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Landslides triggered by extreme rainfall can be devastating, resulting in loss of life,
property, and infrastructure. Landslide forecasting systems provide an opportunity to
build awareness of potential hazards and ultimately take preemptive measures. There is
currently a dearth of forecasting systems that provide regional or global coverage, but
these systems can offer important situational awareness in data-sparse, ungauged, or
large-scale catchments. A near global, primarily satellite-based system called the
Landslide Hazard Assessment for Situational Awareness (LHASA) provides near real-
time estimates of potential landslide hazard and exposure around the world. In this work, a
precipitation forecast module is introduced into LHASA to complement the existing LHASA
framework and provide an estimate of landslide hazard up to 3 days in advance at 1 km
resolution. The model-based Goddard Earth Observing System-Forward Processing
(GEOS-FP) precipitation forecast product is used as the forcing input for the model in
place of the satellite-based Integrated Multi-satellitE Retrievals for Global Precipitation
Mission product. Soil moisture and snow depth from the GEOS-FP assimilated product
are also incorporated. The study period January 2020–January 2021 is used to test the
model performance against the LHASA near real-time estimates at multiple spatiotemporal
scales. Validation of the model is carried out using a collection of rainfall-triggered landslide
inventories from around the world as case studies to demonstrate the potential utility and
limitations of this system. The rescaling of the GEOS-FP precipitation product is a critical
step in incorporating the forecasted precipitation data within LHASA-Forecast (LHASA-F).
Combining different streams of forecasted data within the LHASA-F framework shows
promise, particularly for larger events at the 1- and 2-days lead time for events. Results
indicate that for the case studies evaluated, the LHASA-F is generally able to resolve major
landslide events triggered by extreme rainfall, such as from tropical cyclones. The analysis
shows that landslide forecast outputs may be represented differently depending on the
user’s needs. This framework serves as a first milestone in providing a global predictive
view of landslide hazard.
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1 INTRODUCTION

Landslides are pervasive in mountainous areas and adversely
affect human life and infrastructure (Chester 1995; Peel et al.,
2007). Key factors leading to landslides can be broadly
classified into two categories: the dynamic triggering
mechanisms like extreme rainfall and local soil moisture
conditions and prevalent ground conditions (Guzzetti et al.,
2020). It is critical to develop near real-time and early warning
systems for predicting impending events. These systems could
provide, emergency managers and planners, advanced
situational awareness to save lives and property. Predicting
when and where landslides may occur and issuing warnings,
accordingly, is an evolving area of research. Landslide models
can either be designed to function as near real-time or
forecasting systems. Literature refers to predictive systems
using several different terms, such as landslide models,
forecast models, warning models, and warning systems. A
forecast model provides estimate of the future state of a
natural system obtained with a numerical model (Ramage,
2022). A “warning model” is a framework to issue landslide
advisories and can incorporate one or more landside models
and advisory protocols that are used to issue advisories.
Comparatively, a “warning system” is a physical
implementation of a warning model with one or more
landslides forecast models (Guzzetti et al., 2020).

Landslide Early Warning Systems (LEWSs) are usually
developed locally and are designed for specific uses, such as
civil protection, hill slope monitoring, and regional situational
awareness. According to literature, a total of five nations, 13
regions and the metropolitan areas of Chittagong, Hong Kong,
and Seattle benefit from LEWSs (Guzzetti et al., 2020). An
example of a near-real time system is Rio de Janeiro Brazil’s
Alerta Rio system, which fuses information from susceptibility
maps with the rain-gauge measurements, updated every 5 min
(Calvello et al., 2015). Some examples of LEWSs that leverage
numerical weather model Quantitative Precipitation Forecasts
(QPF) include one Ahmed et al., 2018 proposed (operated on
voluntary basis) for Chittagong Metropolitan Area, Bangladesh.
This LEWS exploits empirical rainfall thresholds, daily QPF,
and a statistically based landslide susceptibility zonation for
preparing landslide forecasts. The Civil Protection Department
of Sicily, southern Italy is operating a Hydrohazards Early
Warning System (HEWS: flood and shallow landslide
warning system) based on the combined use of rainfall
thresholds, soil moisture modelling and QPF (Brigandì et al.,
2017). Similarly, the regional government of Piedmont,
northern Italy, is operating a regional LEWS which
comprises three complementary landslide forecasting systems,
namely, the DEFENSE (Tiranti et al., 2014), SMART (Tiranti
and Rabuffetti, 2010) and TRAPS (Tiranti et al., 2013) systems.
LEWS based on the comparison between hourly rainfall
measures, rainfall forecasts up to +48 h, and 3D rainfall
thresholds (using intensity, duration, and antecedent rainfall
as rainfall parameters) is operated in the Emilia Romagna
Region, Italy (Rosi et al., 2021). The Japanese Meteorological
Department’s early-warning system is based on hourly rainfall,

short-range precipitation forecasts, and soil-moisture index
(Singh, 1995; Sugawara et al., 1983; Osanai et al., 2010), and
the Norwegian national landslide early warning system uses
hydrologic models and web tools to monitor and forecast
hydrometeorological conditions that could potentially trigger
landslides (Graziella et al., 2015). However, these LEWSs cover a
very small percentage of the land susceptible to landslides
globally (Nadim et al., 2006). Results compiled by Froude
and Petley, (2018) suggest that most of these national and
regional LEWSs do not operate where a large majority of
fatal landslides occur and the risk of landslides to the
population is high.

Kirschbaum et al. (2018) proposed a quasi-global near-real
time Landslide Hazard Assessment for Situational Awareness
(LHASA) model. LHASA combines satellite-based precipitation
estimates from the Global Precipitation Measurement (GPM)
mission with a landslide susceptibility map derived from
information on slope, geology, road networks, fault zones,
and forest loss, primarily from satellite-derived or publicly
available data (Kirschbaum et al., 2018; Stanley and
Kirschbaum, 2017). Version 2 of LHASA leverages machine
learning to produce probabilistic ratings of landslide hazard at
1 × 1 km resolution at quasi-global scale (60°N-60°S)
(Kirschbaum et al., 2020; Stanley et al., 2021). In addition to
GPM rainfall estimates, LHASA version 2 ingests data on snow
mass and soil moisture from the Soil Moisture Active Passive
Level 4 (SMAP L4) product (Reichle et al., 2018). It also analyzes
the exposure of population and road networks to landslide
hazard for each level-2 administrative district (Emberson
et al., 2020). Although LHASA version 2 provides near-global
information in near-real time (~4hrs latency), many
stakeholders have expressed a preference for forecasting of
landslide hazard, which is not addressed solely using satellite
observations.

In this study, we test the feasibility of ingesting a global
precipitation forecast from the NASA Goddard Earth
Observing System Forward processing product (GEOS-FP;
Molod et al., 2012; Rienecker et al., 2008) into the LHASA
framework to provide probabilistic landslide estimates for one
to 3 days in the future. As landslide hazards can be triggered in
relatively short time, the global landslide forecast system could
serve as a tool in conjunction with other situational awareness
products for an impending major rainfall event (e.g., tropical
storms). This represents a new effort in global landslide
forecasting and a first attempt to provide a global predictive
view of landslide hazard, which can be particularly useful in areas
without ground-based systems or active monitoring programs.
This work introduces the global LHASA-Forecast (LHASA-F)
framework and evaluates its performance relative to the LHASA
near-real time (LHASA-NRT) model and observed landslides.
The overarching goal of this work is to determine the feasibility of
incorporating a global forecast precipitation product within the
LHASA framework to represent potential landslide hazards into
future. This study considers analyses at global, regional, and local
scales, with an emphasis on validation studies in multiple
geographic and climatological settings using landslide
inventories.
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2 MATERIALS AND METHODS

2.1 Data
2.1.1 Dynamic Variables
Precipitation is the key dynamic variable within the LHASA
framework. The Integrated Multi-Satellite Retrievals for
Global Precipitation Measurement (IMERG) product
provides instantaneous precipitation estimates at a 30 min,
0.1° resolution from 60°N to 60°S by merging passive
microwave and infrared data (Huffman et al., 2020).
IMERG products are available at different latencies: the
early product (latency of 4 h), the late product (12–14 h),
and final product (3 months). The Early and Late product
employ a climatological gauge correction from the Global
Precipitation Climatology Project (GPCP; https://psl.noaa.
gov/data/gridded/data.gpcp.html) and the Final product uses
monthly gauge observations to adjust the precipitation
estimates.

The GEOS system provides atmospheric and environmental
variables including precipitation, soil moisture, and total
precipitable water by integrating the GEOS Atmospheric
General Circulation Model with land surface models
(Rienecker et al., 2008; Molod et al., 2012). The GEOS FP
system generates assimilation products, and 10-day forecasts.
New observations are assimilated periodically (6hrs), and a
forecast model is used to generate a time-series of hourly
forecast products. The forecast product (GEOS-FP) is
initialized four times a day at 00z, 06z, 12z, and 18z,
respectively. GEOS-FP Forecast products provide precipitation
estimates up to 10 days into the future at ~0.25° × 0.31°/hr spatio-
temporal resolution.

LHASA version 2 (refer to Section 2.2 for details) utilizes
rescaled precipitation as a model input, mainly to account for the
climatology at the grid scale, and to minimize the disparity
between the near-real time and forecasted precipitation
(Figure 3). Additionally, it supports the use of the previously
trained model for landslide forecasting. Rescaling of the
precipitation is accomplished by dividing the current daily
rainfall estimates to historical 99th percentile rainfall (p99).
The p99 values at each 0.1° grid cell are derived from a log-
normal distribution, because it is less sensitive to skewness in the
empirical data than other statistical distributions and fits the
probability density function (pdf) of rainfall data well. Historical
IMERG v06B data (2000–2018) are used to compute the 99th
percentile (p99) for IMERG-NRT and GEOS-FP Forecast data
(2018–2021) for computing p99 for rescaling forecasted
precipitation.

An example of the rescaled precipitation (raw precipitation
divided by p99) used to feed information on the precipitation for
landslide modeling is shown in Figure 1. The raw precipitation
totals (mm) from Tropical storm Linfa on 10 October 2020, can be
seen in the top panels (Figures 3A,B) and the rescaled
precipitation in the bottom panels respectively. It is observed that
the magnitude difference between the near-real time daily
accumulated precipitation (IMERG Early) and 24 h forecasted

precipitation (GEOS-FP) is minimal in case of the rescaled
precipitation (Figures 1C,F). Details regarding other dynamic
variables used in LHASA-Forecast framework are included in
Table 1.

2.1.2 Landslide Inventories
The Landslide inventories used in this study are mapped utilizing
optical imagery from Planet (Planet Team, 2018) and Sentinel-2
using the Semi-Automatic Landslide Detection (SALaD) system
(Amatya et al., 2021). A total of seven rainfall-induced landslide
inventories are used in the model validation. Details are provided
inTable 2 (more details on climate and geology of the locations in
SM8). The quality of these inventories can be assessed using
similar evaluation criteria to those described by Tanyaş et al.,
2017. For each of the inventories, the high-resolution imagery
allows differentiation of all landslide bodies. The boundary area of
the mapped area is included in the datasets. The inventories are
polygons of landslides triggered by the rainfall, although pre-
event landslides are not differentiated–all mapped landslides are
assumed to have resulted from the rainfall event associated with
the inventory. The polygons do not differentiate between source
and depositional areas for consistency.

2.2 Model Description
LHASA version 2 advances beyond the original model by using a
XGBoost machine-learning approach to incorporate soil
moisture, snow mass, and geological information (Stanley
et al., 2021). LHASA continues to use daily satellite rainfall
estimates from the IMERG early and late run products to
represent landslide-triggering rainfall, as well as antecedent
precipitation. However, in version 2.0, LHASA separates
these elements into a variable representing the current day’s
rainfall and another variable representing the prior 2 days’
rainfall. The hydrologic effects of all precipitation prior to
this 3-day period are represented by two state variables from
the Soil Moisture Active Passive Level 4 (SMAP L4) product
(Reichle et al., 2018): snow mass and total profile soil wetness.
Finally, the relatively static effects of terrain and geologic
material strength are represented by three variables: distance
to active faults (Styron and Pagani, 2020), slope gradient from
the Viewfinder Panoramas DEM (de Ferranti, 2015), and a
global lithologic rating derived from the global lithologic map
(Hartmann and Moosdorf, 2012). These factors were
transformed to a probability of landslide occurrence using
XGBoost, a machine-learning framework (Chen and
Guestrin, 2016). To assign these probabilities, several
landslide inventories were obtained and filtered by process
type, trigger, and spatial uncertainty. Then the remaining
landslides were merged into a global gridded landslide
inventory with a 30-arcsecond daily resolution (Stanley et al.,
2021). Dates and locations without recorded landslides were
assumed to indicate landslide non-occurrence, and a random
sample of these data were used for model development. The
model was trained with data for the years 2015–2018 and
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evaluated with data for the years 2019–2020. LHASA version 2
raised the overall performance to an aggregated true positive
rate of 93% from 45% for version 1.1, and therefore, adopted for

routine operation. LHASA outputs a map of landslide hazard
with a 30-arcsecond resolution that is updated 4 times daily;
results can be viewed at https://landslides.nasa.gov/.

FIGURE 1 | Rescaled precipitation example over Lower Mekong Region (LMR) used in the LHASA version 2 model. The top panels (A,B) exhibit the raw 24-h
accumulated precipitation on 12 October 2020, for the LMR, and the bottom panels show the rescaled precipitation maps (D,E) for both near-real time (IMERG Early)
and forecasted precipitation (GEOS-Forecast) products at daily scale. Red (C,F) indicates that IMERG Early has higher values than GEOS-Forecast and blue (C,F)
corresponds to greater GEOS-Forecast precipitation accumulation.

TABLE 1 | Dynamic variables description and sources used in LHASA-Forecast framework.

Type of Data Product Resolution Frequency/Latency Source

Precipitation Forecast GOES-FP Forecast 25 × 31 km 1 h/1–10 days out NASA GMAO; https://gmao.gsfc.nasa.gov/
Antecedent Precipitation IMERG-Early 10 × 10 km 30 min/NRT NASA GPM; https://gpm.nasa.gov/; (Huffman et al., 2020)
Soil Moisture, Snow Mass GEOS-FP Assimilated 25 × 31 km 1 h/NRT NASA GMAO; https://gmao.gsfc.nasa.gov/

TABLE 2 | Catalog of rainfall-triggered landslide inventories used for model evaluation.

Event Inventory Imagery Date References

Tropical Cyclone
Harold

Vanuatu PlanetScope 5 April 2020 https://maps.disasters.nasa.gov/arcgis/home/webmap/viewer.html?
webmap=b6598e9b92bf4979a76e8fccee741ed2

Hurricane Eta/
Iota

Guatemala (San Pedro
Soloma, Queja)

PlanetScope/
Sentinel-2

5 November
2020

https://maps.disasters.nasa.gov/arcgis/home/item.html?
id=0ad1dd0063d94e849ac5dda9cbe7a3a6

Tropical storm
Linfa

Phong Dien PlanetScope 12 October
2020

Van Tien et al., 2021, Amatya et al., 2022

Extreme rainfall Huong Hua PlanetScope 17 October
2020

Van Tien et al., 2021, Amatya et al., 2022

Typhoon Molave Quang Nam PlanetScope 28 October
2020

Van Tien et al., 2021

Medicane Ianos Greece PlanetScope 18 September
2020

Zekkos et al. (2020)
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Herein, all analysis is conducted with LHASA version 2 and
the near real-time (NRT) products will be referred to as
LHASA-NRT, whereas the forecast product will be denoted
as LHASA-F. LHASA-NRT has a 4-h latency due to the
availability of the IMERG data. With LHASA-F, the global

precipitation forecast is utilized to provide global landslide
probabilistic estimates with a 3-days lead time. The forecast
model framework is described in Figure 2. LHASA-F employs
rescaled forecasted precipitation, soil moisture, and snow mass
information from GEOS-FP forecast and assimilated products.

FIGURE 2 | LHASA version 2 Near real-time (NRT) and Forecast (F) model workflow. The dynamic inputs highlighted in red text are the substitutions made in the
forecast model. Both models provide landslide probability estimates at 1-km resolution. The model framework involves periodic validation with landslide inventories.
Refer to Table 4 for details on the antecedent rainfall for LHASA-F 2-days and LHASA-F 3-days.

TABLE 3 | Timeline for ingesting dynamic variables including rescaled forecasted precipitation, antecedent rainfall, soil moisture, and snow mass into the LHASA Forecast
model for landslide probability estimation into future. This table shows timelines for 3-days forecast.

Time
(days)

t=−3 t=−2 t=−1 Today t=1 t=2

LHASA-F
3-day

— — Soil Moisture Snow
Mass (GEOS FP)

Antecedent Rainfall Forecasted Precipitation 48 hrs Rescaled Forecasted
Precipitation (72 hrs)

GEOS FP
LHASA-F
2-day

— Soil Moisture Snow
Mass (GEOS FP)

Antecedent Rainfall IMERG Late + Forecasted
Precipitation (24 hrs)

Rescaled Forecasted
Precipitation (48 hrs)

GEOS FP

—

LHASA-F
1-day

Soil Moisture Snow
Mass (GEOS FP)

Antecedent Rainfall IMERG Late Rescaled Forecasted
Precipitation (24 hrs)

EOS FP

— —

FIGURE 3 | Location of landslide inventories used to validate both LHASA-NRT and Forecast models’ performance across the globe during January 2020-January
2021 analysis period. Redmarks correspond to seven inventory locations. The background map shows the mean LHASA-NRT probabilities. Refer to Table 2 for details
regarding the landslide inventories.
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FIGURE 4 | Global map of Mean Absolute Difference (MAD) between LHASA-NRT and LHASA-F 1-day landslide probability estimates. Dotted circles represent
areas shown in panels below. A, B, C, and D represent 4 areas with different climates (tropical, temperate, continental, snow, and dry). The 4 panels show the mean
absolute difference (MAD) for (A) Papua New Guinea, (B) Central and Northwestern parts of South America, (C) High Mountain Asia region, and (D) parts of central
Africa.
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FIGURE 5 | Global Mean difference (MD) map between LHASA-NRT and LHASA-F 1-day (probabilities) for the study period. Red indicates that LHASA-NRT has
higher values than LHASA-F and blue corresponds to greater LHASA-F probability. The 4 panels show the mean difference (MD) for (A) Papua New Guinea, (B) Central
and Northwestern parts of South America, (C) High Mountain Asia region, and (D) parts of central Africa.
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These dynamic variables are fed into the machine-learning
model from LHASA-NRT to estimate the probability of future
landslides (Table 3).

2.3 Performance Metrics
In this study, we assess LHASA-F probabilistic estimates at global,
regional, and local scales against LHASA-NRT, with a special
emphasis on case studies in landslide-prone areas using event-
based landslide inventories.

To assess the global forecast performance, magnitude-based
metrics such as mean absolute difference (MAD) and mean
difference (MD) is used. These metrics are computed as follows:

MAD � ∑
n
i�1(|Ncasti − Fcasti|)

n

MD � ∑
n
i�1(Ncasti − Fcasti)

n

Where Ncast represents version 2 LHASA-NRT probability
estimates, and Fcast represents LHASA-F probability estimates
respectively.

Furthermore, the performance LHASA-NRT and LHASA-F is
compared at local scale using landslide inventories (Figure 3).
The study period of 1 year from January 2020-January 2021 is
used to evaluate the LHASA models.

3 RESULTS

3.1 Global Scale
To assess LHASA-F performance at global scale, we first compute
the mean absolute difference (MAD) between LHASA-NRT and
LHASA-F (Figure 4). The MAD between LHASA-NRT and
LHASA-F 1-day for an analysis period of 1 year shows small
differences for the large regions shown in gray (<0.001
probability). Most of these areas are not highly susceptible to
landslides (Stanley and Kirschbaum 2017). A closer look at the
MAD for more hazardous regions such as Papua New Guinea
(Figure 4A), Central and parts of northwestern South America
(Figure 4B), high mountain Asia (Figure 4C), and Central Africa
(Figure 4D) reveals differences ranging from 0.005–0.15 for
mean probability. It should be noted that in regions where the
LHASA-NRT mean probability is relatively high (Figure 3), the
results for MAD are expected to diverge the most.

Additionally, a global comparison between LHASA-NRT and
LHASA-F 1-day is presented in terms of mean difference
(probability) during the study period (Figure 5). The positive
difference (red color) indicates higher LHASA-NRT estimates,
and negative difference (blue), higher LHASA-F (1-day)
estimates, respectively. On average, LHASA-F has lower
probability values across the globe, and higher values (~0.03)
in some parts of western Venezuela and Colombia (Figure 5B).
Moreover, in complex terrains with high landslide hazard such as
parts of Papua New Guinea (Figure 5A), western Colombia and
central America (Figure 5B), and high mountain Asia
(Figure 5C), the LHASA-NRT show higher probability values
(MD ranging from 0.05 to 0.35).

3.2 Regional Inventory Analyses
To evaluate model performance at a local scale, we compare
LHASA-F probabilistic outputs from 1-, 2- and 3-days forecasts
to the locations of the landslide inventories highlighted in
Table 1, as well as LHASA-NRT. The ultimate objective of the
analysis is to assess the potential utility and limitations of the
LHASA-F system.

3.2.1 Tropical Cyclone Harold, Vanuatu, 2–9 April 2020
Tropical cyclone Harold hit Vanuatu, Fiji, Tonga, and Solomon
Islands as a Category 5 event between 2 and 9 April 2020.27
people lost their lives to Tropical Cyclone Harold, while many
more were injured (Mahul and Signer, 2020). More than 159,000
people were affected by the cyclone in Vanuatu. GPM-based
estimates showed ~40–48 mm/h rainfall in Vanuatu. The
northern islands, including the main town of Luganville,
Espiritu Santo, were among the worst hit areas. Significant
damage to infrastructure was also reported. Figure 6 exhibits
the areas in Santo affected by the landslides (Figure 6D). The
Vanuatu landslide inventory showed cyclone-triggered landslides
in the North, Northwest, South, andWest Santo districts. All four
administrative districts show elevated landslide probabilities
(>0.6) for all areas covered by the mapped landslide points in
the LHASA-NRT. In LHASAF 1-day, the probability of landslides
is in the range of 0.2–0.7 in parts of West Santo, Northwest Santo,
and South Santo (Figure 6C). In contrast, LHASA-F 2-days
estimated probabilities (~0.2) were only observed in the West
Santo administrative district (Figure 6B). LHASA-F 3-days
(Figure 6A) showed no signs of landslide hazard in the Santo
area except for 1 pixel showing a probability value of ~0.15 in
Northwest Santo admin district.

3.2.2 Tropical Storm Linfa, Vietnam, 12 October 2020
Tropical Storm Linfa triggered landslides in the central Vietnam
along the coast on 12 October 2020. The performance of LHASA-
NRT and LHASA-F for Tropical Storm Linfa in Vietnam is shown
in Figure 7 (more details on the dynamic inputs be found in
section 2.2). Despite the missed estimation of the landslide hazard
in the 3-days forecast, the model shows qualitatively good overall
performance for this event in terms of the spatial representation of
the high landslide hazard for the mapped landslides districts. The
spatial pattern of the estimated probabilities in LHASA-NRT and
LHASA-F 1-day is similar (Figures 7C,D), however, LHASA-F
clearly underestimates hazard (~0.2 probability difference) relative
to LHASA-NRT in Phong Điền and A Lưới (~0.3 probability
difference) district in central Vietnam. This is in line with the global
mean difference map (Figure 5C) where the positive difference
(red) indicates higher LHASA-NRT probabilities over Vietnam
and Lower Mekong Region in general.

3.2.3 Medicane Ianos, Greece, 15–21 September 2020
Medicane Ianos, considered to be the most intense medicane
(tropical-like cyclone) ever recorded, formed over the warm
Mediterranean Sea during 15–21 September 2020. Heavy
rainfall was recorded in several Ionian Islands, and in parts of
Central Greece (Karagiannidis et al., 2021; Zekkos et al., 2020).
IMERG estimated ~152 mm rainfall accumulation in Central and
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Western coastal Greece, and ~305 mm in parts of the Ionian
islands, particularly in Kefalonia by 20 September 2020. Figure 8
shows LHASA-F and LHASA-NRT outputs for Thessaly, central
Greece, on 18 September 2020. The landslide inventory for
Medicane Ianos shows clusters of landslides in southwestern
parts of the district (Figure 8D). The model displays high
probability values in this area ~>0.85 (LHASA-NRT) and
~>0.7 (LHASA-F 1-day) respectively. Analogous to other case
studies in Vanuatu and Vietnam, the 3-days forecast is showing
probabilities ranging from 0–0.1.2-days lead time LHASA-F,
however, exhibits a landslide footprint with probability ~0.2
for the mapped landslide locations.

3.2.4 Hurricane Eta, Guatemala, 5 November 2020
In November 2020, Hurricanes Eta and Iota combined to cause
some of Central America’s worst losses from landslides in the last
several decades (Shultz et al., 2021; Walton et al., 2021). Results
from the LHASA-NRT (Figure 9D) and Forecast (Figures 9A–C)
for parts of Guatemala affected by landslides during Hurricanes Eta
and Iota are shown in Figure 9. While comparing the results, both
LHASA products underestimate the hazard level of this event on 5
November 2020. This could be attributed to the underestimation of
the precipitation in IMERG Early as well as in GEOS-Forecast at
the location of the mapped landslides (SM4). The high landslide
hazard (probability values ~> 0.40) indication is towards the
eastern part of the region (Figures 9C,D).

To summarize the performance for the different case studies, the
landslide probability values are extracted for each landslide point from
LHASA-NRT and LHASA-Fmodel outputs. Scatter plots in Figure 10
show the performance of the model outputs at a point scale. If all the
landslide points are taken together, the overall correlation coefficient
(CC) of 0.43 is observed between LHASA-NRT and LHASA-F 1-day,
CC~0.47 forNRTversus LHASA-F 2-days, andCC~0.3 for LHASA-F
3-days respectively. LHASA-NRT is consistently higher, and the
forecast appears to be more accurate (closer to the 1:1 line) at
higher probabilities than lower probabilities. The forecast model
tends to show comparable performance for landslide points where
LHASA-NRT ~>0.70. However, the performance is attributable to the
characteristics of the storm, geographical location, and the precipitation
estimates, in general. This is discussed in more depth below.

The form in which forecasts are communicated requires a clear
articulation of the intended purpose of the forecast and an accurate
spatiotemporal representation of the results. Stakeholders such as
Pacific Disaster Center, suggested that summarizing results based
on administrative district could help to rapidly articulate areas of
potential impact that could initiate further investigation, action,
and awareness. The results are aggregated by taking the maximum
probability values within the administrative district from the
model’s nominal spatial resolution of ~1-km.

Figure 11 shows the maximum landslide probability values for
each administrative district for the extreme rainfall events. LHASA-
NRT shows ~>0.80 maximum probability for all the studied

FIGURE 6 | LHASA probability estimates for Vanuatu on 5 April 2020. (A) LHASA-F 3-days (B) LHASA-F 2-days, (C) LHASA-F 1-day, and (D) LHASA-NRT. The
triangles correspond to mapped landslides and the black line to admininstrative district boundaries.
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FIGURE 7 | LHASA probability estimates for Vietnam on 12 Oct 2020. (A) LHASA-F 3-days (B) LHASA-F 2-days, (C) LHASA-F 1-day, and (D) LHASA-NRT. The
triangles correspond to mapped landslides and the black line to administrative district boundaries.

FIGURE 8 | LHASA probability estimates for Central Greece on 18 September 2020. (A) LHASA-F 3-days (B) LHASA-F 2-days, (C) LHASA-F 1-day, and (D)
LHASA-NRT. The triangles correspond to mapped landslides and the black line to administrative district boundaries.
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administrative level 2 districts, except for Guatemala where ~0.40
maximum value is noted. Maximum probability values in case of
LHASA-F 1-day ranged between 0.2–1.0. Relative to LHASA-NRT,
LHASA-F’s performance varies by region, with the highest forecasts
in Vietnam (0.99), followed by Greece (0.8), Vanuatu (0.6), and
Guatemala (0.3). Overall, this analysis highlights that the
performance of the LHASA-F model depends on both region
(Figure 5) and the forecast lead time (Figure 11).

The effects of aggregating forecasts by the level-2 administrative
district are further illustrated in Figure 12. Spatial distribution of

the maximum probabilities assigned to the individual district for
the 17 October 2020, event in Vietnam is exhibited in Figures
12A–D. In this example, if a categorical hazard threshold is set to
0.80, all the districts with landslides show elevated (high) landslide
hazard for all 5 districts in LHASA-F 1-day, and three districts in
LHASA-F 2-days. Similarly, with amedium-hazard threshold set at
0.20, LHASA-F 2-days would display medium hazard for the
remaining two districts (Figure 12C). These thresholds should
be adjusted based on local conditions and the intended purpose of
the application.

FIGURE 9 | LHASA probability estimates for Guatemala on 5 Nov 2020. (A) LHASA-F 3-days (B) LHASA-F 2-days, (C) LHASA-F 1-day, and (D) LHASA-NRT. The
triangles correspond to mapped landslides and the black line to administrative district boundaries.

FIGURE 10 | Scatter plots for landslide probabilities extracted from LHASA-NRT and LHASA-F for landslide point locations (A) LHASA-F 1-day vs. LHASA-NRT,
(B) LHASA-F 2-days vs. LHASA-NRT, (C) LHASA-F 3-days vs. LHASA-NRT, respectively. Sample size=5395.
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4 DISCUSSION

Landslide forecasting is a challenging task due to several complex
phenomena which may contribute toward landslide occurrence.
This is further complicated by the inherent uncertainties in the
data used for developing landslide models. As in any modeling
technique, simplifying assumptions are often employed to reduce
the complexity in formulating underlying models. The goal of this

study is to evaluate the feasibility of using a global precipitation
forecast within the LHASA global landslide modeling framework
to better anticipate future landslide hazard. Landslide inventories
from representative areas are used as an independent reference to
evaluate the performance of both products at a regional scale.
Comparing LHASA-F to LHASA-NRT provides a first step in
characterizing the regional differences in landslide predictions
using the outlined framework.

FIGURE 11 | LHASA-NRT and LHASA-F performance in terms of maximum landslide probability within landslide affected administrative district level 2 limits.

FIGURE 12 | Maximum landslide probability maps for landslide affected administrative district level 2 limits in Vietnam on 17 October 2020. Landslide points are
displayed with gray points in panel A. (A) LHASA-NRT, (B) LHASA-F 1-day, (C) LHASA-F 2-days, and (D) LHASA-F 3-days.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 87899612

Khan et al. Global Landslide Forecasting System

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


LHASA-F evaluation framework designed in this study is
based on following assumptions: Event-based landslide
inventories are complete and do not miss any landslides
triggered by the event; LHASA-NRT is a reasonable
comparator, in the absence of an alternative global NRT
hazard model; p99 calculations are not impacted by different
computation time spans used for GEOS-Forecast (2018–2021)
and IMERG-Early (2000–2018); substituting rescaled
precipitation derived from GEOS-FP in model trained with
rescaled precipitation derived from IMERG-Early alleviates the
model dependence of raw precipitation. Some of these
assumptions are driven by the limited historical global forecast
availability. However, as previously stated, all landslide
forecasting models have some assumptions (Guzzetti et al.,
2020). Despite these limitations, the findings of this study
demonstrate promising performance at the global scale in the
analysis window and represents a step towards improved
predictive capability for global landslides.

Khan et al., 2021 reported that the GEOS-FP model-based
precipitation forecast demonstrates coherence with the near-real
time satellite estimated (IMERG Early) for tropical storms and
extreme precipitation (~> 100 mm) in general, for regions with
landslide susceptibility. As rainfall-triggered landslides are mostly
caused by extreme rainfall conditions, the GEOS-FP product was
deemed fit to be ingested in the new global LHASA framework for
forecasting landslides. LHASA-NRT and LHASA-F exhibit high
coherence for landslide points, with both associating higher
probabilities (~>0.70) with major events (Tropical storms), as
demonstrated by the scatter plots in Figures 10A–C.

Although LHASA-F generates slightly lower landside
probabilities (Figure 5) than LHASA-NRT, these are relative
probabilities and the differences may not be significant from
operational perspective, especially for extreme events. Results
from the case studies presented in this work indicate that the
performance of the forecast model varies with specific storm and
its geographical location. The accuracy of LHASA-F improves as
the forecast time is closer to the prediction time. The reduced
performance of the forecast model for 3-days lead time observed
in case studies is attributable to uncertainties associated with
forecasted precipitation (Sikder and Hossain, 2019). Factors such
as initial meteorological conditions, data assimilation methods,
and the approximations required to represent physical processes,
all contribute towards the forecast skill with lead time. Another
reason for degraded performance of LHASA-F with longer lead
time could be linked to antecedent conditions used in the model
training framework (trained on LHASA-NRT dynamic
variables). While the antecedent conditions for Forecast 1-day
are derived from IMERG-NRT, those for Forecast 3-days are
based on the forecast from the last 2 days (refer to Table 3 for
details). However, the global scale mean difference maps between
LHASA-NRT and LHASA-F 2-days and 3-days products reveal
overall similar trends as shown in Figure 5 for LHASA-F 1-day,
with LHASA-F 2- and 3-days showing lower probability values
across the globe, and higher values (~0.03–0.05) in some parts of
western South America (SM6 and SM7). The spatial tendency of
the LHASA-F system to provide high probability estimates is
assessed using a threshold of 0.9. SM3 shows the global map with

a count for, each 1 × 1 km grid box, of the number of days when
LHASA-F estimated a landslide probability of >0.9, when
LHASA-NRT does not. The count ranges from 1 to 5 days out
of 365 days of testing period. LHASA-F estimates are lower than
high threshold (0.9) most of the days across the globe (shown
with white color inland) except for few grid boxes in Jamaica and
El Salvador, parts of New Guinea, and north central coast
Vietnam.

There are limited global landslide inventories for the
relatively short historical GEOS-Forecast record, which did
not allow development of a model solely based on the GEOS-
Forecast. This problem is addressed by employing rescaled
precipitation in both the LHASA-NRT and LHASA-F
frameworks. Three dynamic variables, rescaled precipitation,
soil moisture, and snow mass from GEOS-FP are used for the
validation studies in the model trained with rescaled
precipitation from IMERG-NRT, to generate LHASA-F up to
3-days lead time at the global scale. Depending on the
availability of a long and consistent precipitation forecast
data, and global landslide inventories, future work could
address these limitations by training models for each forecast
lead-time and combination of inputs.

We find the following overarching results when comparing
LHASA-F to LHASA-NRT and available event-based inventories:

• The rescaling of the GEOS-FP precipitation product is a
critical step in incorporating the forecasted precipitation
data within LHASA-F, though when compared directly,
probability values for LHASA-F are low relative to the
LHASA-NRT.

• Combining different streams of forecasted data within the
LHASA-F framework shows promise, particularly for larger
events at the 1- and 2-days lead time for events.

• Maximum probability values at administrative district level
2 are informative for assigning categorical alert levels for
landslides. This could help stakeholders rapidly identify
areas of potential impact for further investigation, action,
and awareness.

Periodic assessment of the landslide forecast system and user
feedback is vital for its operational success and utility. This will
require assessment of the system by stakeholders using more
diverse regional landslide inventories. We envision the
availability of such inventories through global initiatives such
as LandAware (Calvello et al., 2020) will be crucial for the
generalization as well as the advancement of the global
landslide forecasting efforts.

Furthermore, updates to IMERG and GEOS may improve the
predictive capability of LHASA model and could be a path for
future study. LHASA framework is designed with flexibility for
adapting to the future updates to the products.

LHASA-F could be used to issue landslide advisories in
conjunction with other situational awareness tools. Our
analysis at administrative district level 2 shows that landslide
forecast outputs may be mapped differently depending on the
application. Results of this system are promising, and we continue
to engage with stakeholders to support the continual
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development, localized adaptation, and implementation of the
landslide forecast framework. We plan to deploy this model
routinely and to make it publicly available under the LHASA
framework.

LHASA-F’s global coverage will be valuable in providing
crucial information in data-sparse, ungauged, or large-scale
catchments to provide broader situational awareness of
potential landslide hazard. It is not intended to provide
local scale warnings or to supersede local and regional
systems that have been calibrated for the specific
environment. The LHASA-based hazard estimates provide
the likely location of landslide events and inform decision-
making about disaster preparedness and response. Additional
modules, incorporated into LHASA, such as estimates of
population and infrastructure exposure to landslide hazard
(Emberson et al., 2020), could be integrated into the landslide
forecast to provide further information on potential landslide
impacts as well as hazard estimates. The availability of such
multi-temporal landslide hazard and exposure tools will equip
stakeholders with complementary resources to aid in disaster
response, planning and decision-making.
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