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Appropriate water injection volume is the most basic parameter required to maintain stable
formation pressure and ensure the development effect of water flooding in oilfields.
However, the determination of appropriate water injection volume has always been a
major problem in oilfield water injection management. Based on the Grey relational
algorithm, this paper determines the optimal connected injection-production well group
through the study of the dynamic relationship between oil and water wells. To specifically
predict water injection, a Sparrow search algorithm optimisation model based on Sine
mapping is proposed. A Sine-SSA-BP algorithm was devised to predict water injection
volume and both the improved algorithm and the original BP algorithmwere applied to real-
world data to assess their predictive accuracy. The prediction results of the Sine-SSA-BP
algorithm were found to be closer to the true value than the results of the original BP
algorithm, and the average error percentage is reduced by 23.86%. Therefore, the new
algorithm can predict and calculate the water injection volume more accurately. The
research content of this paper can provide a theoretical basis for advising adjustment
measures in the block to slow down the rise of water content, maintain stable production,
and improve the efficiency of the mechanical mining system.
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INTRODUCTION

In the early stage of oilfield development or after relying on natural energy for oil recovery, water
injection wells are commonly used to improve oil recovery and production rate by injecting water into
the oil layer to effectively supplement the formation energy and maintain the oil layer pressure. Water
injection is an important technique that has been widely adopted (Feng et al., 2017; Jia et al., 2020;
Wang et al., 2020). In the middle and late stages of oilfield development, problems such as rising water
cut and declining production necessitate a rapid increase in water injection to achieve stable production
of the oilfield. However, this also results in reduced efficiency of the mechanical production system
(Rashid et al., 2020; Pyatibratov et al., 2021). The study of injection-production connectivity is of great
significance for understanding the remaining oil distribution andmaking dynamic adjustments during
the process. The relationship between injection and production is a dynamic process, which is mainly
reflected in dynamic data and is affected by both static parameters and the distribution of underlying
fluid and pressure. Thus, the dynamic connectivity between injection and production changes with the
development of the oilfield. Therefore, despite its importance, dynamic connectivity is difficult to
determine in actual production (Dinh and Tiab, 2008; Liu et al., 2009; Lee et al., 2020). At present,
methods of studying connectivity mainly include wireline logging, stratigraphic correlation,
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geochemistry, pressure testing, and tracers, but these methods are
relatively expensive. Using dynamic data to study connectivity can
effectively reduce costs while ensuring good accuracy (Li et al.,
1997). Some scholars have used bottom hole pressure data,
injection-production volume, and multiple linear regression
methods to approach this problem (Albertoni and Lake, 2002;
Li et al., 2020; Liu et al., 2020), and some others have used a
combination of the CM method and injection-production volume
(Yousef et al., 2006).

As oilfields develop, they enter a stage where the water cut
increases, and existing literature focuses on factors relating to
water injection wells, such as water injection timing, water
injection methods, and water injection intensity. Few articles
combine water injection wells and production wells. To solve the
problem of low oil production efficiency, this paper innovatively
combines data on both water injection wells and production wells
to achieve a balanced analysis of the injection-production system.
The dynamic relationship between oil and water wells was studied
to determine the best-connected injection and production wells of
single-layer reservoir, and the water injection volume was studied
as an influencing factor affecting the efficiency of the production
well system. Hence, this article provides a theoretical basis for
specifying adjustment measures in the block to slow down the rise
of water content, maintain stable production, and improve the
efficiency of the mechanical mining system.

ANALYSIS OF OIL-WATER WELL
CORRELATION BASED ON THE GREY
RELATIONAL METHOD
Gray relational analysis (GRA) is a multi-factor statistical analysis
method that can provide quantitative measures for the
development and change of a system. This method is suitable
for the dynamic course analysis of oil and water well systems (Yin,
2021). Through the grey relational method, the connection
between injection and production wells can be determined by
comparing the trends in development as influenced by
parameters relating to the water injection wells and the oil
wells. Changes in the quantity of water injected at the water
well will cause changes in liquid production of the corresponding
oil well, and the range of the change of liquid production of the oil
well is related to the correlation of oil-water wells, where stronger
correlation implies greater magnitude of change, and vice versa.
GRA can also be used to determine the relevance of surrounding
oil wells, where greater calculated relevance indicates better
relevance, and vice versa.

Construction of the Correlation Model
Between Oil Production Wells and Water
Injection Wells
The percentage of moisture, liquid production, and bottom-hole
flow pressure of the oil production well are important factors that
influence the effect of water flooding. Therefore, the percentage of
moisture, liquid production, and bottom-hole flow pressure of the
oil production well were selected for use in correlation

calculations involving the water injection volume of the water
injection well to obtain the correlation between connected wells.
By taking the percentage of moisture, fluid production, and
bottom hole flow pressure as a comparison sequence, a matrix
was constructed, as shown below:
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Taking the water injection amount as the reference sequence,
this was written as:

X’
0 � (x’

0(1), x’
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0(m)) (2)
To more intuitively analyse the data to achieve more accurate

conclusions, it was necessary to carry out dimensionless data
processing when conducting Grey relational analysis. The
dimensionless data sequence forms the following matrix:
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The values of the absolute differences between each evaluated
object of the indicator sequence and the corresponding element of
the reference sequence were calculated one by one. The minimum
and maximum values of the absolute difference of each data point
were thus determined, namely:

Δoik � |x0(k) − xi(k)| (4)
Δmin � minn

i�1minm
k�1|x0(k) − xi(k)| (5)

Δmax � maxni�1maxmk�1|x0(k) − xi(k)| (6)
In the formula: Δoi(k) is the absolute value of the difference

between the ith comparison sequence and the reference sequence
at k data points;

Δmin is the minimum value of the absolute values of the
differences of each data point; and.

Δmax is the maximum value of the absolute values of the
differences of each data point.

For each evaluation object (comparison sequence), the mean
value of the correlation coefficient between each index and the
corresponding element of the reference sequence was calculated
to reflect the relationship between each evaluation object and the
reference sequence. This was called the correlation degree, and
was calculated as follows:

roi � 1
m
∑m
k�1

ζoi(k) (7)

In the formula: roi is the correlation degree 0≤ roi ≤ 1; ςoi is the
Grey relational coefficient, and the calculation formula is as
follows:
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ξoi(k) � Δmin + ρΔmax

Δoi(k) + ρΔmax
(8)

In the formula: ρ is the resolution coefficient, 0<ρ < 1, usually ρ
takes 0.5. The smaller the ρ, the greater the difference between the
correlation coefficients and the stronger the capacity for
discrimination. The resolution coefficient can improve the
significance of the difference between the correlation coefficients.

In summary, the calculation formula for the correlation
coefficient between the oil production well and the water
injection well was obtained as:

r � 1
3
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In the formula: r indicates the correlation degree, 0≤ r≤ 1;
Qw indicates the water injection volume, t; Q indicates the
liquid production volume of the oil production well, t; fw
indicates the water content of the oil production well, %;
and Pf indicates the bottom hole flow pressure of the oil
production well, MPa.

Association Model Verification
Based on the oilfield injection and production data, wells with a
correlation difference within 0.015 were considered to have the
same connection effect, and the wells with the highest correlation
degree and a difference within 0.015 were considered the oil-
water well group with the best connection effect (Zhang et al.,
2016). Figure 1 shows the schematic diagram of water injection
wells and surrounding oil wells, demonstrating that there were
generally four first-line production wells around each water
injection well, and four first-line water injection wells around
each oil production well. Only one well and four surrounding
first-line wells needed to be included in the correlation
calculation.

Considering well OO75-160 as an example, the correlation
between oil well OO75-160 and its surrounding four first-line
water injection wells was calculated using the Grey relational
method, as shown in Table 1. The correlation between oil
production well OO75-160 and water well PP76-61 was much
higher than that of the other water injection wells, which proves
that the effective injection well was PP76-61. To verify that the
curve fluctuation of oil well OO75-160 was caused by water well
PP76-61, the monthly liquid production curve of oil well OO75-
160 was compared with changes in the water injection volume of
surrounding connected water injection wells, as shown in
Figure 2 and Figure 3.

As can be seen from Figure 2, the second half of the curve
demonstrates obvious fluctuations. Slight fluctuations consistent
with those observed in the first half of the curve can be ignored, as
these represent the normal fluctuation range. It is only necessary
to pay attention to and discuss the time of two significant drops in
the second half. Specifically, two large-scale fluctuations occurred
in September 2017 and January 2020. The first sudden drop
occurred in September 2017, and production continued to
decrease in October, before suddenly rising to the original
normal range in November. The second time the curve
dropped significantly was in January 2020. There was a
downward trend in production in the previous 2 months, after
which it fell to the lowest point in January and returned to the
normal fluctuation range in april after a small increase in
February and March.

FIGURE 1 | Schematic diagram of water injection wells and their
surrounding oil wells.

TABLE 1 | The correlations between oil production well OO75-160 and water
injection wells.

Oil well Water injection well Correlation

OO75-160 PP76-61 0.824
PP74-159 0.788
PP75-60 0.807
PP75-61 0.778

FIGURE 2 | Monthly fluid production of oil well OO75-160.
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To verify the connection between the oil well and the
surrounding water wells, a histogram of the monthly
injection volume of the four surrounding water wells is
shown in Figure 3. As displayed in Figure 3A, there were
two large fluctuations in the monthly injection volume of well
PP76-61. The first was a sudden drop to zero in September
2017, after which injection volume returned to the normal
range in November. The second event involved a decline in
injection volume beginning in November 2019, followed by a
monthly injection volume of zero from January to March 2020.
Figures 3B,C show that the monthly injection volume of the
two water injection wells did not fluctuate greatly overall,
which is in contrast to the fluctuation of the monthly liquid

production curve of the oil well. Hence, these were not the
relevant water wells of the oil well. Furthermore, as can be seen
from Figure 3C, the monthly injection volume of well PP75-60

FIGURE 3 | Histogram of monthly injection volume of four water injection wells.

TABLE 2 | Correlations between water injection well PP76-61 and oil wells.

Water injection well Oil production well Correlation

PP76-61 OO75-160 0.824
OO76-160 0.778
OO76-161 0.749
OO77-161 0.753

FIGURE 4 | Histogram of monthly water injection volume of PP76-61.
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showed three large fluctuations, with two downward
fluctuations in October 2012 and February 2014, and one
upward fluctuation in March 2018, which is quite different
from the trends in monthly liquid production of the oil
production well OO75-160. Comparing the histograms of
the monthly water production of the four water injection
wells, the two fluctuations of the water well in (a) are very
consistent with the fluctuation trend of the monthly liquid
production of the oil wells, that is, there is a strong relationship
between the two, which is consistent with the results of the
Grey relational coefficient analysis. Moreover, this confirms
that the injection well shown in (a) is the connecting well of the
production well.

To prove that production well OO75-160 is the effective well
of water well PP76-61, water injection well PP76-61 was taken as
the central well and the correlation degree between oil production
well OO75-160 and its surrounding four first-line production
wells was calculated by the Grey relational method. The results
are shown in Table 2. The correlation degree between oil
production well OO75-160 and water well PP76-61 was much
higher than those of other oil wells, which proves that the effective
well of this water well was OO75-160. To confirm this result, the

changes in water injection volume of the water injection wells and
the monthly liquid production curve of the four surrounding oil
wells were compared, as shown in Figures 4, 5.

Figure 4 is the same as Figure 3A. There were two large-scale
fluctuations in the monthly injection volume of well PP76-61, once
in September 2017 and once in January to March 2020. According
to the above, the changes in monthly liquid production of the oil
well in Figure 5A are highly consistent with those in Figure 4.
There were five large-scale declines in Figure 5B. The time of
decline for the water injection volume for water injections wells in
January 2020 was the same as that of liquid production for the oil
wells. However, the water injection wells declined slowly in the first
2 months of January and rose suddenly after March, while oil well
OO76-160 (in (b)) rose slowly after a sudden decline in January.
Thus, the rates of the changes were different and oil well OO76-160
was not an effective well of PP76-61. Figures 5C,D demonstrates
that the time and range of the changes in monthly liquid
production of the two oil wells were obviously different from
the changes in monthly water injection of the water injection well.
Through comparison, it was further determined that water well
PP76-61 and oil well OO75-160 are connected wells, and that
connected wells can be determined by grey relational analysis.

FIGURE 5 | Variations in monthly liquid production of surrounding first-line oil wells.
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PREDICTION OF WATER INJECTION
VOLUME BASED ON A SINE-SSA-BP
NEURAL NETWORK METHOD
To explore the impact of water injection on the efficiency of oil
production wells, the production well was studied as the central
well and Grey relational analysis was performed to determine the
best-connected well among the production wells. Thus, the
impact of water injection on the system efficiency of
connected oil wells was analysed. The system efficiency of oil
production wells can be improved by adjusting the water
injection volume. According to experience, the water injection
volume has a strong correlation with the liquid production, water
content, and bottom hole flow pressure of oil production wells.
Therefore, the ideal value of water injection volume can be
predicted based on the liquid production, water content, and
bottom hole flow pressure of oil production wells.

Construction of the Sine-SSA-BP Neural
Network Model
The BP neural network is widely used in the oilfield field because
of its strong nonlinear mapping advantages (Pan, 2016; Wu,
2021), and can infinitely approximate a nonlinear relation
function with arbitrary accuracy. The typical three-layer BP
network structure is shown in Figure 6. Back propagation is
an important feature of the BP neural network. In the forward
propagation stage, the sample data starts from the input layer and
is calculated and processed layer by layer from top to bottom. The
output of the upper node is the input of the lower node. Finally,
the sample information is transmitted to the output layer node to
obtain the prediction result. After the prediction error is
calculated, it enters the back propagation stage, and the
prediction error of the output node is used to estimate the
error of the hidden node layer by layer. The connection
weight and threshold are also adjusted layer by layer. Finally,
the output value of the network is infinitely close to the actual
value. The implementation process of the BP algorithm is shown
in Figure 7.

The BP neural network can realise arbitrary nonlinear
mapping and solve most practical engineering problems, but
in the process of practical application, the BP network model
also has some limitations. The first is that it easily falls into the
local optimal solution. During normal network operation and
the adjustment of weight and threshold, it is hoped to obtain the
result with the smallest error, but in actual operation, the
network easily falls into the range of the local minimum
error and the global optimal solution cannot be obtained.
The second is the initial weight sensitivity. The initial
network model requires a random small weight coefficient,
which makes the neural network model unrepeatable. To
solve the above problems, this study optimised the BP neural
network based on a Sparrow search algorithm of the sine
chaotic map.

The Sparrow search algorithm (SSA) was proposed in 2020
(Xue and Shen, 2020). The algorithm exhibits high performance
in different search spaces and can explore the potential global
optimal region. Therefore, it effectively solves the local optimal
problem based on the complex nonlinear process of threat
prediction. Considering all possible group behaviour factors, it
has the advantage of fast convergence to the optimal value with
high stability for global optimal search and is very suitable for
combination with the BP reverse neural network (Wang
et al.,2021).

The process of optimising the BP algorithm by the Sparrow
search algorithm based on sine mapping is shown in Figure 8.

The data of a group of associated oil and water wells in the D
oilfield block fromAugust 2009 to February 2021 were selected, of
which August 2009 to April 2020 were used as the training set.
According to steps for model optimisation as introduced above,

FIGURE 6 | Typical three-layer neural network.

FIGURE 7 | BP model training process.
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the Sine-SSA-BP model for water injection prediction was
established. The classical three-layer BP neural network
was selected in the model, and the structure of the BP neural
network was set to 3-5-1, that is, the number of divine elements of
the network input layer, hidden layer, and output layer was 3, 5,
and 1, respectively. The neurons of the network input layer were
water content, flow pressure, and liquid production, and water
injection was a parameter of the network output layer. The
specific data are shown in Table 3.

Based on the water injection volume and oil well parameters
standardised by min-max, a subset of 123 time points in the data
were used as the training set and the last ten time points were used
as the test set. The comparison between the predicted results and
real values of the BP model and Sine-SSA-BP model is shown in
Figure 9. Changes in the trends for the predictions by both
models were consistent with trends in the real values, but the
overall curve of the Sine-SSA-BP model was closer to the curve of
the real values.

FIGURE 8 | Flow chart depicting the process of the Sine-SSA-BP algorithm. Field application of the Sine-SSA-BP algorithm.

TABLE 3 | Original datasheet.

Time (date)> Water
injection volume (m3)

Moisture content (%) Flow pressure (MPa) Liquid production (m3)

... ... ... ... ...
200,,911 3,345 95.2 4 945
200,,912 3,422 96.6 4.38 943
201,,001 3,428 96.2 4.89 1,012
201,,002 3,001 95.9 4.21 948
... ... ... ... ...
201,,506 1801 94.4 6.61 952
201,,507 2,504 95 6.84 1,046
201,,508 3,093 96.1 3.79 1,127
... ... ... ... ...
201,,904 3,522 96.4 3.63 934
201,,905 3,910 96.4 3.97 1,065
201,,906 3,595 96.3 3.86 984
... ... ... ... ...
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further analyse the prediction results, the real values and
the prediction results of the BP model and the sine-SSA-BP
model are listed in Table 4. The table also includes
percentage error as the basis for comparative analysis.
The calculation formula for percentage error is shown in
Eq. 10.

δ �
∣∣∣∣∣∣xi − xi

∧
∣∣∣∣∣∣

xi
· 100% (10)

In the formula: δ is the percentage error, xi is the real value,
and xi

∧
is the predicted value.

It can be seen from the table that the percentage error of the BP
model was 24.11%, while that of the Sine-SSA-BP model was
6.08%. The minimum percentage error of the BP model (12.30%)
was markedly higher than that of the Sine-SSA-BP model (0.66%).
The percentage error of the Sine-SSA-BP model was within 12%,
and the average error was 6.08%. Within the scope of engineering
error, the water injection can be reasonably predicted.

To comprehensively evaluate the Sine-SSA-BP model, three
indicators of the analysis were selected for further investigation,
namely, the MSE (mean square error), MAPE (mean relative
error) and MAE (mean absolute error). The mean absolute error,
mean square error, and mean relative error all represent the
deviation between the actual value and the predicted value. The
clearer the value of these three indicators, the higher the
prediction accuracy. The smaller the deviation, the more
accurate the result. The specific formulae for the three
indicators are as follows:

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣∣
xi − xi

∧

xi

∣∣∣∣∣∣∣∣∣∣ (11)

MSE � 1
n
∑n
i�1
(xi − xi

∧ )2

(12)

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣xi − xi
∧
∣∣∣∣∣∣ (13)

In the formula: n is the number of predicted values, xi is the
real value, and xi

∧
is the predicted value.

The evaluation results of the BP model and the Sine-SSA-BP
model training set and prediction set are shown in Table 5. The
mean square error, mean relative error, and mean absolute error
of the Sine-SSA-BP model were significantly lower than those of
the BP model, indicating that the prediction of the Sine-SSA-BP
model was more accurate.

CONCLUSION

This paper determines the best-connected injection-production
wells through the dynamic correlation between oil and water

FIGURE 9 | Comparison of prediction results.

TABLE 4 | Prediction results for water injection.

Serial number Actual value BP model Sine-SSA-BP model

Estimate Percent error (%) Estimate Percent error (%)

1 0.842 0.542 35.63 0.729 11.05
2 0.865 0.543 37.23 0.765 11.56
3 0.930 0.633 31.94 0.886 4.73
4 0.970 0.812 16.29 0.979 0.93
5 1.034 0.845 18.28 1.020 1.35
6 0.949 0.767 19.18 0.956 0.74
7 0.903 0.621 31.23 0.776 11.85
8 0.873 0.680 22.11 0.867 0.66
9 0.675 0.561 16.89 0.591 11.70
10 0.829 0.727 12.30 0.881 6.27

TABLE 5 | Prediction and evaluation table.

BP Sine-SSA-BP

MSE 0.052 0.004
MAPE 0.241 0.045
MAE 0.213 0.055
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wells, by investigating water injection volume as the influencing
factor for oil production efficiency, conducting water injection
prediction research, and proposing a model for water injection
prediction based on a Sine-SSA-BP algorithm. Hence, this work
provides the basis for the design of adjustment measures in the
block to slow down the rise of water content, maintain the
stability of production, and improve the efficiency of the
mechanical production system.

1) Using the Grey relational method, the water content, liquid
production, and bottom hole flow pressure of the production
well were selected for correlation analysis with the water
injection volume of the water injection well. The
correlation coefficient of the production well and the water
injection well was deduced, and a method was proposed for
the determination of the connection relationship between the
injection and production wells.

2) A Sparrow search algorithm optimisation BP model based
on sine mapping was proposed. The Sparrow algorithm
was used to explore the potential global optimal region. At
the same time, sine chaotic mapping was used to replace
the random initialisation of the Sparrow population,
which can improve the uniformity of the search spatial
distribution.

3) Comparing the prediction results for the water injection
volume of the water injection wells by the Sine-SSA-BP
algorithm and the original BP algorithm, it was found that
the prediction results of the Since-SSA-BP algorithm were

closer to the real value, with a prediction error of 6.08%, which
is far less than the 24.11% of the BP algorithm. Therefore, the
Sine-SSA-BP algorithm can predict and analyse the water
injection volume more accurately.
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