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Hydrological simulation plays a very important role in understanding the hydrological
processes and is of great significance to flood forecasting and optimal allocation of water
resources in the watershed. The development of deep learning techniques has brought
new opportunities and methods for long-term hydrological simulation research at the
watershed scale. Different from traditional hydrological models, the application of deep
learning techniques in the hydrological field has greatly promoted the development trend of
runoff prediction and provides a new paradigm for hydrological simulation. In this study, a
CNN–LSTM model based on the convolutional neural network (CNN) and long short-term
memory (LSTM) network, and a CNN–GRUmodel based on CNN and gated recurrent unit
(GRN) are constructed to study the watershed hydrological processes. To compare the
performance of deep learning techniques and the hydrological model, we also constructed
the distributed hydrological model: Soil and Water Assessment Tool (SWAT) model based
on remote sensing data. These models were applied to the Xixian Basin, and the promising
results had been achieved, which verified the rationality of the method, with the majority of
percent bias error (PBE) values ranging between 3.17 and 13.48, Nash–Sutcliffe efficiency
(NSE) values ranging between 0.63 and 0.91, and Kling–Gupta efficiency (KGE) values
ranging between 0.70 and 0.90 on a monthly scale. The results demonstrated their strong
ability to learn complex hydrological processes. The results also indicated that the
proposed deep learning models could provide the certain decision support for the
water environment management at the watershed scale, which was of great
significance to improve the hydrological disaster prediction ability and was conducive
to the sustainable development of water resources.

Keywords: hydrological simulation, soil and water assessment tool, deep learning techniques, remote sensing,
CNN–LSTM, CNN–GRU

1 INTRODUCTION

Hydrological simulation uses a mathematical model to simulate the hydrological process in the basin
and realizes it on the computer, which is one of the most important tasks in hydrological research
(Mishra et al., 2017; Koster et al., 2018; Qi, Zhang, and Wang 2019; Xu, Han, and Fu 2022). It has
received extensive attention from hydrologists and has become an important tool for studying
watershed water resources (Arsenault et al., 2015; Xiong et al., 2019; Zhou et al., 2019). Hydrological
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simulation also has a very important guiding significance for the
sustainable utilization of water resources (Ravazzani et al., 2015;
Wang G. Q. et al., 2015; Wang H. L. et al., 2015; Xu Y. Y et al.,
2020; Yin Z. L et al., 2021).

At present, the main method of hydrological simulation at the
watershed scale is the watershed hydrological model (Freeze and
Harlan 1969; Bultot and Dupriez 1976; Beven and Kirkby 1979;
Zhao 1992; Arnold et al., 1998; Edijatno et al., 1999). The
watershed hydrological model is a scientific way that
generalizes complex hydrological phenomena and processes to
simulate the runoff generation and confluence of the watershed.
The study of the watershed hydrological model provides us with
an important tool for scientific understanding and rational
utilization of water resources, and provides an important
scientific basis for water resources management and decision-
making (Fonseca et al., 2014). The watershed hydrological model
includes a lumped model and distributed model, and also a semi-
distributed model (Jaiswal, Ali, and Bharti 2020). The rapid
development of remote sensing technology has provided a lot
of convenience for the application of distributed hydrological
models (Silvestro et al., 2015; Xu et al., 2021). The Soil and Water
Assessment Tool (SWAT), designed and developed by Jeff
Arnold in the 1990s for the U.S. Department of Agriculture
(USDA) Agricultural Research Service (ARS) (Arnold et al., 1998;
Srinivasan, Arnold, and Jones 1998), is a comprehensive
watershed distributed hydrological model, which has an
explicit physical mechanism. The SWAT model is designed to
simulate the quality and quantity of surface and groundwater and
predict the environmental impact of land use, land management
practices, and climate change, which is widely applied over the
world (Arnold et al., 2012; Fohrer et al., 2014; Dwarakish and
Ganasri 2015; Krysanova and Srinivasan 2015; Worku, Khare,
and Tripathi 2017; Nguyen and Dietrich 2018; Tan et al., 2019;
Xue et al., 2019; Raihan et al., 2020). The SWAT model has a
strong physical foundation, which can simulate a variety of
hydrological physical and chemical processes, such as runoff
and sediment by spatial information provided by remote
sensing and GIS (Worku, Khare, and Tripathi 2017). SWAT
has a global user community with an active technical support
forum that facilitates its applications to be an effective tool for
watershed management (Samimi et al., 2020).

In addition to the watershed hydrological model, deep
learning techniques have also been widely used in the
hydrological field due to their small data requirements and
strong plasticity (Rezaeianzadeh et al., 2014; Beven 2020; Gu
et al., 2020; Van et al., 2020). Especially in recent years, the
explosive development of deep learning has brought innovations
and breakthroughs to hydrological simulation and will become an
important research direction in the future (Abbas et al., 2020;
Alizadeh et al., 2021; Lei et al., 2021). It will also become an
important driving force to promote the development of
hydrological simulation of basins and provide new
opportunities for the research and application of flood
forecasting (Sit et al., 2020). Deep learning can effectively
improve the summary and expression of data distribution
rules with the increase in training samples and the
diversification of data characteristics, thus improving the

prediction accuracy of runoff and many hydrological
simulation cases based on deep learning have emerged
(Althoff, Rodrigues, and da Silva 2021; Bai H. et al., 2021;
Hussain et al., 2020). The usage of deep learning in a
previously published article can be seen in a related study (Sit
et al., 2020). We can see that the commonly used deep learning
networks for hydrological forecasting mainly include the long
short-term memory network (LSTM) (Hochreiter and
Schmidhuber 1997), convolutional neural network (CNN)
(Lecun 1989), and gated recurrent unit (GRU) (Cho et al.,
2014). LSTM is a widely used deep learning model, which can
better deal with hydrological data with long-term dependence. It
is very suitable for processing time series data such as
hydrological and water quality information and has been
successfully applied to the field of hydrological forecasting (Hu
et al., 2019; XuW. et al., 2020; Bai Y. et al., 2021; Feng et al., 2021;
Lees et al., 2021; Lu et al., 2021; Yin H. L. et al., 2021; Yuan et al.,
2021). The convolution layer and pooling layer of CNN can better
mine the effective information contained in the data and retain
the characteristics of the data in the time dimension, which is
conducive to and improves the prediction accuracy of hydrology
simulation (Pulido-Calvo and Portela 2007; Kabir et al., 2020;
Kim and Song 2020; Van et al., 2020). GRU is further optimized
on the basis of LSTM and gets a more concise expression. Studies
have shown that GRU can achieve good performance in various
hydrological prediction tasks (Ayzel and Heistermann 2021;
Sibtain et al., 2021; Zhao et al., 2021).

However, related studies have shown that a single model has
not yet been able to extract spatiotemporal features
simultaneously, which affects the prediction accuracy in the
hydrology field (Chhetri et al., 2020; Miau and Hung 2020).
The combination of deep learning models can give full play to the
advantages of each model and improve the generalization ability,
thereby improving the performance of the model (Chhetri et al.,
2020). The combination of CNN and LSTM can not only quickly
extract the effective features in the data but also fully consider the
long-term dependence of the time series, so as to achieve accurate
runoff prediction, which has a certain reference value for
mastering the hydrological environment of the basin (Hong
et al., 2020). Similarly, combining the advantages of CNN’s
spatial processing capability and GRU’s temporal processing
capability can also be applied to hydrological forecasting
(Miau and Hung 2020). Hence, in order to improve the
simulation accuracy and increase the generalization ability,
this study combines CNN with LSTM and GRU to construct
the CNN–LSTM model and CNN–GRU model. Then the two
deep learning models and the SWAT model are applied to
hydrological simulation at a watershed scale with long-term
hydrological data. The main objectives of this study are 1) to
develop the coupled models: CNN–LSTM and CNN–GRU based
on deep learning techniques; 2) to evaluate the performance
of the proposed deep learning models against the existing
hydrology model (SWAT model). The remainder of this
article is organized as follows: Section 2 describes the
methods and study area; Section 3 summarizes the
research results; Section 4 is the discussions; and lastly,
the conclusions are drawn in Section 5.
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2 MATERIALS AND METHODS

Deep Learning Models
CNN is a commonly used feedforward neural network in deep
learning, which is mainly composed of five parts: input layer,
convolution layer, pooling layer, dense layer, and output layer.
The convolutional layer is the core of the CNN neural network,
where convolution is performed when data are passed to the
convolution layer.

The input layer is expressed by Eq. 1:

X � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 / x1,n

..

. · ..
.

xm,1 / xm,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where X represents the input data matrix, x represents the data
feature, n represents the length of time, and m is the number of
data features.

The convolution layer is carried out by using Eq. 2 and the
time series can be obtained through the convolution layer:

Oc � fc(X ⊗ Wc + bc), (2)
where ⊗ is convolution operation, the convolution kernel Wc is
weight vector, bc is the bias, fc(·) is activation function, ReLu
usually, and Oc is mapping results.

The pooling operation is used to select the most important
features of the convolutional layer sequence. The commonly used
pooling method is maximum pooling, which is expressed as
Equation 3 and Equation 4:

Op(k) � max(Oc(2k − 1), Oc(2k)), (3)
Op � max(Oc), (4)

where Op(k) is the k-th pooling result and Op is the global
maximum pooling result.

Finally, the combination of temporal features is implemented
by the dense layer, and the output layer outputs the results of the
dense layer, as shown in Equation 5 and Equation 6.

Od � fd(Op × Wd + bd), (5)
y � fo(Od × Wo + bo), (6)

whereWd is the weight matrix of the dense layer, bd is bias, fd(·)
is the activation function of the dense layer, Wo is the weight
matrix of the output layer, bo is the bias of the output layer, andfo

is the activation function of the output layer, Softmax usually.
LSTM is a variant structure of the recurrent neural network

(RNN) and has three “gate” structures, namely the forget gate,
input gate, and output gate, and a memory unit to selectively
receive information transmitted into the neural network.

Forget gate:

ft � σ(Wf · [ht−1, xt] + bf), (7)
Input gate:

it � σ(Wi · [ht−1, xt] + bi), (8)
Output gate:

ot � σ(Wo · [ht−1, xt] + bo), (9)
where σ is Sigmoid function, bf, bi, bc, and bo are the
corresponding bias; Wf, Wi, Wc, and Wo are the weight
matrixes; tanh is hyperbolic tangent function; ht−1 is the
output of hidden state of previous step; and xt is the input.

The GRU network is an improved network based on LSTM.
GRU combines the forget gate and input gate into an “update
gate.”

The calculation of the GRU unit neural network is as follows:

ft � σ(Wf · [ht−1, xt]), (10)
it � σ(Wi · [ht−1, xt]), (11)

h̃t � tanh(Wc · [ftht−1, xt]), (12)
ht � (1 − it)ht−1 + ith̃t, (13)

where xt is the input, ft is a reset gate, it is an update gate, tanh is
the activation function, σ is the sigmoid function, h̃t is the hidden
state, ht is the output of the hidden state, ht−1 is the output of the
hidden state of the previous step, and Wf,Wi , and Wc are the
weight matrixes of the corresponding gate and the hidden state.

Because a single neural network often has limitations in
dealing with practical problems, it is a development trend to
combine two or more algorithms in order to make use of their
respective advantages. Hydrological data has the characteristics of
temporal and spatial correlation, so it is necessary to combine the
advantages of eachmodel for comprehensivemodeling.With learning
spatial (CNN) and temporal (LSTM) features, a new deep learning
scheme was proposed in this study, called CNN–LSTM. The
framework of the proposed CNN–LSTM model is outlined in
Figure 1A and can be expressed as Eqs 14-16. In addition, we
also constructed a CNN–GRU model to compare the performance
of different combined models (Figure 1B).

CO � f(X ⊗ W + b), (14)
where X is the input matrix, f is Relu function, ⊗ is the
convolution operation, W is the weight, and b is the bias.

qt � f⎛⎜⎜⎝⎡⎢⎢⎢⎢⎢⎣ qt,iet,j
rt,j

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎠, (15)

qt,i � qt−1, qt−2, . . . qt−i et,j � et−1, et−2, . . . et−j rt,j

� rt−1, rt−2, . . . rt−j, (16)
where qt is the prediction discharge at time t, qt,i is the discharge
from the previous t-i to t-1 (i is the time scale), et,j is the
evaporation from the previous t-j to t-1 (j is the time scale),
rt,j is the rainfall from the previous t-j to t-1, andf(·) is the
system transfer function.

Soil and Water Assessment Tool Model
The SWAT model is a continuous, physically based, and
distributed hydrologic model. The SWAT model is widely
used to simulate water quality and quantity as well as to assess
the impacts of physical changes to a catchment, such as land use
and climate changes. The hydrology module is the main module
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of the SWAT model, including surface runoff, infiltration,
subsurface runoff, evapotranspiration, snowmelt runoff, and
transmission loss. The hydrological process of the SWAT
model is calculated in two parts: slope runoff and channel
flood routing. The water balance equation is the calculation
basis of water transfer in SWAT.

SWt � SW0 +∑t
i�1
(Rday − Qsurf − E −Wseep − Qgw), (17)

where SWt is the soil moisture content at termination time, SW0

is the soil moisture content at start time, Rday is rainfall, Qsurf is
the surface runoff, E is evapotranspiration, Wseep is the lateral

flow, Qgw is the return flow of groundwater, all measured in mm,
and t is time, measured in months or days. The calculation of
Qsurf is crucial and can be expressed by a Soil Conservation
Service Curve Number (SCS-CN) method (Division,
United States. Soil Conservation Service. Engineering, 1986):

Qsurf � (Ri − Ia)2
Ri − Ia − S

, Ri > Ia, (18)

S � 25400
CN

− 254, (19)

where Ri is the precipitation, Ia is the initial abstraction, andS is
the potential maximum retention after the beginning of the

FIGURE 1 | Flowchart of the proposed deep learning models (A) CNN–LSTM and (B) CNN–GRU.
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runoff. The CN is the parameter corresponding to various soil
and land conditions and can be obtained from tables (Grove,
Harbor, and Engel 1998). If Ri < Ia, Qsurf � 0.

The potential evapotranspiration is calculated using the
Penman–Monteith method (Jung, Lee, and Moon 2016). A
kinematic storage model is used to predict the lateral flow,
whereas the return flow is simulated by creating a shallow
aquifer (Arnold et al., 1998). The Muskingum method is used
for channel flood routing (Mccarthy 1939).

When the model is built, the watershed is divided into several
sub-basins according to the digital elevation model (DEM), and
then the sub-basins are further divided into several hydrological
response units (HRU) according to different land use and soil
types. The SWAT model runs separately on each HRU unit to
predict the runoff of each HRU, and then the total runoff of the
watershed is obtained through channel flood routing.

Study Area and Dataset
The Xixian Basin is located in Xinyang city, in the southeast of
Henan Province, with an area of 10,190 km2 (31.52°–32.72° N,
113.25°–114.77° E) (Figure 2). Themain rivers of the basin are the
Shi River, ZhuGan River, and Qingshui River, which belong to the
Huaihe River Basin. The terrain exhibits high elevation in the east
and low elevation in the west, elevations in the study area range
from 40 to 1,020 m, with a mean elevation of 142 m (Figure 2).
The annual rainfall is 800–1400 mm, with a mean value of
1,060 mm, 50% takes place in the flood season (focused on
June to September). The average potential evaporation is
850 mm. The Xixian Basin has a humid to semi-arid transition
zone with a temperature of about 14–16°C. The major land-use
types of the study area are forest and cultivated land.

The hydrological data of the study are from the hydrological
bureau, including rainfall, evaporation, and discharge data
(monthly scale) from 1976 to 1997. The major geospatial

input data include climate data, terrain map (Figure 2), soil
data (Figure 3A), and land use/land cover map (Figure 3B).
Spatial input data used to set up SWAT were sourced from
publicly available datasets (Table 1). The accuracy of these
datasets has been evaluated and widely used in hydrological
simulations (Li et al., 2013; Fuka et al., 2014; Satge et al., 2015;
Alemayehu, van Griensven, and Bauwens 2016; Zhao 2016;
Alemayehu et al., 2018; Bouslihim et al., 2019; Duan et al.,
2019; Rivas-Tabares et al., 2020).

Model Setting
2.1.1 Soil and Water Assessment Tool Model Setting
The SWAT model for the Xixian Basin has been built using
information concerning land use, soil properties, and climate
data. ArcSWAT (2012 version) is used as the graphical user
interface for the SWAT model. The SWAT model setup includes
four steps: watershed delineation, hydrological response unit
analysis, input database building, and SWAT simulation: 1)
First, with the “Watershed automatic delimitation,” all the
topographical inputs were calculated starting from a 30 m
resolution DEM to define the watershed features like
boundaries, river network, sub-basins, and to derive slope
related parameters. 2) The second phase is the HRU
definition. The land-use code is converted into a code that can
be recognized by SWAT through the land-use index table. The
soil data came from the Food and Agriculture Organization of the
United Nations (FAO) (Table 1), which was reclassified into 8
categories, and then Soil-Plant-Air-Water (SPAW) software was
used to calculate the attributes required by the SWAT soil
database. The soil index table was also established. The land
area in a sub-basin can be further divided into the HRUs, which
are the basic computing elements of the SWAT model. In this
study, a sub-basin was subdivided into only one HRU that was
characterized by the dominant land use and soil type. 3) Third,

FIGURE 2 | Study area.
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FIGURE 3 | Geographic information of the study area: (A) soil types and (B) land use.

TABLE 1 | Data source and description.

Data Description Source

DEM 30 m*30 m Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn)
Land use 79 m*79 m; 30 m*30 m USGS (https://eartheplorer.usgs.gov)
Soil 1000 m*1000 m Food and Agriculture Organization (FAO)

(http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/)
Meteorological Monthly CFSR (https://globalweather.tamu.edu/)

FIGURE 4 | Results of parameter sensitivity analysis.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8751456

Xu et al. Deep Learning and Remote Sensing

http://www.gscloud.cn
https://eartheplorer.usgs.gov
http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/
https://globalweather.tamu.edu/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


“Write Input Table,” daily meteorological data, including
temperature, relative humidity, sunshine duration, wind speed,
and rainfall, were obtained from the databases of Climate
Forecast System Reanalysis (CFSR: https://climatedataguide.
ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr).
Rainfall data came from hydrological stations in the watershed.
These data were written to SWAT tables for SWAT
simulation. 4) Fourth, “SWAT simulation,” set the name of
the simulation, output, simulation period, and other
information for simulation and then run the simulation.
The parameter sensitivity analysis (200 model runs) was
also performed with the auto-calibration software SWAT-
CUP using the Sequential Uncertainty Fitting (SUFI2)
optimization program for streamflow (Abbaspour, Vejdani,
and Haghighat 2007). The p-value and t-stat are used to
evaluate the sensitivity of the SWAT model parameters. The
smaller the p-value, the larger the t-stat and the more
sensitive it is. The results of parameters sensitivity analysis
are shown in Figure 4. We can see that the curve number
(CN) is the most sensitive parameter for streamflow
simulation. The period 1975 to 1976 served as a warm-up
period for the model, allowing state variables to assume
realistic initial values for the calibration period. Monthly
discharges from 1976 to 1990 are used for calibration and the
remaining data from 1990 to 1997 are used to validate. The
selected parameters are summarized in Table 2.

2.1.2 Deep Learning Models Setting
This study constructs integrated deep learning models
(CNN–LSTM and CNN–GRU) based on the MATLAB
language. The CNN–LSTM model constructed in this study
mainly includes the following steps (Figure 5): 1) the rainfall
runoff and its related factors are pre-processed by a standardized
method and the input characteristic map is obtained by sliding
window. 2) Feature extraction is carried out for the characteristic
map of runoff through CNN, in which the convolution layer and
pool layer can compress the number of parameters, so as to
extract more obvious features reflecting the change of streamflow
and reduce overfitting and the dense layer can summarize and
output the aforementioned features. 3) The extracted features are
converted into the corresponding data format of LSTM through
the LSTM layer. Through the three-gate mechanism in LSTM, the
data mining of time series is carried out to obtain its internal
change of streamflow and obtain the prediction model. 4) The
sigmoid function is used as the output activation function to
output the result of the prediction. The settings of the CNN–GRU
model are similar. In all, normalized input (rainfall evaporation
and streamflow) is passing to the CNN layer. The feature output
(after the convolution layer) is input to LSTM/GRU by a
flattening layer.

The super parameter setting affects the performance of the
models to a certain extent. Throughout all of our
experiments, the relatively better super parameter and

TABLE 2 | Calibrated values of the model parameters.

Parameter Physical meaning Range Result

R__CN2 Initial SCS runoff curve number for moisture condition ll −0.2-1 0.13
V__ALPHA_BF Baseflow alpha factor 0–1.0 0.92
V__GW_DELAY Delay for groundwater recharge (days) 30-450 371.60
V__GWQMN Threshold level for shallow aquifer (mm H2O) 0-2 1.93
V__GW_REVAP Groundwater re-evaporation coefficient 0–0.2 0.07
V__ESCO Soil evaporation coefficient 0.6-1 0.81
R__CH_N2 Manning coefficient in the main channel −0.5–0.5 0.12
V__CH_K2 Effective hydraulic conductivity in main channel alluvium 5-130 5.78
V__ALPHA_BNK Baseflow alpha factor for bank storage (days) 0–1.0 0.51
R__SOL_AWC(..) Available water capacity of soil layer −0.5–0.5 0.23
R__SOL_K (..) Saturated hydraulic conductivity of soil layer (mm h-1) −0.8–0.8 -0.15
R__SOL_BD (..) Density of soil mass −0.5–0.5 -0.07
V__SFTMPN Degree of snowfall (°C) −5.0–5.0 4.06

FIGURE 5 | Technology roadmap of deep learning models for rainfall-runoff simulation and prediction.
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activation function are determined: first, a sequence input
layer inputs sequence data to a network. The folding layer is
used to convert sequences to a batch of images. Then, a 2D
convolutional layer with 32 filters of size (10 1) and "same’
padding is used. After the normalization, we create an
average pooling layer with pool size (1 1) and stride (10
10). The activation function is “elu.” Apply sequence
unfolding layer and flatten layer to transform the input
into channel dimensions, and then feed the features to two
LSTM layers. The hidden units of each LSTM layer are 128
and 32, respectively. We also added a dropout layer to prevent
the model from overfitting with a probability of 0.25. Finally,
fully connected layer and regression layer are used to output.
The Adam is chosen as the optimizer. In this study, we used
the root mean square error (RMSE) as an objective criterion.
The training process is shown in Figure 6.

Statistical Criteria and Model Evaluation
Performance
The performance of the deep learning models and SWAT
model can be computed using statistical indices and

graphical comparisons. The Nash–Sutcliffe efficiency
(NSE) (Legates and McCabe 1999), percent bias error
(PBE) (Bennett et al., 2013), and Kling–Gupta Efficiency
(KGE) (Gupta et al., 2009) were adopted to evaluate the
model performance.

NSE � 1 − ∑(Qo − Qs)2

∑(Qo − Qo)2, (20)

PBE � ∑Qs − ∑Qo∑Qo
p100%, (21)

KGE � 1 −
������������������������
(r − 1)2 + (α − 1)2 + (β − 1)2√

, (22)

α � σs
σo

β � Qs

Qo

, (23)

whereQo is the observed discharge,Qs is the simulated discharge,
Qo is the mean of observed discharge,Qs is the mean of simulated
discharge, σs is the standard deviation of simulated discharge, σo
is the standard deviation of observed discharge, and r is the
correlation coefficient.

FIGURE 6 | Train processes. (A) Training loss; (B) training RMSE).

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8751458

Xu et al. Deep Learning and Remote Sensing

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


3 RESULTS

Land-Use Change
Due to data source limitations, we analyzed the land use in the
basin from 1990 to 1997. The distribution of the land-use area
ratio of Xixian watershed is shown in Figure 7. It can be seen that
there are five types of land use in the study area, mainly including
cultivated land and forest land, which account for about 90% of
the basin area. Of these, cultivated land is the main land-use type,
accounting for about 60% and the second is forest, accounting for
about 30%. In order to fully demonstrate the degree of land type
transfer of Xixian watershed from 1990 to 1997, the rates of
change in land use were used to conduct the research. The rates of
change of land used in the study area are shown in Table 3. It is
worth noting that the degree of land-use change in the study area
is not obvious, which is very beneficial for our research, and will
have a litter impact on the hydrological model.

Comparing the Results of Deep Learning
Models and Hydrological Model
The calibration results in Table 2 were input into the SWAT
model. The results of the deep learning models were artificially
divided into calibration and validation periods. The discharge
hydrographs and the relationship between observed and
simulated discharges are shown in Figure 8. The observed and
simulated discharge agreed well (Figure 8A and Figure 8B),

indicating both SWAT and deep learning models represented
observed discharges well. All correlation coefficients (both
calibration and validation period) were above 0.8, suggesting
that both SWAT and deep learning models captured the study
area’s hydrologic characteristics well and reproduced acceptable
discharge simulations. However, the SWAT model has poor
performance in the initial stage (Figure 8D), which is due to
the watershed state at the initial time is not really enough. In
addition, there was a significant difference between the
calibration and validation period; both deep learning models
and the SWAT model were well in the calibration period,
while the SWAT model was better in the validation period
(Table 4). This may be linked to the variability of rainfall and
runoff. Deep learning models were less effective for time series
simulation with greater variability, and the SWAT model was
suitable for long-term prediction. Moreover, the performance was
very similar for the two deep learning methods (Figures 8E,F),
which was also consistent with the characteristics of deep
learning. The PBE of deep learning models was less than 10%
for both calibration and validation period, which revealed super
fine simulation performance in the flood volume. This illustrated
the advantages of deep learning in time series data processing.
The PBE of the SWAT model was less than 20% but greater than
10% for validation periods and all PBE>0. The reason was that the
overall physical mechanism of the SWAT model was clear and
represented the entire hydrological process, so the overall fit was
better (NSE is closer to 1). The deep learning models were the

FIGURE 7 | Distribution of land-use area ratio of Xixian watershed.

TABLE 3 | Rates of change of land use of the study area from 1990 to 1997.

Time 1990 1991 1992 1993 1994 1995 1996 1997

Land
use

Cultivated land — 0.53 −0.16 1.27 −0.47 −0.05 −0.03 −0.24
Forest land — −1.00 0.62 −2.14 1.23 0.01 −0.29 −0.11
Grass land — −4.76 −11.29 −9.52 −3.24 −3.22 −3.06 −9.31
Water — −2.61 −3.14 −10.02 −4.81 −2.20 3.60 4.94
Urban land — −4.47 1.49 −24.97 −30.19 −6.15 −7.53 7.69
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mining of hydrological data and have no physical meaning
behind it, so it is better for the simulation of data values (the
PBE is relatively small), but not as good as the SWAT model for
the overall discharge hydrograph. In addition, we could find that
the simulation result of the SWATmodel was always greater than
the observed value in low discharge, which was the reason why
the PBE>0. KGE could integrate NSE and PBE to better evaluate
the model performance. There is substantial variation in results
across the calibration and validation period of deep learning
models and SWAT model; deep learning performed well during
calibration but SWAT during validation. This also verified the
impact of data variability on deep learning models.

Comparing the Deep Learning Results for
Different Leading Times
To evaluate the simulation ability of the deep learning models in
various leading times, 1-, 5-, and 10-month-ahead discharges
were set. The discharge hydrographs and scatter diagrams are
shown in Figure 9. In different leading times, the models had

obtained satisfactory results, indicating that the relationship between
rainfall and runoff in the basin was relatively stable, and it is less
affected by anthropogenic activities. However, when the leading time
is 1, the model performance of CNN–GRU was not as good as 5 and
10 (the scatter of the deviates from the ideal fit in Figure 9A) whereas
there was a little difference in CNN–LSTM (Figure 9B), which
indicated that the performance of the CNN–LSTM model is more
stable. The CNN–LSTM model had better generalization capability
and prediction accuracy. In summary, the deep learning model’s
performance in different leading times indicated that deep learning
techniques could provide an acceptable prediction precision.

Size-Dependent of Training Samples in
Deep Learning Models
In order to explore the influence of training samples on the
simulation performance, the training set sizes of CNN–LSTM
and CNN–GRU are set to 70%, 50, and 30% respectively, and
other super parameters remain unchanged. We can see that when
the training set becomes smaller, the model performance also

FIGURE 8 | Simulated results of deep learning models and hydrological model (the scatters of different models in (A) calibration and (B) validation period; the
discharges hydrographs in (C) 1976–1997, (D) 1976, (E) 1992, and (F) 1997 years).

TABLE 4 | Comparison of prediction performances in deep learning models and hydrological model.

Period NSE PBE KGE

CNN–LSTM CNN–GRU SWAT CNN–LSTM CNN–GRU SWAT CNN–LSTM CNN–GRU SWAT

Calibration (1976–1990) 0.85 0.84 0.88 5.07 3.17 9.2 0.90 0.88 0.80
Validation (1990–1997) 0.63 0.64 0.91 9.94 5.94 13.48 0.71 0.70 0.83
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FIGURE 9 | Predicted results and scatters of different leading times (A) CNN–GRU; (B) CNN–LSTM (OBQ: observed discharge; Sim: simulation discharge).
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decreases (Table 5). Therefore, although deep learning can obtain
better results, there are certain requirements for the data set. In
addition, compared with the CNN–LSTM model, the size of the
training set has a greater impact on the CNN–GRU model (the
red circle in Figure 10), indicating that the CNN–GRU model is
more sensitive to the size of training samples, which may be
related to the internal structure of CNN–GRU: GRU has a
simpler structure, a gate less than LSTM, fewer parameters,
and simplifies matrix operation, so the performance of GRU is
more dependent on data set than LSTM. We also find that the
training samples are not better (Table 5). Therefore, the selection
of appropriate samples has a certain impact on the model results.

4 DISCUSSION

The land-use change has an important impact on runoff
simulation (Cheng et al., 2022; Wang et al., 2021). However,
the land-use change in the study area is small (Table 3), so the

results of this study are not affected by the land-use change. From
the results in sections 3.2–3.4, we can see that deep learning
models acquire an acceptable predicted value but not as well as
the SWAT model in some respects. This is because deep learning
models do not consider the changes of heterogeneity within the
basin, but only mine and extract information features from the
data to find its rules for training and prediction, which leads to a
higher level representation of the underlying data sources (Saba
et al., 2019). Furthermore, deep learning is capable of extracting
substantial features without being explicitly instructed, hence, it is
more immune to raw and noisy data (Sahiner et al., 2019);
however, it cannot consider the variability of rainfall and
runoff caused by anthropogenic activities. The SWAT model
needs to calibrate parameters through certain underlying surface
data, meteorological data, and hydrological data to comprehend
the model (Arnold et al., 1998), hence, it considers more
variables. It can also be seen from Figure 10 that all models
have a good simulation effect in large discharge, but the
simulation error is large in low discharge. This verifies that

TABLE 5 | Performance of deep learning models under different size of training samples.

CNN–LSTM CNN–GRU

Sample (70%) Sample (50%) Sample (30%) Sample (70%) Sample (50%) Sample (30%)

Calibration
NSE 0.85 0.85 0.83 0.85 0.85 0.84
PBE 5.07 6.18 −3.78 3.17 5.41 −4.83
KGE 0.88 0.86 0.80 0.90 0.87 0.82

Validation
NSE 0.63 0.62 0.62 0.64 0.62 0.60
PBE 11.94 12.72 2.9 5.94 9.87 −1.17
KGE 0.71 0.70 0.67 0.70 0.70 0.67

FIGURE 10 | Results of deep learning modes under different training samples (in turn: 1981, 1992, and 1997).
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the change in the underlying surface has a greater impact on small
floods in the basin and the model is more suitable for simulating
the flow of large floods (Breuer et al., 2009). We can also see that
the SWAT model has poor performance in the initial stage
(Figure 10D), which may be related to the data or the setting
of the watershed state at the initial time, which is also the reason
why the SWAT model is not as accurate as deep learning models
in the initiation stage. Therefore, physical models, though are
deterministic and reliable, do not always perform well due to their
intrinsic limitations (Islam 2011).

Although the deep learning models have achieved well results,
they cannot show the internal process of runoff simulation, have no
practical physical significance, and cannot be carried out through
certain measurements or remote sensing data (Isik et al., 2013).
Moreover, the deep learning models have a certain dependence on
training samples and the scale of training samples has an important
impact on the effect of deep learning models (section 3.4). If a flood
event is beyond the training data range, the model would perform
poorly with high uncertainty. The SWAT model can apply in the
ungauged watershed with related remote sensing data (Sisay et al.,
2017). In addition, the SWATmodel is based on the physical process
and its mechanism is independent of the size of training samples. It
can simulate the runoff at any point of the river in the basin and
completely simulate the process from rainfall to runoff in all sub-
basins. Therefore, the simulation space of the SWAT model is wider.
The SWAT model can also explore the impact of climate change or
human activities (under different land-use environments) on runoff
change (Swain et al., 2021).

In all, it is notable that the deep learning models can be applied
to the hydrological simulation at a monthly scale and the results
are good (Table 4 and Figure 8). However, several studies have
shown that deep learning has certain requirements for datasets:
the distribution curve of datasets should be smooth (Gong et al.,
2014; Jaderberg et al., 2015). For data with abnormal points,
especially mutation points and low correlation, the deep learning
models will have certain problems or special processing of abnormal
data (Cubuk et al., 2018; Feng et al., 2020; Irrgang et al., 2020; Zuo
et al., 2020). This research studies the hydrological simulation on the
monthly scale, which meets the specific requirements of the deep
learning model for the input data. For the continuous hydrological
simulation on the daily scale or the hourly scale, because the data
show mutation points, corresponding processing operations need to
be carried out, which also needs to be further studied in the future.
However, the deep learningmodels do not need toomuchwatershed
information but only need hydrological data, which are more
convenient to apply. Hence, it is necessary to select an
appropriate model according to the comprehensive balance of
application and data requirements in the future.

5 CONCLUSION

This study develops the deep learning models, and the
distributed hydrological model for hydrological simulation
and the results show their applicability. The proposed
architecture builds the foundation for subsequent
hydrological analysis. This study mainly has the following
conclusions: 1) the time series neural network: CNN–LSTM
and CNN–GRU are constructed and applied to simulate the
monthly discharge in Xixian Basin. At the same time, the
distributed hydrological model—SWAT model—is compared
and analyzed. 2) The model’s application ability is evaluated
in the Xixian Basin. The results demonstrate that both models
can provide a good performance at basin-scale hydrological
simulation. 3) Although deep learning techniques can be used
for hydrological simulation, their training set and leading
times have a certain impact on the simulation results, and
reasonable model settings should be carried out to obtain the
optimal solution. 4) The CNN network is used to extract local
features of data, and LSTM and GRU networks are used to
learn and predict time series to realize deep mining of data
features. Their combination solves the problem that a single
model is difficult to obtain the optimal solution, and provides
new ideas and methods for hydrological simulation to
improve the accuracy of flood volume.
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