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Denudation processes induced by external loading show scale-independent traits in
rocks. Therefore, monitoring of micro-cracking features offers a possibility for
assessing the structural health or rock massifs; eventually leading to early-warning
systems capable of estimating the risk of catastrophic collapses. This study assesses
the behaviour of acoustic emissions monitored while a sandstone sample was subjected
to staged monotonic uniaxial compression. Particularly, waveform characteristics were
recorded and analysed to identify the most predominant factors for classification. Then an
unsupervised k-means algorithm was employed to cluster these parameters into two
categories, related to the source being either a tensile or shear dislocation. Clusters
showed noticeable differences, whilst results indicate that properties of AE waveforms vary
significantly amongst diverse stages of loading, being the rise time the most sensitive
parameter. Moreover, it seems that transitions amongst diverse behavioural stages of the
sample are preceded by changes in the first lag of the autocorrelation function and the
variance of the ratio of maximum amplitude and rise time of the ensemble of time histories
observed within each stage. This trend is significantly more noticeable during the last
stage, just before the collapse. This trait is in accord with the critical slowdown theory
(CSD). This allows for the development of early-warning systems signalling partial collapse
of rock masses.
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INTRODUCTION

Thorough knowledge of rock failure is essential in the fields of slope stability, underground
geotechnical engineering, rock mechanics and engineering seismology (Hedayat et al., 2014;
Murton et al., 2016; Cremen & Galasso, 2020; Cui et al., 2021; Yin et al., 2022). Being testing on
samples the most popular and efficient approach for understanding the failure mechanisms in rock
masses. Conventionally, the strength and deformation of rock have been measured to evaluate
damage processes and significant features at different stages. These features can only provide a
limited characterization of rock failure without details about the inner fracturing mechanism since
the accumulated force-displacement curve can only be observed in experiments. In this case, the
acoustic emission (AE) technique is considered an innovative non-destructive testing (NDT)
approach that has recently been used in rock mechanics and rock engineering (Zhang et al.,
2019; Liu et al., 2020; Zhou et al., 2021).
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Acoustic emission (AE) is defined as “transient elastic stress
waves produced by a release of energy from a localized source”
(Moradian et al., 2012; Vidya Sagar & Dutta, 2019), it is actually a
mechanical vibration spreading on the material, which was
generated by the micro cracking, dislocation and fractures in
the materials. As the waveforms characteristics depend on the
rupture properties, AE signals showcase the relevant information
regarding the micro cracking process (Loo Christopher et al.,
2019). Monitoring and analysing AE signals to evaluate the
features of fracture sources has attracted researchers’ interest
in rock engineering in recent years. Jian-po et al. (2015) studied
the cracking behaviour of granite samples with pre-existing holes
using moment-tensor analysis of acoustic emission signals. Liu
et al. (2015) developed an artificial neural network to predict
different rocks based on acoustic emission signal analysis.
Moradian et al. (2015) investigated the crack level in brittle
rocks by parameter analysis of AE signals and correlating
these parameters (e.g., hits and energy) to stress-strain plots of
rocks. The result demonstrates that the number of AE hits/counts
is related to the number of cracks, while the AE energy is related
to magnitude of the cracking event. And the evolution of cracking
sequences can be divided into eight stages based on the micro-
and macro-cracking levels: crack closure, linear elastic
deformation, micro-crack initiation, micro-crack growth,
micro-crack coalescence, macro-crack growth, macro-crack
coalescence and failure. Appropriate analysis techniques such
as parameter-based statistical analysis are commonly performed
to observe the change in rock and identify the signal parameters
concerning specific mechanisms. Chen et al. (2015) identified the
failure mechanism of rock bridges using the AE technique based
on the physical model test. It has been shown that AE signals are
very effective for identifying a specific failure mechanism (Yang
et al., 2015). However, few studies identify the cracking mode of
rock using the machine learning method with AE parameters.
Thus, it is possible to employ Artificial Intelligent (AI) technique
to analyse AE signal. (Li et al., 2021a;Wang C. et al., 2021; Li et al.,
2021b; Wang T. et al., 2021; Li et al., 2022). Yang et al. (2015)
concluded that the frequency of AE signals could be regarded as a
key indicator in discriminating the failure types of thermal barrier
coatings using automatic cluster analysis. Artificial neural
network (ANN) has been reported to predict the ultimate
strength of aluminium 6061 strengthened by silicon carbide
particles based on AE parameters (Loo Christopher et al.,
2019). This paper proposes a simple method for
discriminating rock-fracture mechanisms based on the
clustering of AE parameters. In this case, an unsupervised
machine learning method, namely the k-means clustering
algorithm (Sause et al., 2012; Nopiah et al., 2013; Li et al.,
2014), was employed for classification of AE signals generated
by micro-fracturing/cracking. This allowed for identification of
diverse mechanisms of stiffness and strength degradation, which
could be precursors of catastrophic failure. In recent years, it has
been found that many complex dynamic systems have critical
transition characteristics at which the system shifts abruptly
amongst diverse equilibrium states (Scheffer et al., 2009;
Dakos et al., 2012b; Dexing et al., 2019; Tu et al., 2020).
Moreover, rock masses tend to show a low resilience when

they are close to instability, which is referred to as critical
slowing down (CSD). Research indicates that such shifts may
be announced in advance by generic leading indicators for critical
transitions, such as abrupt increases of temporal autocorrelation
coefficient and variance of the observed data in a dynamic system.
(Scheffer et al., 2009; Marconi et al., 2020; Nazarimehr et al.,
2020).

From the dynamical system point of view, the critical slowing
down phenomenon can provide a promising way to identify
sudden shifts of rock destruction during the compression test and
predict rock failure reasonably. A method for identifying trends
in acoustic emissions during diverse stages of loading in
sandstone were uncovered. The changes were found to be
significant enough to identify changes in the source
mechanism. Moreover, it is possible to distinguish if the whole
sample is observing early damage, or rather it has experienced
extensive degradation and is now prone to collapse. The method
can be scaled upwards to develop early-warning systems to
forecast collapses of parts of rock massifs.

In this study, to investigate the critical failure characteristics of
rock, multi-stage uniaxial compression experiments on sandstone
were carried out, and AE signals produced by crack initiation and
growth were obtained and analysed. The cracking modes are
classified using k-means algorithms. Therefore, allowing for
identification critical transitions of rock destruction are
analysed based on the CSD theory. The autocorrelation
coefficient and the variance of rising angle (RA) indicate that
characterize the critical transition.

EXPERIMENT

Acoustic Emission Parameters
Acoustic emission (AE) monitoring is a of remarkable non-
destructive technique for detecting a real-time micro-
fracturing in material. Physically, AE is a phenomenon of
radiation of elastic waves in the material, due to the sudden
release of strain during to fissure openings. The AE transducers

FIGURE 1 | Schematic diagram of conventional AE signal features (Ali
et al., 2019).
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placed on the surface sense the elastic waves as they spread
through the material. In general, three major applications of the
AE technique are 1) event source location, 2) mechanical
performance, and 3) damage evaluation of material. Unlike
other non-destructive testing (NDT) methods, the AE
technique not only monitors and evaluates crack initiation,
propagation and coalescence on the surface but also inside
rock material over time, making it useful in the field of rock
mechanics.

AEmonitoring aims to provide damage-related information in
the material, by correlating detected AE signals while fracturing
growth. Because of the non-stationary and high-frequency
characteristics of the AE phenomena, as shown in Figure 1, a
triggering threshold is conventionally set to recognize AE signals.

Figure 1 illustrates the definition of conventional AE
parameters, which can be explained as follows (Ali et al., 2019):

1) Amplitude is the maximum measured voltage in a signal
waveform, which is directly related to the AE energy release in
the dislocation. The units of decibels (dB) or millivolt (mV)
are often used to indicate the AE amplitude.

2) Duration is defined as the time length between the first and
the last threshold crossings by the AE signal. The unit of
duration is generally expressed in microseconds (usec).

3) Rise time is the time interval between the triggering time of
the AE signal and the time of AE signal peak. Similar to the
duration, the rise time is generally expressed in
microseconds (usec).

4) AE counts are used for describing the number of times where
the signal exceeds the threshold. The number of counts is also
used to quantify the AE activity. In Figure 1, the AE counts
is 10.

5) Energy is defined as the area under the rectified signal
envelope, with units that usually rely on the AE data
acquisition method. In this paper, the energy is
proportional to voltage and the duration of a signal.

Additionally, two further parameters were used in this study:

6) RA value: a calculated feature defined as “Rise time” divided
by “Amplitude”. The unit of RA is generally expressed
in usec/ dB.

7) AF value: an average frequency of the AE signal in Hz Hz.

AE Location Technique
One of the most important characteristics of the AE technique is
localizing the source of an AE event. Therefore, it allows for
assessing of the evolution of cracking phenomena within a rock
mass as it is stressed. Following the evolution of source locations,
this technique can better identify the behaviour of rock
under load.

The principle of 3-D localization is similar to the
determination of earthquake hypocentres in seismology, where
the arrival time differences of seismic waves at multiple
seismometers and the velocity of seismic waves in the Earth
crust are recorded. Then triangulation is employed to find the
source. In this study, the 3-D localizing algorithm packaged in the

AE Win Software is utilized to determine three coordinates and
the source time of an event when four travel times are available.
Generally, the travel times for 3-D localization can be calculated
as follows:

ti �
��������������������������
(x − xi)2 + (y − yi)2 + (z − zi)2

√
v

+ t0 (1)

the coordinates (x, y, z) represent the point at which the travel
time to each sensor (xi, yi, zi) is calculated. ti is the arrival time of
the P wave detected by the i− th sensor. v is the P wave
propagation velocity in the specific material. Therefore, the
arrival time, the coordinates of each corresponding sensor and
the velocity of the compressional P wave are necessary for the
calculation of the source location (x, y, z). The arrival time of the
P wave was picked automatically using Akaike’s information
criterion (AIC) method (Grosse & Ohtsu, 2008; Jian-po et al.,
2015). Consequently, the unknown source vector (x, y, z, t0) can
be described and calculated using at least four different sensor
recordings. In order to obtain source locations with higher
accuracy, eight AE sensors were employed to record AE
signals simultaneously and the most optimal four sensors were
automatically selected for calculation by iterating in the software.

Experimental Setup
Four test samples were prepared from blocks of granite into a
cylindrical shape with a length of 100 mm and a diameter of
50 mm according to the ISRM (1981). The AE wave velocity of
the samples was determined before the uniaxial tests using a
special velocity measuring device (PROCEQ Ultra Sonic Tester).

As shown in Figure 2, the prepared rock sample was placed in
the MTS loading frame, controlled by the PC-based servo-
controlled hydraulic testing system. Multi-phases force control
mode was chosen to verify the relationship between the stress
concentration and AE activities in this study. The loads and
displacement data were recorded automatically by the testing
system during all tests. Two pieces of plastic shim plates were
matted between the loading cell and sample to reduce noise
generation due to friction and edge effects. An advanced Micro-II
Digital AE system was used to monitor AE activities within the
rock sample under uniaxial compression conditions. It is a high-
speed AE testing and analysing system equipped with the novel
digital data acquisition system developed by Physical Acoustical
Company in the United States. During the experiment processes,
all conventional AE parameters were calculated in real-time by
this system. The maximum number of sampling channels is 16.
Eight Nano30 type piezoelectric crystal transducers (PZT) with
frequency sensitivities between 125 and 750 kHz were fixed to the
rock sample to convert dynamic motions at the surface to an
electrical signal coupling of the sensors to the samples, which is
crucial for proper signal detection. All AE sensors were mounted
on the rock surface with superglue to mitigate the attenuation of
signal transmission from rock to sensors. A 40 dB pre-amplifier
(1220A-AST) was connected to each transducer to improve the
signal-to-noise ratio because AE signals are typically weak. The
threshold was set at 30 dB to reduce influence of background
noises. The sampling rate of the AE system was 3 MHz. The
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spatial distribution of AE events within the samples was
calculated using the abovementioned AE location algorithm
based on synchronous data from the multi-channel and
displayed in nearly real-time.

K-MEANS CLASSIFICATION AND CSD
INDICATORS

Determination of Principal AE Parameters
During the experiment, AE parameters were extracted (see
Figure 1) to describe an individual AE event signal
quantitatively. Commonly, the number of cracks can be

reflected by the counts of AE events. Amplitude and energy
are usually used to describe the strength of the AE signal,
which is associated with the size of cracks. The duration,
frequency and rise time are used to identify the source
characteristics (Grosse & Ohtsu, 2008; Yang et al., 2015).
However, some parameters are highly correlated making co-
linearity an issue. Pearson correlation analysis was carried out
among these acoustic emission parameters before clustering.
Two-nine hundred groups of acoustic emission hits were
selected for calculating the correlation coefficients among
seven parameters, namely, rise time (RT), Count (COUNT),
Amplitude (AMP), Average frequency (AFRQ), energy, the
ratio of RT and AMP (RA), root mean squared of acoustic
emission (RMS). As shown in Figure 3, the correlation
coefficient between RT and RA value indicates that the two
parameters are highly correlated, while other correlated
parameter couples were indicated with deeper bule colour.
Accordingly, five parameters, including the RT, AMP, RMS,
AFRQ and ENERGY, were selected for clustering of AE signals
associated with rock failure in the study.

Description of K-Means Algorithm
The k-means clustering algorithm is one of the simplest pattern
recognition algorithms that aims at partitioning the data set into a
specific number of clusters. It was firstly proposed by James
MacQueen in 1967 (MacQueen, 1967). In this study, the k-means
algorithm is utilized to classify AE signals collected into a few
categories to recognize the occurrence and propagation of micro-
cracks and large-cracks while the samples are subjected to
uniaxial compression in the laboratory. Classification of
features would be essential in detecting the AE signal linked to
various rock failure mechanisms.

Given an input data set constructed with feature vectors
X(x1, x2, ..., xn), where each column is a d -dimensional real
vector, k-means clustering aims to partition the data set into k (
k ≤ n ) categories C � {c1, c2, ..., ck} by minimizing the least

FIGURE 2 | Experimental setup, (A) schematic diagram of the laboratory test system, (B) compression test sample.

FIGURE 3 | Correlation coefficients among acoustic emission
parameters.
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within-cluster sum of squared Euclidean distance (WCSS) of
each point in the cluster to the k centres as following
(MacQueen, 1967; Momon et al., 2012; Nopiah et al., 2013;
Li et al., 2014):

WCSS{p1, p2, ..., pk} � min⎛⎝∑N
i�1
∑k
j�1
I(xi ∈ ci)

�����xi − p2
j

�����) (2)

I(X) � { 1(xi ∈ ci)
0(xi ∉ ci) (3)

where pj is the centre of cluster cj. Figure 4 shows the flow chart of
the k -means algorithm for AE signals clustering in this paper.

To obtain the optimal number of clusters, values from two to
six are chosen and tested to calculate the silhouette values at the
first stage of the clustering procedure. The quality of each k
clustering solution is evaluated according to the silhouette values
previously defined (Gutkin et al., 2011; Momon et al., 2012; Yang
et al., 2015):

s(k) � 1
n
∑n
1

min(b(l, k)) − �d(l)
max[�d(l), min(b(l, k))] (4)

where, �d(l) is the average distance between the l -th vector and
the other vectors in the same cluster, and b(l, k) is the average
distance from the lth vector to the other vectors in another cluster
k. By calculating the distances among all objects to the centroids,
the silhouette criterion indicates a better quality by having a
higher silhouette index. Hence, the optimum k number
corresponds to the maximum silhouette value. It can be easily
implemented in MATLAB via the silhouette function.

CSD Indicators: Autocorrelation Coefficient
and Variance
To investigate the precursor prediction method for rock
macroscopic failure in terms of various AE parameters,
analysis of variance, and autocorrelation coefficient are
introduced as specific features to seek their relationship with
time based on the critical slowing down (CSD) theory (Scheffer
et al., 2009). In this paper, the time series of variance and
autocorrelation function of AE parameters during the whole
process is computed by rolling time window to define the
mutation of characteristics approaching the failure.

Analysis of variance is a common method describing the
degree to which data in a sample deviates from the mean
value, which can be presented as (Dakos et al., 2012a):

var(x) � 1
n
∑n
i�1
(xi − �x)2 (5)

In CSD theory, the rate of return to equilibrium following a
perturbation slows down as systems approach critical transitions
(Dakos et al., 2012a; DAKOS et al., 2012b; Dakos et al., 2015).
And this slow return rate can be detected by changes in the
autocorrelation function of a time series. Autocorrelation is the
simplest method to detect slowing down. An increase in
autocorrelation at-lag-1 indicates that the state of the system
has become increasingly similar between consecutive
observations (Dakos et al., 2012a; van de Leemput et al., 2014).

The autocorrelation coefficient is supposed to be obtained as
follows:

AR(x, lag) � 1
n − lag

∑n−lag
i�1

(xi − �x���
var

√ )(xi+lag − �x���
var

√ ) (6)

where lag is the lag step of characteristic time series, n is the
sequence length used to calculate the autocorrelation coefficient,

FIGURE 4 | Flow chart of the k-means algorithm.
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�x is the mean value variable x with sequence length n, and var is
the variance calculated from Eq. 5.

RESULTS

Clustering of AE Signals
Rise time (RT), Amplitude (A), Average Frequency (AF), RMS of
AE signals from uniaxial rock compression tests were extracted as
the principal feature parameters to form the input vector in the
clustering algorithm. As suggested by previous, the silhouette
value is supposed to be over 0.6 to ensure sufficient quality of
clustering (Gutkin et al., 2011; Momon et al., 2012; Yang et al.,
2015). Figure 5 presents a trend of the silhouette value as a
function of cluster k from AE data obtained in the rock failure
tests. It is worthy to note that the silhouette value reaches the
maximum of 0.953 (>0.6) when k equals 2, which ensures
clustering efficiency.

Accordingly, the optimum cluster number k for the rock
sample under the uniaxial compression test is 2, suggesting
that the AE data is divided into two clusters. Figure 6
illustrates the distributions of these two clusters (labelled as
cluster A and cluster B, respectively) of the AE data in various
parametric spaces. In Figure 5 a-e, clusters A and B can be
easily distinguished based on their rise time (RT) distributions,
which show low-class overlapping, suggesting a precise
clustering process. Cluster A was composed of AE events
with a rise time lower than 2.273 ms. In contrast, Cluster B
was characterised with long RT (>2.3 ms). Meanwhile, it is
worth noting that cluster B generally has a greater RA value,
larger amplitude, more counts, and is more decentralized than
cluster A according to the centroid distribution of clusters. It
also reveals that cluster A has a significantly higher number of
AE events than cluster B. Clusters A and B are clearly

distinguished in AE parametric spaces with RT (see Figures
6A–E), while in the spaces without RT are confused together
(as shown in Figure 6F), two clusters of AE events partially
overlapped and were difficult to distinguish. As a result, RT is a
key parameter for discriminating the two types of AE signals,
indicating two different rock failure mechanisms (tensile and
shear mode).

Evolution of Clustered AE Activities
To further know the evolution process of fracture modes, Figures
7A,B demonstrate the measured AE count over the loading time
and the amplitude distributions of the two classes, respectively.
Similar conclusions can be drawn for the remaining three rock
samples under uniaxial compression.

A multi-phase loading strategy was carried out in our study to
investigate the pre-failure characteristics of the rock. The rock
sample was compressed in force-controlled mode with a loading
speed of 30 kN/min during phases I and II, while the same
controlled mode with a loading speed of 75 kN/min was
implemented for phases III and IV.

The number of AE signals indirectly indicates the generation
and development of internal micro-cracks. Figure 7 shows the
evolution of micro-cracking activities, in which different cracking
modes release different clusters of AE signals. In temporal
property, the rock cracking mechanisms hold the following
characteristics:

1) With the increase of loading force, stress concentration leads
to crack occurrence and propagation, followed by more
frequent acoustic emission. The AE count peak values
increase as the load rate becomes larger before reaching the
maximum strength of the rock sample.

2) Cluster A dominates the AE activities in the fracture process
before reaching peak strength (phases I-IV), while Cluster B
dominates the AE activities in the strain softening phase (V).
Almost all AE events that load with less than 2000 s belong to
cluster A, after which the AE events associated with the
fracturing mechanism of cluster B become notoriously
significant. Eventually, cluster B almost nearly dominates
the strain softening phase (V). It is worth noting that those
AE events of cluster B only appear during the increasing force
periods (e.g., III, IV).

3) In the pre-failure point, longer-duration and larger-amplitude
AE signals in cluster B began to be observed. Consequently,
the appearance of AE signals of cluster B can be considered as
a precursor of rock failure.

According to Figure 8, AE signals associated with the
fracturing source of cluster A predominate in the early stage
of the loading path. The total number of AE signals of cluster B
begins to increase at 75% of the crucial strength of the sample.
The total energy corresponding to fractures of cluster B is
increasing rapidly during the post-damage phase, presenting a
sudden release of the stored strain-energy due to the stress
concentration in the stage of deformation (less than the
2,500 s in this example) of brittle rock.

FIGURE 5 | The optimal k number considered based on silhouette
values.
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FIGURE 6 | The distribution of two clusters of AE signal (labelled cluster A and B respectively) of rock under uniaxial compression in (A) Average frequency-Rise time
space, (B) Amplitude-Rise time space, (C) Peak frequency-Rise time space, (D) Count-Rise time space, (E) RA value-Rise time space, (F) Amplitude-Average
frequency space.
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Precursors of Sandstone Failure Based
on CSD
With varying sliding window lengths, the variation of the RA
values varies. As revealed by Figure 9, the lower time step sliding
window (window size shown in Figure 9) calculates a more
sensitive variance fluctuation. The variance of RA value shows a
consistent pattern during the loading period, increasing
marginally at loading stage III and then gradually decreasing.
In the loading stage IV, the variance increases dramatically when
the maximum load level is reached, then climbs fast again when
the stress following failure is released swiftly, reaching the
maximum value in the whole process. As a result, the
variation of RA has a major impact when stress concentrates
and releases after the rock reaches the plastic fracturing point,
indicating that the AE has a clear critical slowing phenomenon.
The mechanism by which RA features develop rapidly in the
loading process after stage III until they reach the highest value at

failure could be considered an obvious precursor feature of rock
macroscopic failure.

On the other hand, the 1-lag autocorrelation function of RA
value rises dramatically before failure (Figure 10), suggesting a
clear critical slowing phenomenon prior to the catastrophic
failure of rock. In the loading stage near the failure, the
autocorrelation coefficient of the RA value goes up,
although the range is smaller than in the failure. However,
its autocorrelation function during loading stages I and II do
not rise much, suggesting that the internal damage and fracture
condition have not shifted appreciably. It improves drastically
after entering stage III, implying that the fracture condition has
changed dramatically, which is consistent with the findings of
the variance study above. Specifically, in rock failure analysis,
the shear stress wave with a long rise time is progressively
created in the process of deformation and failure after entering
stage III, and the gradual growth of microcracks leads to the

FIGURE 7 | Temporal distributions of AE parameters count (A) and amplitude (B) of two classified AE signals corresponding to two cracking modes in rock. Cluster
A and B are indicated with blue and red respectively.

FIGURE 8 | Accumulate counts (A) and accumulate energies (B) of two clusters of AE signals corresponding to two cracking modes over entire loading path.
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local shear fracture. Thus, these variations of fracture
mechanism can be reflected by the autocorrelation
coefficient and variance analysis of RA features. It was
found that the start time of critical transition is the same as
the start occurrence time of fracture mode cluster B.

DISCUSSIONS

The above experiment results presented that the total
monitored AE count increases rapidly when reaching 70 to
80% of the peak strength. This is caused by stress concentration
within the sample, and seems to be independent of loading
conditions. Factor that (Michihiro et al., 1997) noticed while
performing uniaxial compression tests on rock samples.
Likewise, AE signals in cluster B were produced until the
loading force reached the same ratio of 70–80% of the
crucial strength, after which the measured AE count

increased rapidly in the subsequent stages. Clearly, two
distinct failure mechanism are developing in tandem, as
both type A and type B AE signals are observed at the same
time. In Figure 6A, the AE activity became stronger at the
beginning of each phase and increased with increasing loading
force, indicating the development of an interconnected and
transmissible network of microscopic cracks. At phase V,
however, it characterized a significant increase of the AE
activity of cluster B due to the accumulation of cracks in
zones of high shear stress, which formed a cone of
conjugate shear bands.

As the rock near the final failure, tensile cracks are usually
followed by shear cracks. When a tensile crack occurs, the sides
of the crack turn away from each other (shown in Figure 10A),
resulting in a transient volumetric shift of the rock material.
Consequently, most of the energy is transmitted in the form of
longitudinal waves. In tensile cracking, the delay between the
onset and the peak amplitude is short, whilst in the case of

FIGURE 9 | Variance analysis of RA characteristics of rock under multi-phase uniaxial compression.

FIGURE 10 | Stage changes of autocorrelation coefficient of AE characteristics of rock under multi-phase uniaxial compression.
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shear cracking, RT is longer than the former because the
material around the dislocation experiences distortion
instead of volumetric changes (Aggelis et al., 2011).
Therefore, AE signals of cluster B have longer rise time and
higher amplitude might be generated by the shear fractures in
rock samples (See Figure 11). On the other hand, the AE events
of cluster A are more prevalent in the early stage of rock
deformation with the tensile fracturing mechanism. Aggelis
et al. also discriminated different fracture modes in marble
under bending test using AE technology and observed that
tensile cracking characterized shorter waveform (duration
time) unlike shear events (Aggelis et al., 2013). The
transition point where the number of AE events of cluster B
drastically increases can be used to roughly evaluate the
damage level of the rock sample and provide precursor
information for rock final failure.

CONCLUSION

In this study, the k-means algorithm is utilized as an automatic
clustering approach to classify and identify AE signals
originating from the uniaxial compression test on rock
samples. Several principal parameters (e.g., Rise time,
Amplitude, Average frequency, etc.) were selected as the
input vector of the k-means algorithm by Pearson
correlation analysis. The results showed that two clusters of
AE events are associated with distinct source mechanisms of
rock under the uniaxial compression test. From the

distribution results of clustered AE events in multiple
parameter correlation spaces, rise time was regarded as the
most critical parameter for AE signal classification and the
identification of the AE source mechanism. Therefore, the
following conclusions can be drawn:

1) The k-means algorithm was proved to be a remarkable tool for
AE signals clustering in laboratory rock mechanical tests. The
Pearson correlation approach could be used to effectively pick
the principal parameters as the input vector of themultivariate
analysis-based k-means algorithm.

2) Two types of AE signals were classified using the k-means
algorithm combined with four principal parameters,
indicating tensile cracking and shear cracking mode,
respectively. In this study, rise time was identified as the
key feature as the classifier for AE signal clustering. Signals
from shear cracking have a longer rise time than cluster A
produced by tensile cracking. Cluster B of AE signals for
shear cracks have more energy relatively.

3) Cluster A dominated the early stage of rock deformation,
whereas AE signals in cluster B appeared and sharply
developed about 70–80% of the peak strength of rock.
Finally, cluster B dominated the post-failure stage of
rock, in which the rise time parameter was more than
2.27 ms. Furthermore, the amplitude and released energy
rate from fracturing cluster B were much higher than that
from fracturing events of cluster A, which can be caused by
the large cracks coalescing or sliding in the fracture zone.

4) It was shown that AE signals in cluster B start to distribute
at the critical failure stage of the rock sample and dominate

FIGURE 11 |Relation between cracking modes and corresponding AE waveforms. (A)Model-I/Tensile crack characterised with lower RT value, while (B)Model-II/
Shear crack characterised with longer RT value.
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in the post-failure stage. Furthermore, based on the critical
slowing down theory, the autocorrelation coefficient and
the variance of rising angle (RA) also show abrupt
increases, which indicate the critical transition of rock
destruction state before collapse. It is worth noting that
the start time of CSD is almost the same as with the time of
transition of mode from tensile to shear in this study.
Compared with the 1-lag autocorrelation function value,
the variance of RA is a better indicator of rock destruction.
The critical transition of AE parameters can provide a
promising way to early warning of rock-related disasters.
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