results of field investigation.

Among them, the EBF-MLPmodel has the smallest area share

in the very low susceptibility area, while the area share in the low

and medium susceptibility areas is more than 25%. The area

proportion of EBF-MLP model was the largest in the region

with very low susceptibility. The four models accounted for less

than 13% of the area in the very high susceptibility area.

In summary, the CF-MLP model was used as the avalanche

susceptibility evaluation model for the study area. According to

Figure 13, the areas with very high avalanche susceptibility are

mainly concentrated in Genie Mountain in Litang County and

the alpine mountains on both sides of G215 route in Chaluo

township in Batang County.
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The average altitude of the area with very high avalanche

susceptibility in the study area is about 5000 m, and that of the

area with high avalanche susceptibility is about 4800 m. The

remains of these high-altitude paleo-erosion mountains are rich

in paleo-cirque topography and snow-eroded depressions with

numerous avalanche troughs and steep slopes, which are good

places for avalanche development. The back-wall slopes of the

glacier are snow cornices and ice peaks which are covered with

snow all the year round. The avalanche resources are abundant

and the vegetation coverage is low. On the other hand, due to the

high altitude of the region, the temperature is generally more

than 5–10°C lower than that of the eastern plains at the same

latitude, the overall topography is high in the north and low in

the south, while the Jinsha River and Baqu River valley are open

to the south, which becomes a transport channel for the humid

airflow from the south in summer. Hence, the snowfall is

abundant in the peaks above 4500 m above sea level. In

addition, according to the 30-year meteorological data of the

sites around the study area, the avalanche occurred in the region.

The lower elevation limit is between 4600 and 4700 m. The

average annual solid precipitation is presumed to be up to about

300 mm, and the average annual snowfall days are about 65 days.

Therefore, the regional avalanche climate and topographical

conditions together provide the environmental conditions for

the occurrence of avalanches in the study area. The constructed

Sichuan-Tibet Railway will cross the study area from east to

northwest by a tunnel. Though the line elevation is lower than

that of the National road G318, and it is less affected by

avalanches than the National road, while along the entrance

and exit of the tunnel more attention to prevent snow avalanche

risk shall be paid.

6 Conclusion

An avalanche susceptibility evaluation study was conducted

in the central part of the Shaluli Mountain system based on an

integrated machine learning model, combining field survey,

remote sensing interpretation, and spatial analysis to establish

remote sensing interpretation markers of avalanches in the

study area, obtain the location of avalanches in the study

area in recent years, and select altitude, slope, slope

direction, ground curvature, surface roughness, surface cut,

TWI, NDVI, water system, fault, road, average annual

snowfall, maximum annual snow depth and January

temperature as 14 factors for avalanche susceptibility

evaluation in the study area. Roads, average annual snowfall,

maximum annual snow depth, and average January

temperature were selected as 14 factors to evaluate the

avalanche susceptibility in the study area. Four integrated

models, EBF-LR, CF-LR and EBF-MLP, CF-MLP, were

constructed based on the frequency ratio model (FR) and

statistical models of data - evidence confidence function

(EBF) and certainty coefficient (CF) with two machine

learning models - logistic regression (LR) and multilayer

perceptron (MLP) The avalanche susceptibility evaluation

and susceptibility zoning map were conducted for the central

part of the Shaluli Mountain system. The main findings of this

paper are as follows.

1) In terms of the accuracy of the evaluation model, the CF-MLP

model was the best avalanche susceptibility evaluation model

in this study. The FR (Kappa = 0.584, AUC = 0.894) model

was the second most accurate, and the combination of the CF

algorithm and the machine learning model performed better

than the EBF algorithm.

2) In terms of avalanche influence factor importance, the most

important influence factors in this study are elevation, slope

direction, terrain moisture index, and average January

temperature, of which the first three are terrain factors,

and the only temperature is prominent among climate

factors. The sensitivity of the five models to terrain factors

in the evaluation of susceptibility involving three key factors,

terrain, climate, and snowpack, shows a high degree of

consistency, which also indicates the accuracy of the

sensitivity of the five models to the evaluation factors.

3) In terms of avalanche susceptibility partitioning, the overall

effect of the integratedmachine learningmodel in this study is

better than that of the traditional single FR model, and the

integrated model susceptibility partitioning maps involving

the MLP model and the LR model have their advantages, but

after a comprehensive comparison, CF-MLP is still the best

performing integrated machine learning model.

4) Based on the CF-MLP model, the area with very high

avalanche susceptibility accounted for 10.01% in the study

area. The area with very high susceptibility is concentrated in

the South of Lingchang Village in Litang County, Genie

Mountains, and both sides of the alpine mountains. Special

attention should be paid to land planning and construction as

well as the safety of residents and tourists in these areas.
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