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The contact is a typical non-linear problem that exists in various projects. For traditional
three-node triangular mesh and four-node quadrilateral mesh, the accuracy and
convergence of the calculation results are affected by the quality of the mesh. The test
space and trial space in the virtual element method (VEM) do not need to be accurately
calculated, avoiding mesh dependence. In this paper, the formulation of linear elasticity
and the formulation of the frictionless node-to-segment (NTS) contact model via VEM are
shown. There are four numerical simulations. The sensitivity of the virtual element method
to mesh distortion is studied in the first numerical simulation. The exactness and
convergence of the algorithm are investigated by the second numerical example. The
second numerical example simultaneously explores the penalty factor’s effect on the
results. The third example investigated the impact of mesh shape and number of Voronoi
mesh elements on the results by comparing normal contact stresses. The fourth numerical
example studies the application of the method to engineering. Those numerical examples
show that the virtual element method is insensitive to mesh distortion and could solve the
joint contact in engineering.

Keywords: virtual element method, sensitivity of mesh, frictionless, node-to-segment contact model, voronoi mesh

1 INTRODUCTION

The contact problem is a typical nonlinear problem, widespread in actual engineering such as
geotechnical engineering, building structure, water project, and machinery engineering. In the past
2 decades, with the development of electronic computers and the rise and development of various
numerical methods, there are powerful means to handle the contact problems such as finite element
method (FEM), numerical manifold method (NMM) (Yang et al., 2019; Zheng et al., 2019; Yang et al.,
2020a; Yang et al., 2020b; Yang et al., 2021a; Yang et al., 2021b), boundary element method (BEM).

For those numerical methods, FEM has been the greatest broadly utilized. Hughes (Hughes et al.,
1976) and Francavilla (Padmanabhan and Laursen, 2001) are considered pioneers who solve the
contact problem by using FEM. In order to improve the classical contact discretization, there are
some methods that have been studied, which are based on constraint element node enforcement.
(Hautefeuille et al., 2012; Khoei et al., 2006; Wriggers et al., 2001). More recently, some researchers
(Wriggers et al., 2001; da Veiga et al., 2014; Sheng and Yuan, 2012; Krstulovic-Opara et al., 2002; Liu
et al., 2007; Flemisch et al., 2005) prefer the mortar method for the discretization of contact
constraints. The stable interpolation condition for contact constraints is provided by those methods
because of the weak form based on the mortar method.What is known to us is that the gradient of the
FEM with a standard degree of freedom is not continuous on internal element edges. When FEM is
employed, it has been proved that results are highly sensitive to mesh quality (Lee and Bathe, 1993;
Liu et al., 2007; Yang et al., 2014). For contact problems, the results are influenced by the quality of
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the meshes where they are in the possible contact area. When the
contact boundary between two contact bodies is irregular, the
calculation results using FEM are greatly affected.

Because of the insufficient FEM, the VEM is proposed by
Brezzi (Beirão Da Veiga et al., 2013). Since the birth of the VEM,
it has been applied in many aspects by many scholars. The two-
dimensional Poisson problem that is discretized by polygonal
discretization is solved by VEM (Sutton, 2017). In the VEM
framework, the maximum entropy basis function is employed to
settle the Poisson problem and linear elastic problem by Ortiz-
Bernardin (Ortiz-Bernardin et al., 2017). Sun and Lin (Sun et al.,
2020) studied the stability of stony soil slope under excavation
using VEM. However, there are few papers that solve the contact
problem by VEM.

The contact constraint is commonly handled by the
Lagrange multiplier method (LMM) (Béchet et al., 2010;
Hautefeuille et al., 2012), the penalty method (PM) (Liu
and Borja, 2008; Liu and Borja, 2010a; Liu and Borja,
2010b), and the augmented Lagrange method (ALM). The
PM can convert the non-linear contact problem into
material nonlinearity. The advantage of the PM is that the
global system is not extended when the contact conditions are
introduced. The disadvantage of PM is that the contact
constraints can be satisfied approximately. The contact
constraint can be satisfied accurately. However, the global
system needs to be extended by an additional variable for
the Lagrange multiplier. To evade the disadvantages of PM and
LMM, the ALM was proposed. However, there are sub-
iterations in each calculation step in the ALM, which is its
primary deficiency. This paper aims to find the solution to the
contact problem in engineering, and the result of PM can fully
meet the needs of engineering. In summary, the contact
constraint is handled by PM in this paper.

The rest of this article is composed of the following parts. The
application of the lowest order VEM for the linear elasticity
problem is presented in Section 2 and Section 3 shows the NTS
contact model. In Section 4, the numerical examples are given for
performances of the VEM in different situations, including the
response to mesh quality, the performance of normal contact
pressure in Hertzian contact, the influence of varying mesh
shapes for the normal contact pressure in the horizontal
contact interface and the application of algorithms in
engineering. The discussion and concluding remarks are
presented in Section 5 and Section 6, respectively.

2 LINEAR ELASTICITY

2.1 The Model
The elastic body is composed of an open domain Ω ⊆ R2. The
Dirichlet boundary and Neumann boundary are represented by
Γg, Γt. The displacement field of the elastic body can be
represented by u(x). The Dirichlet boundary conditions are
g(x). The linear elastic boundary-value problem can be
expressed that discovering u(x) satisfies the following
conditions (Ortiz-Bernardin et al., 2017):

⎧⎪⎨⎪⎩
∇σ + b � 0
u � g g ∈ Γg
σ · n � t b ∈ Γt

(2.1)

Where σ represents the stress tensor, b is the body force, n is the
unit normal of boundary, the t is the external traction. The
equivalent Calerkin variational formulation can be expressed that
finding u ⊂ U satisfies the equation

a(u, v) � l(u, v)u ⊂ U, v ⊂ V

a(u, v) � ∫
Ω

σ(u): ε(v)dΩ

l(v) � ∫
Ω

b · vdΩ + ∫
Γt

t · vdΓ
(2.2)

Where V and U represent the displacement test and trial space.

2.2 Discrete Bilinear Form
The domain Ω is divided into non-overlapping polygonal
elements that make up the area Γh.

The virtual function space is defined to be

Vh: � {v ∈ H1(E): v|E ∈ VE
h for all E ∈ Γh} (2.3)

FIGURE 1 | Contact problem description.

FIGURE 2 | NTS contact model.
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Where VE
h is the local space on the element E. VE

h sustains some
properties (Sutton, 2017).

The basis function of space VE
h � (VE

h)2 can be expressed
as ϕ1,/, ϕN,/, ϕ1 / ϕN .

ϕi � [ ϕi

0
], ϕi � [ 0

ϕi
], i � 1,/N

For any u � (u1, u2) � : (�u, u) ∈ VE
h .

u � ∑N
i�1
uiϕi +∑N

i�1
ui ϕi , ui � χi(�u), ui � χi( u)

Therefore

dofi(u) � χi(u1), dofi+N(u) � χi(u2)
The basis function of polynomial space PE � (PE)2 can be

expressed as (Nguyen-Thanh et al., 2018). PE is a subspace of VE
h .

[m1, m2, m3, m1 , m2 , m3 ] (2.4)

mα � [mα

0
], mα � [ 0

mα
], α � 1, 2, 3

We can define a projection from the virtual function space to
the polynomial space ΠE: VE

h → PE . The defined projection
needs to satisfy the following equation:

aEh(ΠEv, p) � aEh(v, p), p ∈ (PE)2 (2.5)
∫
zE

ΠEvdS � ∫
zE

vdS (2.6)

The defined vectors form is

∫
E

∇mT · ∇ΠEϕdx � ∫
E

∇mT · ∇ϕdx (2.7)

P0(∇ΠEϕ) � P0(ϕ) (2.8)
Where P0 is the constant term projection operator (Sutton, 2017).

2.2 Element Stiffness Matrix
Due to PE ⊂ VE

h , The equation can be obtained

m � Dϕ (2.9)
Where D represents the expression of the matrix under the basis
function ϕ.

Additionally, on account ofΠEϕ ∈ PE ⊂ VE
h , The equation can

be obtained

ΠEϕi ∑
Nk

E

α�1
ai,αϕα � ∑N

k
E

j�1
si,jmj (2.10)

From the Eq. 2.9, the equation is obtained

∑N
k
E

α�1
sα � ∑N

k
E

j�1
Dα,jaj (2.11)

The equations of Eq. 2.11 and Eq. 2.10 are brought into Eq.
2.2, and the following equation is obtained

�GS � �B (2.12)
The matrixes of �G and �B are computed as follows

Gα,β �
⎧⎪⎪⎨⎪⎪⎩

P0(m)if β � 1

∫
E

∇mα · ∇mβdx

Bβ,j �
⎧⎪⎪⎨⎪⎪⎩

P0(ϕ)if β � 1

∫
E

∇ϕα · ∇mjdx

Eq. 2.10 can be written as a matrix expression as

�G � �BD (2.13)
Bring Eq. 2.13 into Eq. 2.12

S � (�BD)−1 �B (2.14)
The element stiffness matrix is (Beirão da Veiga et al., 2014)

(KE)ij � a(ΠEu,ΠEv) + a(u − ΠEu, v − ΠEv)
� (∇ΠEϕi,∇ΠEϕj)0,E + (∇(1 − ∇ΠEϕi,),∇(1 − ∇ΠEϕj))0,E

(2.15)
The meaning of the Eq. 2.15 can refer to the articles (Chen,

2015; Ortiz-Bernardin et al., 2017).

FIGURE 3 | The cantilever beam with imposed to bending moment. (A)
Discretion for cantilever beam. (B) Geometric parameters of cantilever beam
(Yang et al., 2014).
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3 THE CONTACT PROBLEM FOR VEM

3.1 Description of Different Contact
Condition
Figure 1 presents a two-dimensional frictionless contact model.
For domain Ω1 and Ω2, the possible contact boundaries are S1
and S2, g represents the contact gap. let R1 and R2 are the contact
force vectors in the contact region.

Consider dS1 and dS2 are the infinitesimal region where is
coming into contact. The virtual work δW done by the contact
traction is

δW � ∫
S1

R1 · δu1dS1 + ∫
S2

R2 · δu2dS2 (3.1)

In the contact area, every point should satisfy the equilibrium
equation

R1dS1 � R2dS2 (3.2)
Thus, we could consider the integral in Eq. 3.1 along the

contact line S1 or S2.

δW � ∫
S1

R1 · (δu1 − δu2)dS1 (3.3)

3.2 NST Contact Model
In this paper, the NST contact model is employed. A mapping is
defined in Figure 2.

In the Figure 2, the tangent vector and normal vector of the
master element establish a local coordinate system (n, t). The t
can be written in matrix form as

t �

∣∣∣∣∣∣∣∣ xm+1 − xm

ym+1 − ym

∣∣∣∣∣∣∣∣
l

The n is

n �

∣∣∣∣∣∣∣ym − ym+1
xm+1 − xm

∣∣∣∣∣∣∣
l

Where l stands for the length of nodem + 1 tom and (xm, ym) is
coordinates of node m.

The projection node coordinates of node s is on the surface
composed of nodes m and m + 1 is

ξ � (xm+1 − xm) · [xs − xm]
l

(3.4)

The relative displacement from node s to the corresponding
segment could be calculated as

us − uξ � [ 10ξ01 − ξ0
010ξ01 − ξ

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xs

ys

xm

ym

xm+1
ym+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� A(ξ)x (3.5)

The gs indicates the normal gap, and it can be computed by the
following equation

FIGURE 4 | Curve of the ratio of calculated value to real value with twist
parameter.

FIGURE 5 | Hertz contact model.

TABLE 1 | The convergence process of penalty function for Hertzian contact.

Penalty iterations ω1
N � 1 × 105 ω2

N � 0.1ω1
N ω3

N � 0.01ω1
N

1 −227.11 −227.10 −227.11
2 −98.20 −98.01 −102.62
3 −84.71 −84.57 −87.65
4 −80.59 −80.59 −82.29
5 −79.86
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gs � nT · u (3.6)
Bring theEq. 3.5 intoEq. 3.3, The contact integral can be calculated

δW � ∫
S1

R1 · δ(us − uξ)dS1 (3.7)

The δu1 is replaced by δus and δu2 is replaced by δuξ . The
contact force R1 can be split into

R1 � N + T � N · n + T · t (3.8)
In the frictionless contact problem, the tangential part

disappears (T � 0). Thus, the integral of Eq. 3.7 can be written as

δW � ∫
S1

R1 · δ(us − uξ) dS1 � ∫
S1

R1 · nδgsdS1 � ∫
S1

NδgsdS1

(3.9)

3.3 Penalty Method
When the PM is employed for the frictionless contact problem,
contact traction N can be written as

N � ωNH(−gs)gs withH(−gs) � { 0 if gs > 0
1 if gs ≤ 0

(3.10)

Thus, the Eq. 3.9 can be written as

δW � ∫
S1

ωNH(−gs)gsδgsdS1 (3.11)

Using numerical methods to catch the ball nonlinear
problems, like contact problems, solved by iterative methods.
The method requires the derivatives of the weak form δW. This
method is called linearization.

Differentiating Eq. 4–13 with respect to time t, we get

dδW

dt
� dδWN

du

du

dt
� ωNf(ξ3) _ξ3δξ3

� ωNf(ξ3)(vs − vm) · n · δxT · AT · n
� ωNf(ξ3)δxTATn ⊗ n · A · v

(3.12)

FIGURE 6 | The finite mesh and contour of normal stress (σyy ) is the normal stress in y-direction.

FIGURE 7 | The normal contact stress distribution (σyy ) along the
contact zone. FIGURE 8 |Maximum normal contact stress under different numbers of

elements.
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Without considering the rotation of the contact body, the contact
matrix is

Kc � Dv(δW) � ωNH(−gs)[A(ξ)]Tn ⊗ n[A(ξ)] (3.13)

4 NUMERICAL EXAMPLES

There are three numerical examples to be carried out in this
section. In example 1, the cantilever beamwith free end applied to
bending moment can be employed to study the VEM and FEM
mesh distortion tolerance, respectively. The accuracy and
convergence of the algorithm are explained by Hertz contact
in example 2. The influence of the mesh shape and amount of
element is presented in example 2. The application of algorithmic
reengineering is shown in example 3. The results of the FEM are
obtained by Abaqus.

4.1 Example 1: Cantilever Beam With Free
End Imposed to Bending Moment
In this part, the geometry of the cantilever beam with free end
imposed to bending moment is presented in Figure 3A. The
geometric parameters (Yang et al., 2014), which are L �
40units, b � 8units,M � 16units, E � 1000 units, u � 0 and h � 1
uni, are applied to computation. In the Figure 3B, two plane
strain quadrilateral elements are used to discretize the model. The
distortion of the element is expressed by the distortion parameter
2d/b (Zhang and Rajendran, 2008; Remacle et al., 2012;
Stavroulakis, 2013), which is always considered in articles that
explore the response of calculation method to mesh distortion.

In this case, the value which is calculated point A is compared
with the exact value which is ML2/(2EIz) to illustrate the

sensitivity of different numerical methods to the quality of the
mesh. In Figure 4, the following conclusions can be obtained:

For the twist factor 2d/b is zero, the performance of FEM is
better than VEM. With distortion parameters increasing, the
accuracy of the FEM decreases faster than the VEM. The result of
FEM is equal to VEM when the distortion parameter 2d/b is near
1. When the distortion parameter 2d/b exceeds 1, the accuracy of
VEM is superior to that of FEM.

4.2 Example 2: Hertzian Problem
The second simulation is to testify the convergence rate and
exactness of the algorithm. The reason for choosing the
Hertzian contact as the second numerical example is an
analytical solution to the Hertzian contact. The accuracy of
the method is illustrated by comparing the computational and
analytical solutions.

The model geometry is shown in Figure 5. The disc of the
radius R � 10m is loaded by a pressure p � 100Pa. The μ � 0.3
and E � 103Pa is selected as material parameters. Rectangular at
the bottom of the model is taken as
L � 20m,H � 10m, E � 106Pa, μ � 0.3. The quadrilateral
meshes are used. Because of the model’s symmetry, half of the
models are selected for research.

It is known that the penalty factor has an impact on the
result. When the number of mesh is 600, the number of

FIGURE 9 | Model geometry with straight lines in the contact interface.

FIGURE 10 | The distribution of normal contact traction in horizontal
contact interface. (A) The distribution of normal contact traction for different
mesh shapes. (B) The distribution of normal contact traction for different
number element.
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iterations and the maximum contact force under different
penalty functions are listed in the following Table1. From
Table 1, the penalty factor is finally selected as ω1

N � 1 × 104.
The model is discretized by 1,155 quadrilateral elements, as
exhibited in Figure 6A. The contour of normal pressure is
exhibited in Figure 6B.

In Figure 7, the analytical solution, numerical solutions
obtained by the VEM and the FEM for contact force are
shown, respectively. Some conclusions can be drawn:

In the contact region where x is less than 1.4, the difference
between the normal stress obtained by the VEM and the
analytical solution is smaller than that obtained by the FEM.
The maximum stresses of analytical solution, virtual element
method, and FEM are 83.60, 82.21, and 80.57. When x is more
significant than 1.4, The curve of the VEM coincides with
the FEM.

In practical problems, we are more concerned about the
maximum normal contact traction. The contact stress with

389, 600, and 1,155 meshes are shown in Figure 8. There are
some conclusions reached from Figure 9.

1) When the same mesh discretizes the structure, the
maximum stress from the VEM is closer to the analytical
solution.

2) The convergence rate of the VEM is higher than FEM for the
number of the element from 389 to 600.

3) As the number of mesh elements increased from 600 to
1,155, the convergence rate of the VEM was the same as
the FEM.

4.3 Example 3: A Horizontal Interface Under
Uniform Compression
The third numerical model has been researched by Hirmand
(Hirmand et al., 2015). This example is to compare the influence
of different mesh shapes and the number of elements for contact

FIGURE 11 | Contours of displacement and pressure for the vertical direction (Uy is the displacement in y-direction and σyy is the stress in y-direction).
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stress. The geometry is shown in Figure 9. A displacement
loads the upper rectangle in the y-direction (uy � −0.1m).
The displacements of the bottom of the model are both fixed.
The Young’s modulus is E � 109 Pa. The Poisson’s ratio is
μ � 0.3.

The advantage of VEM is to it calculates arbitrary mesh
shapes. The Voronoi mesh (Talischi et al., 2012) is used to
discrete the model. The normal stress along the contact interface
of the different shape mesh with Hirmand is shown in
Figure 10A. From Figure 10A, it can be concluded that the
maximum normal contact stress is basically the same, with
slight differences at both ends. Therefore, it can be noticed
that the normal contact stress is slightly affected by the mesh
shape. In this example, the influence of the different amounts of
elements for the normal contact stress is studied. The 50, 100,
200, 300, and 500 Voronoi elements are employed to discrete the
model. In Figure 10B, mesh 1, mesh 2, mesh 3, mesh 4, and
mesh 5 correspond to 50, 100, 200, 300, and 500 Voronoi
elements. Figure 10B presents the normal contact stress for
different number elements. The following conclusions are
obtained from Figure 10B: When the number of elements is
200, 300, and 500, the normal contact stress curves remain
coincident.

Figure 11A shows the contour of vertical displacement
obtained by VEM under the Voronoi mesh. The simulation of
Hirmand under quadrilateral mesh is presented in Figure 11B. It
is noted that the curve for VEM is in line with the results shown
by Hirmand. The contours of the normal stress (σyy) is shown in
Figure 11C.

4.4 Example 4: Dam With Joint
This numerical example simulates a dam problem with a cracked
foundation. This example is shown in Zheng (Zheng et al., 2002)
in the 2005 year. The geometric model is exhibited in Figure 12A.
The model size parameters are L1 � 25m, L2 � 3m, L3 � 2m,
H1 � 10m, H2 � 5m. The Young’s modulus E � 1010Pa and
Poisson’s ratio μ � 0.3 are the material parameters for this
model. The γ � 24kN/m3 is taken as volumetric weight. The
displacements of the bottom left and right of the foundation are
fixed. The coordinates of the joint tip are from (4,10) to (10,4).
The joint end is fixed and will not propagate, and there is no
friction at the crack interface.

The stress situation is analyzed using two load steps. The
first load step only considers the self-weight of the dam body
and foundation; the second load step applies a triangularly
distributed normal water pressure to the surface of the dam
body to simulate the condition of the reservoir after it is full
of water. The Voronoi mesh was used to discretize the model.
The Voronoi mesh is presented in Figure 12B. The
displacement contour along the x-direction is
demonstrated in Figure 13A, and the displacement
contour in y-direction is shown in Figure 13B. From
Figures 13A,B, it is noted that the displacement contours
are discontinuous at the joint. The maximum and minimum
principal stress contours are presented in Figure 14. As
expected, the maximum stress occurs at the joint tip. The
phenomenon is consistent with Li’s research (Li et al., 2022).
In their studies, the strategy derived from the meshless
numerical manifold method (MNMM) is employed by Li
to solve linear elastic fractures.

5 DISCUSSION

In Example 1, when the distortion parameter is 0, the result of the
FEM is more accurate than the VEM. The reason is that the
function in the virtual element space satisfies the globally
continuous on the element boundary. When the distortion
parameter gradually increases, the downward trend of the
resulting curve of the VEM is slower than that of the FEM.
When the element distortion parameter exceeds a certain value,
the result of the VEM is more accurate than the FEM. The result
of VEM calculation is less affected by mesh quality.

In Figure 7 of example 2, the result of the VEM is better than
the FEM in the contact region where x is less than 1.4 because the
discrete element size is small, which makes the element more
twisted. And in the contact region where x is more significant
than 1.4, the main reason is that discrete element size is relatively
large, so the element distortion is minor.

FIGURE 12 | The geometric parameters and Voronoi mesh for dam with
joint. (A) Dam geometry with jointed foundation. (B) Voronoi mesh for dam
with jointed foundation.
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Under the 389 elements in Figure 8 of example 2, the main
reason for the similar maximum normal stress of the VEM and
the FEM is that the element distortion parameter is small. When
the number of elements increases, the corresponding element
size becomes smaller, the distortion increases, and the
advantages of the VEM become more obvious. When the
number of elements is 600, the difference between the VEM
and the FEM results is greater than the difference between the
VEM and the FEM when the amount of elements is 389. When
the amount of elements is 1,155, the difference between the
outcomes of the VEM and FEM is close to the difference
between the outcomes of the amount of elements 600. On
the whole, the better convergence and accuracy of the VEM
in Hertz contact lies in the VEM is suitable for general polygons
or polyhedrons, which is used flexibly for discrete complex

contact surfaces (Beirão Da Veiga et al., 2013; Chen, 2015;
Benedetto et al., 2016).

From example 1 and example 2, it can be known that the
distortion of the element greatly influences the results. In example
3, normal contact stress in the contact interface is the same under
different mesh shapes. The main reason is that the VEM test and
trial space do not need to be accurately calculated, avoiding mesh
dependence, and the contact interface is straight.

In example 4, a dam with cracks under Voronoi mesh was
modeled. As expected, the maximum stress occurs at the joint tip
in example 4, so the joint is an important cause affecting safety in
engineering. So, the joint the focus of the study. Through example
4, it can be obtained that the NST contact model based on the
virtual element method can solve engineering problems well
under the Voronoi mesh.

FIGURE 13 | The contours of displacement in x and y directions (Ux and Uy are the displacement in displacement in x and y direction, respectively).
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6 CONCLUSION

A strategy to handle the contact problem is proposed in this paper,
which is stemmed from the NTS model and the VEM. The effect of
mesh distortion for results, the accuracy and convergence rate forHertz
contact, the impact of different mesh shapes and different elements
numbers for results and the application of algorithms in engineering
are implemented by several numerical examples. The results show that:

1) The VEM is insensitive to the mesh quality.
2) When the mesh on the contact interface is distorted, The VEM

has high convergence and accuracy.
3) When contact problem is handled by VEM, the normal contact

stress on the contact surface is slightly affected by themesh shape.
4) The results in the fourth example show that the VEM can

solve the contact problem in engineering under Voronoi mesh
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