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Volcanic ash improves the amount of nutritive elements in the lake and ocean, but it is not
fully understood how volcanic ash influences the total organic matter content (TOC) and
bio-precursor, and the scope. A volcanic layer, measuring 5 cm in thickness, was
examined using electron microscopy scanning, TOC/TS, rock pyrolytic, and inorganic
geochemical analyses. The study shows that the TOC content in the overlying shales
increases by 18 wt.% on average, and the vertical scope of influence on shales is twice as
thick as the volcanic layer. Organic matter enrichment is attributed to the fact that the
volcanic layer provides nutritive elements and meanwhile changes the oxidation-reduction
condition. Large variations of hydrogen index (HI) and oxygen index (OI) in the lower and
upper parts of the volcanic layer is related to terrestrial organic matter vanishing, due to
volcanic eruption and subsequently more terrigenous organic matter migrating into the
ocean. Little change of the bio-precursor in the overlying and underlying shales may be
related to the fast restoration within the ocean and land ecosystems after a volcanic
eruption. The decrease in terrigenous sediments indicated by Rb/Sr, Zr/Y, and∑REE after
a volcanic eruption indirectly reflects fast restoration of terrestrial vegetation boom. This
study could decipher the influence of volcanic ash on the qualities of the source rock, which
can provide a better understanding on discovering more economically petroleum
reservoirs in igneous rocks.
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1 INTRODUCTION

Volcanic ash is the eruptive magmas sediments composed of vitric fragments, rock fragments, and
crystal fragments, with a diameter smaller than 2 mm, that may float thousands of kilometers away
(White and Houghton, 2006). Recent studies have shown that volcanic ash may cause an algae bloom
and increase chlorophyll-a content in seawater. This phenomenon is widely observed in marine and
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lake after recent volcanic eruptions (Uematsu et al., 2004; Duggen
et al., 2010; Hoffmann et al., 2012). Therefore, it is of great
significance to demonstrate the impaction of volcanism on the
change of sedimentary environment and the formation of
source rocks.

Preceding studies showed the important effect of volcanic ash
on organic matter enrichment in source rocks (Guoheng Liu
et al., 2019), e.g., the Eagle Ford and Marcellus Shales in the US
(Zeng et al., 2018), the seventh member in the Yanchang
Formation, the Ordos Basin, China (Qing Li et al., 2020;
Zhang et al., 2020), the Lucaogou Formation in the Junggar
Basin (Jingya Zhang et al., 2019; Quanyou Liu et al., 2019;
Shaomin Zhang et al., 2019), the Longmaxi Formation in the
Sichuan Basin (Yan et al., 2018), and oil shales in the Bazhenov
Formation, Russia (Liang et al., 2021).

As for the relation between volcanic ash and black shales in
geologic history, volcanic ash may increase total organic carbon
content (Guoheng Liu et al., 2019; Jingya Zhang et al., 2019;
Shaomin Zhang et al., 2019; Li Li et al., 2020; Qing Li et al., 2020;
Si et al., 2020; Zhang et al., 2020), alter organic matter type (Li Li
et al., 2020; Si et al., 2020), change climate (Tao et al., 2020), and
affect water oxidation-reduction (Liu et al., 2007). However, ash-
bearing source rocks tend to be related to anoxic environments,
marine transgressions, and upwelling currents (Zhao et al., 2020),
which will similarly enrich the organic matter content. Therefore,
it is difficult to separate all these factors and evaluate the effect of
volcanic ash on source rocks. The neritic carbonate platform in
the Maokou Formation is a good candidate to study, in view of its
non-anoxic environment and non-upwelling effect (Gao et al.,
2020).

To assess the influence of volcanic ash on organic matter, the
TOC content, hydrogen index (HI), and oxygen index (OI), of the
shales above and below the volcanic layer are usually used for
comparison to establish the effect of volcanic ash on organic
matter content and type (Zhao et al., 2020). However, these
investigations seldom dealt with the duration of organic matter
deposition, which may be promoted/inhibited by volcanic ash
due to the lack of organic geochemical indexes. The ash thickness
could be affected by the intensity of influence and mechanism.
According to the study of recent volcanic eruptions, volcanic ash
will release salts, which contain P, Fe, and Mn, altering organism
type and content (Hoffmann et al., 2012) when the ash flows into
water. On the other hand, volcanic ash will consume mass
oxygen, changing sediments and water oxidation-reduction
(Haeckel et al., 2001; Hembury et al., 2012; Longman et al.,
2019, 2020). Above variations will be imprinted by inorganic
elements in sediments. This means that it is possible to more
deeply understand the effect of volcanic ash on organic matter
enrichment through detailed high-precision sampling to verify
the change in elements above and below the volcanic layer.

This study involves theMaokou Formation of Middle Permain
containing volcanic ash in the Lengshuixi tunnel section in the
Sichuan Basin, Shizhu County, China. The study focuses on 1)
Terrestrial environmental responses before and after a volcanic
eruption, 2) Perturbation of source organisms by a volcanic
eruption, and 3) TOC variation before and after a volcanic
eruption and the mechanism of volcanic ash effect on organic

matter enrichment. Resulting evaluations are based on the
analysis of volcanic ash type, origin, shale geochemistry, and
organic petrology using organic geochemical, inorganic
geochemical, and mineralogical techniques.

2 GEOLOGIC SETTING

The Paleo-Tethys Ocean became more active during Permian,
which resulted in the fault subsidence of the southern Qinling,
and the origin of a rifted continental margin extending in a
northwest direction in western Sichuan and western Yunnan (Ji
et al., 1997). At the end of the Permian Period, the Emei basalts as
covered with 250,000 km2. The lava sheet was mainly composed
of basaltic and andesitic volcanic rocks in the lower part and felsic
volcanic rocks in the upper part (Xu et al., 2001; Xiao et al., 2004).
Felsic volcanic rocks (rhyolites and trachytes) have been reported
to locally occur in Binchuan and Panzhihua (Shellnutt and Jahn,
2010; Xu et al., 2010).

During the Middle Permian Epoch, in the Maokou Formation
of the upper Yangtze region, deposits of a carbonate platform
environment were formed and were composed of bioclastic
limestones, micrite, and some shales (Figure 1A). The study
samples were acquired from a lithologic association of 60 cm
thick, consisting of marls, shales, and volcanic tuffs. These
samples were obtained from an outcrop section in the
Maokou Formation of Middle Permain close to the Lengshuixi
tunnel in Shizhu County, Chongqing. In this outcrop section,
5 cm of volcanic ash is sandwiched between two 25 cm layers of
greyish black shale, apart from which there are grey marls. A
significant amount of moss was growing on the volcanic ash,
while only some scattered moss grew on the overlying and
underlying black shales (Figure 1B).

3 MATERIALS AND METHODOLOGY

The weathering surface was removed first, followed by sampling.
25 samples were acquired from the 60 cm thick lithologic
association in the Maokou Formation, among which 14 were
from underlying formations of volcanic ash, four from volcanic
ash, and seven from overlying formations of volcanic ash. As for
volcanic ash, overlying shales, and underlying shales, each layer
was acquired with one moss sample.

Volcanic ash samples were observed using a field emission
scanning electron microscope (SEM). The samples were first
prepared in 1 cm3 cubes, and then the natural fracture surfaces
were sprayed with gold using a coater. Mineral geometry and
structure were observed in a high vacuum condition of the
scanning electron microscope and the elements were checked
using energy spectra. The accelerating voltage was set at 15 kV.
The experiments were performed at the School of Geoscience and
Technology, Southwest Petroleum University, China.

TOC/TS testing was carried out using an organic carbon/
sulphur analyzer (CS230SH) for all 26 samples. Before
conducting the experiments, all the samples were cleaned
using hydrochloric acid to eliminate inorganic carbon and
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ions on the surface, e.g., Na, Cl, and Ca, and finally dried in an
oven. These experiments were performed at the State Key
Laboratory of Oil and Gas Reservoir Geology and
Exploitation, China.

Pyrolytic experiments were made by Delsi Rock-Eval RE II. As
the temperature increased, liquid hydrocarbons (S1) were released
first, followed by cracked hydrocarbons (S2) as well as carbon
dioxide and carbon monoxide (S3). HI = (100 × S2)/TOC; OI =
(100 × S3)/TOC.

The 25 samples were carried out for major elements, trace
elements, and rare Earth elements (REE). Powdered samples, of
200mesh, were dissolved using aqua regia. Nitric acid-hydrofluoric
acid digestion ICP-MSwas employed, and a PlasmaQuantMS Elite
ICP-MS analyzer was used during this procedure. International
reference samples OU-6, AMH-1, and GBPG-1 were used for

quality control with an analytical error of less than 10%. Refer to
Ling et al. (2021) for detailed workflow. For all the samples, the
analytical error was estimated to be less than 5%. The experiments
of major elements, trace elements, and REEs were made in State
Key Laboratory of Ore Deposit Geochemistry-Institute of
Geochemistry, Chinese Academy of Sciences.

With respect to ash analysis, the moss samples were cleaned
using absolute ethyl alcohol, a minimum of 10 times, or until the
dust and shale powder on the surface were eliminated. The
samples were dried at normal temperature and then ground to
an 80 mesh size. Each sample of 0.5 g was weighed and put into a
polytetrafluoroethylene beaker for aqua fortis digestion. Element
detection was made using the ME-VEG41gt method. The
experiments were performed in ALS Minerals, Guangzhou,
China.

FIGURE 1 | Outcrop location (A) and the micro section composition (B) [A modified from Luo (2009)].

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8796543

Meng et al. Ash Promotes OM Enrichment

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


4 RESULTS

4.1 Volcanic Ash Minerals
Clay and quartzes were the major minerals detected. The content
of clay minerals, which may be the product of volcanic debris
alteration, was as high as 90%. Quartzes in volcanic ash turn up in
two forms. One is a hairline-like hollow tube known as Pele’s hair,
with an outer diameter of 24 μm, tube thickness of 1.46 μm, and
length of 29.23 μm (Figures 2A–C). EDS energy spectra showed
essential constituents of Si and O as well as some Fe, Ca, Al, Mg,
and Zr (Figures 2A,C). The other is microcrystalline quartz-like
aggregate with a particle diameter of 5.33–8.93 μm, major
elements of Si and O, and some Mg and Zr (Figure 2D).

4.2 Organic Matter Content, TS, and Rock
Pyrolysis
The section being examined included five layers; volcanic ash,
overlying and underlying shales, and upper and lower mud shales
(Figure 1B).

The overlying shale layer exhibits the highest TOC content at
0.856–1.140 wt.%, with an average of 1.056 wt.%. This is followed by
the underlying shale layerwith aTOCcontent of 0.827–0.948 wt.% and
an average of 0.892 wt.%. The TOC content ranges from 0.283wt.% to
0.769 wt.%, with an average of 0.506 wt.% in the volcanic ash layer,
which are smaller than those in the overlying and underlying shale
layers. The TOCcontent ranges from0.240 wt.% to 0.793 wt.%with an
average of 0.524 wt.% in the upper and lower marl layers.

The TS content was 0.095, 0.017, and 0.068% in the underlying
shales, volcanic ash, and overlying shales, respectively. The value

first decreases and then increases from the lower layer to the
upper layer. (Figure 3A).

S1, S2, S3, HI, and OI are shown in Figure 4. HI and OI do not
vary greatly in the overlying and underlying shales, but they are
obviously different in volcanic ash-I and volcanic ash-II. OI is higher
in the volcanic ash-I than in the volcanic ash-II, whereas HI is lower
in the volcanic ash-I than in the volcanic ash-II (Figure 3A).

4.3 Inorganic Elements
4.3.1 Major Elements
Ca content ranges from 10.70 to 22.30% in the marl layers, which
is remarkably higher than in the shale layers, from 0.31 to 0.54%
and volcanic ash layer from 0.45 to 0.55% (Table 1, Table 2;
Figure 3B). Both shale layers show similar Ca and Mg contents,
but Al, K, and Ti contents in the lower shale layer are higher than
in the upper shale layer (Table 2; Figure 3B). Al, K, and Ti
contents slightly increase in the lower shale layer and slightly
decrease in the upper shale layer (Figure 3B).

In the moss sample from the volcanic ash layer, the Ca, Mg, K,
Fe, P, and Mn contents are higher than in the samples from the
shale layers, except for the S content. (Figure 4).

4.3.2 Trace Elements
MoEF, UEF, and VEF contents were generally less in the lower shale
layer than in the upper shale layer (Table 2; Figure 3B). Fe and P
contents were higher in the shale layers and volcanic ash layer
than in the marl layers, but lower shales showed slightly higher Fe
and P contents than upper shales (Table 2; Figure 3B). Cu/Al and
Zn/Al were predominantly less abundant in lower shales than in
upper shales (Table 2; Figure 3B).

FIGURE 2 | SEM photos of quartzes in volcanic ash. (A–C): hairline-like hollow quartzes. (D): Aggregative quartzes.
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The contents of immobile elements, e.g., Hf, Nb, Sn, Ta, Th, and
Zr, and ∑REE slightly increased from the deepest level in lower
shales and slightly decreased from the lowest level in upper shales

(Figure 3C). Zr/Y was more plentiful in lower shales than in upper
shales. Rb/Sr increases upward in lower shales and basically remains
unchanged in upper shales with decreased value (Figure 3C).

FIGURE 3 |Organic and inorganic geochemistry characters for different part of the micro section. (A): Vertical distributions of TOC, TS, S1, S2, S3, HI, and OI in the
volcanic ash layer and upper and lower layers; (B): Vertical distributions of major elements and other elements; (C): Contents of immobile elements and vertical
distributions of Zr/Y and Rb/Sr the lowest plain represents Lower Marl, the Lower pink means Lower shale and the blue belt for volcanic ash. The upper pink is for Upper
shale and the plain part in the top is for Upper Marl in Figure 1B.
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After mantle normalization of incompatible elements in
volcanic ash, the spider diagram shows enriched large ion
lithophile (LIL) elements (Cs, Rb, K, Ba, Sr, and Eu) and
depleted high field strength (HFS) elements (Figure 5).
Some elements (Ba, Nb, Ta, Sr, Zr, and Ti) are notably
depleted (Figure 5).

4.3.3 REEs
Sedimentary rock and volcanic ash samples were normalized
separately using post-Archean Australian shales and chondrites.
As for sedimentary rocks, two marl layers showed a flat REE
pattern (Figure 6A), which is similar to that of the marls in the
Permian Maokou Formation (Su et al., 2020). Two shale layers
showed a REE pattern of depleted light REEs, negative Ce/Ce*
anomaly, and positive Y anomaly. The Ce/Ce*, an anomaly in the
lower shales, was measured at 0.49–0.90, with an average of 0.70
at n = 8. This was higher than the upper shales at 0.42–0.50, with
an average of 0.47 at n = 6. A LaN/SmN value of 0.74–1.09, with an
average of 0.89 at n = 8, in the lower shales, was less than in the
upper shales at 0.98–1.46, with the average of 1.09 at n = 6. This
indicates more enriched REEs in the lower shales than in the
upper shales (Figures 6B,C).

As for the volcanic ash REE pattern, a LaN/YbN value of
7.23–8.85, indicates more enriched light REEs (Table 3, Table 4).
The Eu/Eu* value of 0.58–0.62, indicates a notable negative Eu/
Eu* anomaly (Table 4; Figure 6D).

5 DISCUSSIONS

5.1 Volcanic Ash Origin and Type
SEM observation show the hollow quartz known as Pele’s hair
(Figure 2), is a typical kind of highly elongated volcanic debris
(Duffield et al., 1977; Cannata et al., 2019). This denotes an
intermediate-acidic magma eruption. The chondrite-normalized

FIGURE 4 | Comparison of essential element content in the moss
samples from the tuff layer and shale layers.

TABLE 1 | TOC, TS, S1, S2, S3, HI, and OI in the volcanic ash layer and upper and lower layers in the Lengshuixi section of the Maokou Formation.

Thickness
(cm)

Lithology TOC (wt%) TS (%) S1

(mg HC/g)
S2

(mg HC/g)
S3

(mg HC/g)
HI OI

1.9 1a 0.517 0.073 0.007 0.033 0.045 6.43 8.75
7.4 1 0.484 0.070 0.003 0.018 0.053 3.80 10.86
12.0 1 0.387 0.046 0.003 0.035 0.044 8.94 11.49
15.1 1 0.24 0.029 0.007 0.032 0.128 13.31 53.45
18.5 1 0.559 0.075 0.002 0.005 0.040 0.94 7.16
22.0 1 0.686 0.093 0.001 0.026 0.062 3.77 9.02
24.0 2 0.867 0.120 0.016 0.047 0.097 5.45 11.19
25.2 2 0.948 0.100 0.001 0.016 0.061 1.70 6.38
26.8 2 0.942 0.140 0.004 0.018 0.063 1.87 6.67
28.0 2 0.922 0.110 0.012 0.042 0.121 4.52 13.11
29.4 2 0.921 0.098 0.007 0.044 0.097 4.73 10.55
30.8 2 0.838 0.074 0.007 0.032 0.113 3.79 13.43
32.1 2 0.827 0.059 0.011 0.048 0.139 5.83 16.83
33.9 2 0.868 0.055 0.005 0.029 0.101 3.31 11.61
35.1 3 0.487 0.020 0.017 0.021 0.185 4.40 38.08
36.9 3 0.484 0.012 0.011 0.025 0.152 5.14 31.34
38.1 3 0.283 0.007 0.010 0.045 0.033 15.73 11.64
39.8 3 0.769 0.028 0.009 0.036 0.045 4.67 5.80
41.0 2 1.13 0.055 0.007 0.006 0.158 0.50 13.97
42.1 2 1.08 0.058 0.007 0.029 0.122 2.73 11.32
44.0 2 1.06 0.063 0.008 0.029 0.086 2.69 8.15
45.4 2 1.14 0.070 0.004 0.008 0.087 0.71 7.63
47.0 2 1.07 0.091 0.008 0.043 0.120 3.99 11.23
48.4 2 0.856 0.072 0.004 0.043 0.093 5.06 10.86
55.4 1 0.793 0.054 0.001 0.029 0.123 3.71 15.54

aLithology type:1 represents Grey marlstone; 2 represents Black Shale, 3 represents Volcanic ash, the same in blow tables.
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REE pattern with enriched light REEs, depleted heavy REEs, and
negative Eu anomaly (Figure 6D) indicates evident plagioclase
fractional crystallization before magmatic exhalation, which also
indicate the acidic magma eruption (Rollison et al., 2000).
Negative Sr, Ti, Ba, and P anomalies in the spider diagram of
incompatible elements after primitive mantle normalization
(Figure 5) indicate a lot of feldspar, apatites, and

titanomagnetite detached by magma splitting to finally form
rhyolites (Xu et al., 2010). The crossplot of Nb/Y-Zr/TiO2 also
indicates the zone of rhyodacite/dacite (Figure 7), which agrees
with the conclusion of Middle Permian eruptive rock types in
Zhou et al. (2020).

Elements of volcanic ash may also contain implicit
information of geological settings. The La/Nb value of
2.24–2.77 is much higher than the value of 0.94 on average
(Table 4) in the primitive mantle and slightly higher than the
value of 2.2 in the continental crust (Saunders et al., 1988).
Enriched LIL elements and depleted HFS elements represent
the geochemical features similar to island arc/epicontinental
arc volcanic rocks relative to the subduction effect (Figure 5).
The crossplot of Zr-Ti indicates the distribution of these elements
in arc magmas (Figure 7). Thus, it was concluded that magma
origin is related to oceanic crust subduction.

5.2 Terrestrial Environment Change
Indicated by Terrestrial Input Before and
After a Volcanic Eruption
Terrestrial input index is a good indicator in land ecosystem and
tectonic activity. Physical and chemical weathering intensity in a
source area for shale depositions are represented using ∑REE
and the ratios of Rb/Sr and Rb/Y, respectively, where the higher
value corresponds to the more intense weathering (Chen et al.,
1999; Wei et al., 2001; Jin et al., 2006). Terrestrial input
indicators include Al, Ti, Hf, Nb, Sn, Ta, Th, and Zr, which
indicate a small degree of activity and less liable to move from

TABLE 2 | Contents and ratios of representative elements in the five layers in the Lengshuixi section.

Thickness
(cm)

Lithology Al (%) Ca (%) Mg (%) K (%) Ti (%) Fe (%) p
(ppm)

Cu/
Al

Zn/
Al

MoEF UEF VEF

1.9 1 0.50 20.30 6.38 0.06 0.028 0.28 40 10.80 27.13 4.37 56.57 4.49
7.4 1 0.49 21.50 5.06 0.07 0.031 0.30 40 10.61 17.66 4.35 50.73 4.27
12.0 1 0.46 22.30 4.89 0.07 0.028 0.26 40 11.96 17.21 4.87 57.14 5.85
15.1 1 0.54 15.40 8.34 0.06 0.028 0.27 50 10.56 17.05 4.64 23.28 6.37
18.5 1 0.52 17.80 7.50 0.06 0.027 0.28 40 10.19 14.20 4.10 31.87 7.05
22.0 1 0.49 10.70 11.40 0.05 0.025 0.24 40 10.61 15.61 3.70 22.74 6.87
24.0 2 0.84 0.41 16.30 0.08 0.040 0.42 100 9.64 18.51 1.97 7.82 9.43
25.2 2 0.87 0.47 15.15 0.08 0.043 0.43 80 10.00 18.71 3.37 9.20 6.79
26.8 2 0.82 0.45 15.65 0.07 0.040 0.40 70 10.85 21.61 3.25 9.06 7.29
28.0 2 1.00 0.54 14.70 0.11 0.058 0.59 120 12.60 20.13 2.51 10.57 6.95
29.4 2 1.11 0.37 16.00 0.15 0.055 0.57 140 9.46 17.25 2.59 6.18 5.32
30.8 2 0.86 0.36 16.30 0.10 0.039 0.40 70 9.88 13.22 2.48 6.98 6.17
32.1 2 1.36 0.41 15.85 0.19 0.061 0.64 100 8.38 12.45 2.24 5.25 4.12
33.9 2 1.01 0.40 16.55 0.13 0.047 0.49 80 9.41 12.91 2.53 6.79 5.40
35.1 3 7.54 0.52 4.57 1.48 0.399 3.58 340 4.03 10.36 1.34 1.78 1.47
36.9 3 7.23 0.55 4.37 1.48 0.383 3.38 350 4.19 9.11 1.56 1.86 1.43
38.1 3 7.00 0.45 3.21 1.58 0.433 3.17 280 3.50 9.13 1.15 1.71 1.35
39.8 3 4.93 0.54 7.68 0.92 0.241 2.37 290 4.75 10.39 1.75 2.61 1.88
41.0 2 0.88 0.38 15.05 0.11 0.045 0.44 90 13.41 12.72 4.06 9.42 7.31
42.1 2 0.73 0.45 15.55 0.07 0.037 0.37 90 13.01 14.41 3.65 10.57 8.91
44.0 2 0.70 0.41 16.20 0.07 0.035 0.30 70 11.00 13.98 2.90 10.61 9.51
45.4 2 0.64 0.40 16.10 0.06 0.031 0.25 120 11.09 16.13 2.25 10.71 9.58
47.0 2 0.73 0.38 16.55 0.08 0.036 0.38 70 11.37 17.15 3.07 9.00 8.81
48.4 2 0.48 0.31 17.50 0.05 0.020 0.19 60 9.17 20.29 3.22 7.74 8.41
55.4 3 0.17 17.70 9.42 0.02 0.007 0.06 30 21.18 26.42 6.90 58.82 11.87

Computing method of MoEF, UEF, and VEF: XEF = (X/Alsample)/(XPAAS/AlPAAS), where PAAS, indicates post-Archean Australian shales (Taylor and McLennan, 1986).

FIGURE 5 | Spider diagram after mantle normalization of the elements in
volcanic ash in the Lengshuixi section of the Maokou Formation. Convergent
plate marginal magmatic island arc data are taken from Huang et al., 2018).
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volcanic ash into sea water (Zielinski, 1985; Hints et al., 2015;
Kiipli et al., 2017).

The∑REE content and Rb/Sr value increases in the underlying
shale layer (Figure 3C), which indicates intensified the physical
weathering and chemical weathering on land. It is unusual to
observe this slight increase in the contents of immobile elements,
e.g., Al, Ti, Hf, Nb, Ta, and Zr (Figure 3C), because immobile
elements tend not to move from volcanic ash into surrounding
formations (Hints et al., 2015; Liao, 2020). Such a trend of
increasing in the underlying layer indicates the effect from the
intensified terrestrial input instead of volcanic ash alteration. This
corresponds with our observation of intensified terrestrial input
into the Permian Period microbialite underlying layer of volcanic
ash (Liao, 2020).

In fact, the volcanic ash beds originated from an island arc
eruption. There may be related to the epicontinental uplift (Fisher
and Smith, 1991; Sak et al., 2009; Di Capua and Scasso, 2020) and
earthquakes (López et al., 2012) before an island arc eruption. For
example, precursory monitoring of the 2011 volcanic eruption in
El Hierro, Spain, recorded 10,000 earthquakes with the largest
surface deformation exceeding 5 cm before the volcanic eruption
(López et al., 2012). Land uplift and earthquakes will intensify the
terrestrial input effect (Crisafulli and Dale, 2018), and the product
of terrestrial input will migrate into the ocean via geologic
processes (Xu et al., 2009). Coincidentally, the underlying
shale layer shows obviously higher LaN/SmN, indicating a

degree of light-middle REE enrichment, which denotes an
intensified river input, compared to the overlying shale layer
(Table 3; Figures 6B,C). This implies that mass terrestrial
materials in the weathered zone were transported by rivers to
the ocean, resulting in more terrestrial input into the underlying
shale layer of volcanic ash (Figure 8A).

Smaller ∑REE, Zr/Y and Rb/Sr in the overlying shale layer,
than in the underlying shale layer (Figure 3C), indicates declined
weathered input. A land ecosystem tends to be seriously
destroyed by a volcanic eruption, which will then enhance
subsequent terrestrial input. Liao (2020) discovered mass
extinction of terrestrial biota and significantly increased
terrestrial input on the volcanic ash deposits at the transition
from the Permian to the Triassic Period. However, this study of
the Maokou Formation observed a significant decrease in
volcanic eruption. This may be attributed to a small-scale
eruption which did not remarkably alter the land ecosystem.
N.N. Li (2020) observed sporopollenin and found basically
unchanged arboreal sporopollen and shrubby sporopollen,
slightly increased sedgy pollen, and notably increased
sphagnum after the volcanic eruption in the Holocene Epoch
of northeast China. This implies that volcanic eruptions do not
ruin land ecosystems but instead promote plant growth
(Figure 8B). As a result, the bloom of land plants surpassed
the weathering effect in the land-source area. It should be noted
that the area of interest was less affected by the volcanic eruption

FIGURE 6 | REE patterns of the volcanic ash and overlying and underlying rocks in the Lengshuixi section of the Maokou Formation. PAAS represents post-
Archean Australian shales with their REE data taken from Taylor and McLennan (1986); chondrite REE data are taken from Boynton (1984) (A). low and upper marl;
(B).lower shale; (C).upper shale; (D).volcanic ash.
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TABLE 3 | REE contents and representative element ratios in the upper and lower marl and shale layers, the Lengshuixi section.

Thickness
(cm)

Lithology La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ∑REE Ce/
Ce*

Eu/
Eu*

LaN/
SmN

Zr/
Y

Rb/
Sr

1.9 1 2.3 4.6 0.52 2.0 0.36 0.06 0.33 0.05 0.34 2.9 0.07 0.22 0.03 0.20 0.03 14.0 0.97 0.02 0.93 3.79 0.01
7.4 1 2.4 5.0 0.57 2.1 0.42 0.07 0.36 0.06 0.38 3.0 0.08 0.24 0.04 0.23 0.04 15.0 0.98 0.02 0.83 3.67 0.00
12.0 1 2.5 5.0 0.58 2.2 0.44 0.07 0.37 0.06 0.37 3.2 0.08 0.24 0.03 0.22 0.04 15.4 0.96 0.02 0.83 2.81 0.00
15.1 1 1.7 3.7 0.43 1.6 0.32 0.05 0.27 0.05 0.30 2.5 0.06 0.20 0.03 0.20 0.03 11.4 0.99 0.01 0.78 4.00 0.00
18.5 1 1.8 3.8 0.43 1.6 0.32 0.05 0.29 0.05 0.30 2.5 0.07 0.20 0.03 0.20 0.03 11.7 0.99 0.01 0.82 4.00 0.00
22.0 1 1.6 3.2 0.36 1.3 0.27 0.04 0.24 0.04 0.26 2.2 0.06 0.18 0.03 0.18 0.03 10.0 0.97 0.01 0.87 4.09 0.01
24.0 2 3.6 6.9 0.88 3.3 0.71 0.13 0.65 0.10 0.63 4.8 0.13 0.39 0.06 0.36 0.06 22.7 0.89 0.06 0.74 3.13 0.17
25.2 2 4.4 8.0 0.94 3.4 0.69 0.12 0.65 0.10 0.61 5.4 0.13 0.38 0.06 0.39 0.06 25.3 0.90 0.06 0.93 3.15 0.15
26.8 2 4.3 4.8 0.86 3.2 0.59 0.11 0.58 0.09 0.55 5.0 0.13 0.39 0.06 0.36 0.06 21.1 0.57 0.05 1.06 3.20 0.14
28.0 2 7.0 6.7 1.38 5.2 0.94 0.16 0.89 0.14 0.91 8.1 0.20 0.60 0.09 0.55 0.09 33.0 0.49 0.11 1.09 3.09 0.16
29.4 2 7.5 10.5 1.72 6.5 1.23 0.22 1.11 0.15 0.85 7.2 0.19 0.52 0.07 0.45 0.07 38.3 0.67 0.19 0.89 2.78 0.30
30.8 2 5.1 7.7 1.22 4.6 0.89 0.17 0.80 0.11 0.59 5.1 0.13 0.37 0.05 0.30 0.05 27.2 0.71 0.10 0.84 2.75 0.24
32.1 2 7.8 13.4 1.91 7.4 1.42 0.28 1.31 0.19 1.13 8.2 0.22 0.64 0.09 0.56 0.08 44.6 0.80 0.28 0.80 2.56 0.38
33.9 2 6.3 7.6 1.56 5.9 1.16 0.23 1.04 0.15 0.87 6.1 0.17 0.48 0.07 0.40 0.06 32.1 0.56 0.18 0.79 2.62 0.29
41.0 3 6.0 6.1 1.33 4.9 0.88 0.18 0.85 0.13 0.75 6.6 0.15 0.45 0.05 0.37 0.06 28.8 0.50 0.11 1.00 2.42 0.23
42.1 3 6.3 5.6 1.38 5.2 0.94 0.18 0.91 0.13 0.76 6.0 0.15 0.37 0.06 0.36 0.06 28.4 0.44 0.12 0.98 2.33 0.13
44.0 3 5.2 4.9 1.07 4.0 0.69 0.13 0.64 0.09 0.57 5.4 0.11 0.33 0.04 0.28 0.04 23.5 0.48 0.06 1.10 2.41 0.13
45.4 3 5.9 4.9 1.24 4.6 0.82 0.15 0.77 0.11 0.57 5.5 0.13 0.38 0.05 0.32 0.05 25.5 0.42 0.09 1.05 2.18 0.11
47.0 2 6.4 6.2 1.32 5.0 0.93 0.17 0.76 0.13 0.82 6.5 0.17 0.49 0.07 0.42 0.06 29.4 0.49 0.10 1.01 2.15 0.17
48.4 2 1.7 1.4 0.25 0.9 0.17 0.04 0.22 0.03 0.27 2.7 0.06 0.16 0.02 0.13 0.02 8.1 0.48 0.01 1.46 2.96 0.13
55.4 3 1.7 3.6 0.39 1.5 0.32 0.06 0.32 0.05 0.32 2.7 0.07 0.21 0.03 0.18 0.03 11.5 1.02 0.01 0.78 1.11 0.00

Ce/Ce* = 2CeN/(LaN + PrN); Eu/Eu* = 2EuN/(SmN + GdN). Post-Archean Australian standardized data are taken from Taylor and McLennan (1986).
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due to the long distance from the crater, which cannot be
excluded from the results.

5.3 Bio-Precursor Change During and After
Volcanic Eruption
Volcanic eruptions bring forth wildfires and elementary
substances, which may change ocean and land ecosystems
(Cui et al., 1997; Crisafulli and Dale, 2018) and consequently
the bio-precursor types. HI and OI could be used to indicate the
change of the bio-precursor type in sediments. HI denotes
hydrogen richness in organic matter, and OI denotes oxygen
richness in organic matter. A high HI indicates strong
hydrocarbon generation capacity. For example, bacteria and
algae with high lipid content exhibits high HI. A high OI
indicates poor hydrocarbon generation capacity. High content
of terrestrial plants corresponds to high OI. Thus, we could use HI
and OI to estimate the change in source organism type/organic
matter type (Peters et al., 2005).

Volcanic ash-I feature increased OI and decreased HI
(Figure 3A). The increase in OI is dominated by volcanic
eruption-induced wildfires, which causes leaves to drop and
trees to burn (Cui et al., 1997). A large amount of land plant
fragments is transported by air or rivers to oceans, which
increases the content of terrestrial organic matter in an ocean
(Scott, 2010) (Figure 8C). This causes a sharp reduction in the
biodiversity of an ocean (Hints et al., 2003; Perrier et al., 2012)
and when organisms die, many corrosive animals first migrate
into this area (Walker et al., 2013). Organic matter is consumed
and not preserved in the formations (Figure 8C), eventually
leading to increased OI and decreased HI.

Volcanic ash-II eruptions feature increased HI, and decreased
OI, which are attributed to zero terrestrial organic matter
transportation from the land. The existence of residual
organisms, like algae in the ocean (Walker et al., 2013)
(Figure 8D), give rise to increased HI and decreased OI.

However, a HI of 2.6 and OI of 10.5, on average, in the
overlying shale layer are similar to the HI of 3.9 and OI of 11.2, on
average, in the underlying shale layer. This mostly likely indicates
a zero change in source organism type in the shales after a
volcanic eruption. In fact, the land and ocean ecosystems may
quickly recover after a volcanic eruption. A plankton and benthos
food chain in the ocean could be rebuilt within a few years, and
remnant land plants could be revitalized in less than 2 years
(DeGange et al., 2010). Therefore, consistent HI and OI in
underlying and overlying shale sediments may be related to
regenerating organic matter in ocean and land environments.
(Figure 8B).

5.4 Volcanic Action on Organic Matter
Enrichment and Its Mechanism
5.4.1 Influence on Organic Matter Content Content
and Vertical Range of Influence
HI and OI almost remain unchanged in the overlying shales, but
further discussion on the volcanic ash effect on the TOC content
is needed. Compared with the underlying shale layer, the
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overlying shale layer shows increased TOC content by 18%
(Figure 3A). In the vertical direction, the TOC content
significantly decreases in the upper level of the overlying shale
layer (Figure 3A), which means that the largest range of influence
doubles the thickness of the volcanic ash layer.

To clarify, further assessment is needed to determine if the TOC
content in the underlying shale layer should be used as a background
value because the TOC in this layer may be diluted by increased
terrestrial inputs at the dispositional stage of shales. As for
underlying shale samples, the TOC content hardly decreases with

FIGURE 7 | Nb/Y-Zr/TiO2 (Winchester and Floyd, 1977) and Zr-Ti (Pearce, 1982) crossplots for volcanic ash samples from the Lengshuixi section in the Maokou
Formation [reproduced from Huang et al. (2018)]. Wangpo-shale volcanic ash data was taken from (Pearce, 1982); the data of the volcanic ash from the Wujiaping-
Changxing Formations in the Shangsi section was taken from Huang et al. (2018); the data of rhyolites and trachytes from the Emei Mountain were taken from Xu et al.
(2001), Fan et al. (2008), He et al. (2010), Qi et al. (2008), Xiao et al. (2003), Xiao et al. (2004); the data of the last-phase volcanic ash from the Upper Permian Series in
southeast China was obtained from Liao et al. (2016a), Liao et al. (2016b); post-Archean Australian shale data was taken from McLennan (2018).

FIGURE 8 | Mechanism of a volcanic action on organic matter enrichment in a neritic carbonate platform environment. (A) Topographic rise, enhanced
earthquakes, andmore terrestrial inputs before a volcanic eruption. (B) Synergistically increased ocean and land productivity after a volcanic eruption. (C) Land plants die
and consequently increase input of terrestrial organic matter in phase-I of a volcanic eruption. (D) Decreased input of terrestrial organic matter and remnant organisms,
like algae, in phase-II of a volcanic eruption.
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∑REE content, Rb/Sr, and the content of immobile elements
(Figure 3). This confirms the findings that terrestrial inputs were
not sufficient enough to significantly alter the TOC content in the
underlying shale layer at its depositional stage. Thus, it is appropriate
to use the TOC content in the underlying shale layer as a background
value to estimate TOC increment by volcanic ash.

5.4.2 Volcanic Ash Nourishment for Organism Growth
Increased TOC content in the overlying shale layer was related to
improved paleoproductivity. Studies show that modern eruptive
volcanic ash contains many nutritive elements, including volatile
compounds, e.g., NH4

+, NO3
−, PO4

3−, and SiO2, and trace
elements, e.g., Al, Cd, Co, Cu, Mn, Ni, Pb, and Zn (Frogner

FIGURE 9 | Nutritive element loss based on intrusive rock data from south China [after Zhao et al. (2020)]. Black lines indicate plutonite data from the South China
plate; four dotted lines indicate the loss of 25, 50, 75%, and 90, respectively. Wangpo-shale volcanic ash data was taken from Huang et al. (2016); the data for the
volcanic ash from the Wujiaping-Changxing Formations in the Shangsi section was taken from Huang et al. (2018); the data of rhyolites and trachytes from the Emei
Mountain were taken from Xu et al. (2010); the data from the last-phase volcanic ash of the Upper Permian Series in southeast China, was taken from (Liao et al.,
2016a; Liao et al., 2016b); and post-Archean Australian shale data was taken from McLennan (2018).

FIGURE 10 | Schematic element movement, chemical reactions, and the effects on productivity and oxidation-reduction conditions close to the volcanic ash layer.
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et al., 2001; Witham et al., 2005; Frogner Kockum et al., 2006;
Duggen et al., 2007; Jones and Gislason, 2008). In particular, the
element Fe, may greatly promote productivity (Zeng et al., 2018)
because the oceans in geologic history usually assumed Fe
deficiency (Duggen et al., 2010). This study showed much
higher Fe content in volcanic ash than in overlying and
underlying shales of the volcanic ash layer (Figure 3B).
Figure 9 shows a Fe loss of 50%, which agrees with the results
of Lee et al. (2018) and Zhao et al. (2020). Thismeans Fe in volcanic
ash travelled into the iron-deficient environment Lee et al. (2018).

Element P, is a basic element of marine plankton and an
important component of all organisms. P is widely used as a
paleoproductivity indicator (Hints et al., 2015). Figure 9 shows P
loss of over 75% in volcanic ash. Fe and P migrating from the
volcanic ash layer into the overlying shale layer may boost the
productivity in the overlying layer.

In addition, important micronutrients (e.g., Cu and Zn) in the
ocean, are also limited-elements which could extensively stimulate
ocean productivity and plankton accumulation (Brumsack, 2006).
The ratio of element to Al could be used to exclude the effect of
terrestrial input. For example, Cu/Al and Zn/Al. The Cu/Al value is
obviously higher in the overlying shale layer than in the underlying
shale layer (Figure 3B). The value of Zn/Al in the overlying shale
layer increases with the distance to volcanic ash within 8 cm
(Figure 3B), which is in agreement with the thickness of TOC

increment. This means that in addition to terrestrial input, some
Cu and Zn originated from volcanic ash and were re-deposited in
water. In addition to increased Cu and Zn in volcanic ash observed
in this study, Hints et al. (2015) observed remarkably increased P
and Ca in the marls above bentonite, and Wang et al. (2021)
showed increased P, Ni, and Cu in the shale layer above the
volcanic ash layer. All these elements could improve
paleoproductivity (Hints et al., 2015; Wang et al., 2021).

The moss sample from volcanic ash was compared with the
analogues from shales to further confirm the direct effect of elements
on plant growth. Moss is a transition group from aquatic plants to
terrestrial plants. As per outcrop observation, the moss was more
flourishing in volcanic ash than in the overlying and underlying
mud shales (Figure 2). In accordance with the comparative study of
the essential elements in moss, i.e., Ca, Mg, K, Fe, P, S, and Mn,
additional element content was higher in the moss sample from
volcanic ash than in the analogues from overlying and underlying
shales, except S (low S content in volcanic ash) (Figure 4).

The essential elements mainly originate from atmospheric
sedimentation and growth matrix. The former mainly includes
atmospheric precipitation with dry (humid) dust fall, and the
latter includes rocks and soil (Tuttle et al., 1986). The element
discrepancies between two moss samples, with a difference of
length in growth to be less than 1m, and these are obviously
related to growth matrix instead of atmospheric sedimentation.

FIGURE 11 | Crossplots of (A)MoEF vs UEF, (B) TOC vs MoEF, (C) TOC vs UEF, and (D) TOC vs VEF. Three dotted lines in (A) represent that the MoEF/UEF has a
value of 0.3, 1, and 3 times that of sea water. The zone with graduated color indicates U-Mo covariance in a normal open ocean environment, and the green zone
indicates U-Mo covariance with the effect of metal particle carriers [modified from Algeo and Tribovillard (2009)].
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Further, Figure 3B shows that volcanic ash accumulates these
essential elements. This means that moss growth was promoted
by high-content essential elements migrating from volcanic ash into
moss plants. Therefore, it can be inferred that volcanic action on
TOC enrichment may be attributed to enough essential elements in
volcanic ash for plant or algae growth and metabolism. It is worth
mentioning that, with the existing means, we’re not sure that
nutrients in volcanic ash are is the only sole thing trigger that
could boost moss growth because the ash has higher permeability
and moisture content.

5.4.3 Volcanic Ash Effect on Oxidation-Reduction
Volcanic ash may change the redox properties of sediments. After
volcanic ash deposition, Fe2+ generated by volcanic ash bonded
with silicate and oxidized by O2 will form Fe3+ and Fe(OH)3
precipitates. In this process, O2 in and below volcanic ash will be
consumed sharply (Hembury et al., 2012) and even exhausted
when the volcanic ash layer is thicker than 3 cm (Haeckel et al.,
2001). After that, Fe(OH)3 will function as the oxidizing agent to
oxidize methane, when methane is produced. Meanwhile,
Fe(OH)3 itself will be reduced into Fe2+ (CH4 + 8Fe(OH)3 +
15H+ → HCO3

− + 8Fe2+ + 21H2O) (Luo et al., 2020) and go into
water column once again (Figure 10).

Water column of the volcanic ash may also be affected by
volcanic ash. Figure 3A shows quickly declining TS content in the
volcanic ash layer as well as in the overlying and underlying shale
layers. Subsurface sulfur elements usually turn up in the forms of
elemental sulfur, sulfates, disulfides, and compounds bonded with
organic matter (Tuttle et al., 1986). Sulfur will be consumed by
sulfate reducing bacteria in a reducing condition (2CH2O+
SO4

2−→ 2HCO3
− + H2S) (Boetius et al., 2000). In the shallow

oxidized carbonate platform, volcanic ash provides a reducing
condition for sulfate reaction (Figure 10), which led to the
decrease in TS content in the overlying and underlying layers of
volcanic ash. Organic matter enrichment was more affected by
volcanic ash in the overlying shale layer than in the underlying
shale layer because underlying shales were in an oxidizing
environment at the depositional stage, whereas overlying shales
had already been affected by volcanic ash at the depositional stage.

The difference between MoEF enrichment and UEF

enrichment, in different reducing conditions, could be used to
indicate the oxidation-reduction conditions at the depositional
stage (Algeo and Tribovillard, 2009). Figure 11A shows that
samples from the overlying shale layer were closer to anoxic water
which indicates that overlying shales were in a more reducing
environment at the depositional stage and such an environment
was favorable for organic matter enrichment. The crossplots of
TOC content andMoEF, UEF, and VEF show that the TOC content
is higher in the overlying shale layer than in the underlying shale
layer (Figure 3B; Figures 11B,C).

6 CONCLUSION

Based on outcrop, mineralogical, organic geochemical, and
inorganic geochemical studies three conclusions can be determined:

1) Terrestrial inputs increase before a volcanic eruption and
decrease after an eruption due to land ecosystem recovery
and plant growth promoted by volcanic ash as a nutritive
substance.

2) Plant fragments migrate to water at the beginning of a volcanic
eruption, which results in poor organic matter type. At the end
of a volcanic eruption, there is less input of plant fragments and
organic matter mainly originating from bacteria and algae,
which resulted in a good organic matter type.

3) Volcanic ash may increase the TOC content by 18%, and the
range of influence doubled the thickness of the volcanic ash
layer. Such effects were related to the fact that volcanic ash
offered nutritive elements and altered the redox conditions of
water (Xu et al., 2009).
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