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For the conventional staggered-grid finite-difference scheme (C-SFD), although the spatial
finite-difference (FD) operator can reach 2Mth-order accuracy, the FD discrete wave
equation is the only second-order accuracy, leading to low modeling accuracy and
poor stability. We proposed a new mixed staggered-grid finite-difference scheme
(M-SFD) by constructing the spatial FD operator using axial and off-axial grid points
jointly to approximate the first-order spatial partial derivative. This scheme is suitable for
modeling the stress–velocity acoustic and elastic wave equation. Then, based on the
time–space domain dispersion relation and the Taylor series expansion, we derived the
analytical expression of the FD coefficients. Theoretically, the FD discrete acoustic wave
equation and P- or S-wave in the FD discrete elastic wave equation given by M-SFD can
reach the arbitrary even-order accuracy. For acoustic wave modeling, with almost identical
computational costs, M-SFD can achieve higher modeling accuracy than C-SFD.
Moreover, with a larger time step used in M-SFD than that used in C-SFD, M-SFD can
achieve higher computational efficiency and reach higher modeling accuracy. For elastic
wave simulation, compared to C-SFD, M-SFD can obtain higher modeling accuracy with
almost the same computational efficiency when the FD coefficients are calculated based
on the S-wave time–space domain dispersion relation. Solving the split elastic wave
equation with M-SFD can further improve the modeling accuracy but will decrease the
efficiency and increase the memory usage as well. Stability analysis shows that M-SFD has
better stability than C-SFD for both acoustic and elastic wave simulations. ApplyingM-SFD
to reverse time migration (RTM), the imaging artifacts caused by the numerical dispersion
are effectively eliminated, which improves the imaging accuracy and resolution of deep
formation.

Keywords: mixed staggered-grid finite-difference, numerical simulation, dispersion relation, finite-difference
coefficients, numerical dispersion

1 INTRODUCTION

Wave equation simulation is an important technique to study the characteristics of seismic waves in
complex media (Carcione, 2015; Cao and Chen, 2018), and a key kernel in reverse time migration
(RTM) (Virieux et al., 2011; Berkhout, 2014) and full waveform inversion (FWI) (Pratt et al., 1998;
Virieux and Operto, 2009). Compared to the pseudo-spectral method (Reshef et al., 1988; Mittet,
2021) and finite-element method (Marfurt, 1984; Moczo et al., 2010; Moczo et al., 2011), the finite-
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difference (FD) method has the advantage of high computational
efficiency, small memory occupation and easy implementation
(Alford et al., 1974; Mulder, 2017). Hence, the FD method has
become the most widely used numerical method for wave
propagation simulation (Alterman and Karal, 1968; Chen
et al., 2021). However, the inherent numerical dispersion in
FD methods seriously affects the modeling accuracy (Alford
et al., 1974; Dablain, 1986) and leads to an adverse impact on
RTM and FWI results (Ren et al., 2021). So suppressing the
numerical dispersion to improve the modeling accuracy is an
important issue for the FD method.

Dablain (1986) pointed out that approximating the temporal
and spatial partial derivatives with high-order FD operators can
reduce the numerical dispersion. Unfortunately, the temporal
high-order FD operator significantly increases the amount of
computation and decreases the stability. Hence, conventional FD
(C-FD) and staggered-grid FD (C-SFD) commonly adopt
temporal second-order and spatial 2Mth-order FD operators
(Fornberg, 1988). With the FD coefficients calculated based on

the space domain dispersion relation and Taylor series expansion
(TE), the spatial FD operators in C-FD and C-SFD can achieve
2Mth-order accuracy, but the FD discrete wave equations are still
only second-order accuracy (Liu and Sen, 2009). However, wave
equation simulation is implemented by solving the FD discrete
wave equation iteratively. So in order to improve the modeling
accuracy, we should try to increase the accuracy of the FD discrete
wave equation rather than improve separately the accuracy of the
temporal and spatial FD operators. Liu and Sen (2009; 2011)
proposed to calculate the FD coefficients of C-FD and C-SFD
based on the time–space domain dispersion relation and TE,
which makes the 2D and 3D FD discrete wave equations reach
2Mth-order accuracy along 8 and 48 propagation directions
respectively, but the accuracy is still second-order along with
the rest of the directions. In addition to the aforementioned TE
methods, the least squares (LS) methods are also widely adopted
for computing the FD coefficients by minimizing the error of
dispersion relation, phase velocity, or group velocity (Geller and
Takeuchi, 1998; Chu and Stoffa, 2012). The LS methods usually

FIGURE 1 | Schematic representation of the relative position of the wave-field variables and elastic parameters in (A) acoustic wave and (B) elastic wave staggered-
grid FD schemes.

FIGURE 2 | Schematic representation of the spatial FD operators of (A) C-SFD and (B–E) M-SFD (N=1, 2, 3, and 4).
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improve the accuracy of wavefield components in the medium-
high frequency band but decays some accuracy of the low-
frequency component. Liu (2013; 2014) found that by
minimizing the relative error instead of the absolute error of
space domain or time-space domain dispersion relation, the
global optimal solution can be obtained without iterations.

In addition to ameliorating the method for computing the FD
coefficients, constructing a more reasonable FD stencil is another
important way to improve the modeling accuracy. For the 2D
scalar wave equation, Liu and Sen (2013) developed a rhombus FD
scheme. The FD discrete wave equation can reach 2Mth-order
accuracy along with all propagation directions with the FD
coefficients calculated based on the time-space domain
dispersion relation. However, the length of the spatial FD
operator increases rapidly with M, which makes it very
computationally expensive. Wang et al. (2016) proposed an FD
scheme by combining the C-FD and rhombus FD schemes, which
balanced the accuracy and efficiency. Motivated by the widely used
mixed-grid FD scheme in the frequency domain (Jo et al., 1996;
Shin and Sohn, 1998), Hu et al. (2016) proposed a mixed-grid FD
scheme for 2D scalar wave equation modeling in the time–space
domain. The basic idea of Hu et al. (2016) is to express the Laplace
FD operator as the weighted mean of the Laplace FD operators
constructed in the general and rotated Cartesian coordinate
system. The resulting mixed-grid FD scheme is similar to that
of Wang et al. (2016). Hu et al. (2021) derived how to construct a
3D Laplace FD operator with the off-axial grid points and further
proposed a 3D mixed-grid FD scheme, which improved the
accuracy and stability of 3D scalar wave equation simulation.
For the stress–velocity acoustic wave equation, Tan and Huang
(2014) constructed a spatial FD operator with the axial and off-
axial grid points to approximate the first-order spatial partial
derivatives and developed a mixed staggered-grid FD scheme
(M-SFD). This M-SFD can make the FD discrete acoustic wave
equation reach fourth or sixth-order accuracy. Ren and Li (2017)
extended the method of Tan and Huang (2014) to elastic wave
simulation, and the accuracy of P- or S-wave in the FD discrete
elastic wave equation can be up to eighth-order. However, in the
M-SFD of Tan and Huang (2014) and Ren and Li (2017), two sets
of off-axial grid points with different distance to the center of the
spatial FD operator are sometimes assigned the same FD
coefficient, which is unreasonable and makes derivation of the
analytic expression of the FD coefficients too difficult.

For simulation of the stress-velocity acoustic and elastic wave
equation, we intended to develop a modified M-SFD by ensuring
the FD coefficient assigned to the grid points varies with their
distance to the center of the spatial FD operator, which will make
our M-SFD more reasonable than that of Tan and Huang (2014)
and Ren and Li (2017). Then we managed to derive the analytical
solution for calculating the FD coefficients with the time-space
domain dispersion relation and TE. We first discretized the
acoustic and elastic wave equation with our M-SFD and
derived the analytical solution of the FD coefficients. This is
followed by analysis of difference accuracy, numerical dispersion,
and stability. Then, we performed acoustic and elastic numerical
simulation on a simple three-layeredmodel and a typical complex
structural model of the Tarim Basin in Western China and

compared the results of M-SFD and C-SFD. In the end, we
carried out acoustic RTM with M-SFD for synthetic seismic data
on the complex structural model.

2 BASIC THEORY OF M-SFD

2.1 FD Discrete Acoustic and Elastic Wave
Equation Given by M-SFD
The wavefield variables and elastic parameters are defined at
staggered grid points in the staggered-grid FD scheme. Figure 1
displays the relative position of the wavefield variables and elastic
parameters in acoustic and elastic staggered-grid FD schemes.

C-SFD adopts temporal second-order and spatial 2Mth-order
FD operators. The spatial FD operator is constructed only by the
axial grid points, shown in Figure 2A. In this spatial FD operator,
M represents the number of sets of axial grid points with each set
having the same distance to the center. As we know,M sets of grid
points can ensure the spatial FD operator reaches 2Mth-order
accuracy. We can also see that the distance of these points to the
center of the operator increases with M, while the contribution
toward improving the modeling accuracy decreases.

In this article, we proposed a modifiedM-SFD by constructing
the spatial FD operator using the axial and off-axial grid points
while keeping the temporal second-order FD operator
unchanged. In the spatial FD operators, M and N represent
the number of sets of axial and off-axial grid points,
respectively, and each set of grid points is equidistant from the
center of the operator. The identical FD coefficient is assigned to
the grid points in the same set, and different FD coefficients are
assigned to different sets. Figures 2B–E show the four spatial FD
operators of our M-SFD with N=1, 2, 3, and 4. Compared to
C-SFD, M-SFD takes full use of the off-axial grid points near the
center of the spatial FD operator.

The previous M-SFD (Tan and Huang, 2014; Ren and Li, 2017)
inappropriately uses the symmetry of the off-axial grid points. Two
different sets of off-axial grid points with unequal distance to the
center are sometimes improperly regarded as one set and assigned
the same FD coefficient. For example, in Figure 2D, the two sets of
off-axial grid points labeled with② and③ have a different distance
to the center, but the assigned FD coefficients are identical. This
inappropriate assignment of the FD coefficients makes it too difficult
to derive the analytical solution of the FD coefficients.

In the following, we will take M-SFD (N=1) as an example to
derive the FD discrete acoustic and elastic wave equation and
then derive the analytical expression of FD coefficients.

2.1.1 FD Discrete Acoustic Wave Equation
The 2D stress–velocity acoustic wave equation is given by

zP

zt
+ κ(zυx

zx
+ zυz

zz
) � 0,

zυx
zt

+ 1
ρ

zP

zx
� 0,

zυz
zt

+ 1
ρ

zP

zz
� 0, (1)

where P � P(x, z, t) represents the pressure, υx � υx(x, z, t) and
υz � υz(x, z, t) are the particle velocities, ρ � ρ(x, z) represents
the density, and κ � κ(x, z) is the bulk modulus.

Temporal second-order FD operator to approximate zP/zt is
given by
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zP

zt

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
P1
1/2,1/2 − P0

1/2,1/2

Δt , (2)

where Pj
m−1/2,n−1/2 � P[x + (m − 1/2)h, z + (n − 1/2)h, jΔt], and

h and Δt represent the grid size and time step, respectively. The
spatial FD operator of M-SFD (N=1) shown in Figure 2B to
approximate zυx/zx and zυz/zz is

zυx
zx

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
1
h

⎧⎨⎩∑
M

m�1
am[υ1/2x(m,1/2) − υ1/2x(−m+1,1/2)] + b1[υ1/2x(1,3/2) − υ1/2x(0,3/2) + υ1/2x(1,−1/2) − υ1/2x(0,−1/2)]⎫⎬⎭,

zυz
zz

∣∣∣∣∣∣∣
1/2

1/2,1/2
≈
1
h

⎧⎨⎩∑
M

m�1
am[υ1/2z(1/2,m) − υ1/2z(1/2,−m+1)] + b1[υ1/2z(3/2,1) − υ1/2z(3/2,0) + υ1/2z(−1/2,1) − υ1/2z(−1/2,0)]⎫⎬⎭,

(3)

where a1, a2, . . . , aM; b1 are the FD coefficients,

υj−1/2x(m,n−1/2) � υx[x +mh, z + (n − 1/2)h, t + (j − 1/2)Δt], and

υj−1/2z(m−1/2,n) � υz[x + (m − 1/2)h, z + nh, t + (j − 1/2)Δt].
Similarly, we can get the FD expressions of zυx/zt, zP/zx, zυz/zt

and zP/zz. Substituting the FD expressions into Eq. 1, we have

P1
1/2,1/2 − P0

1/2,1/2

Δt ≈ − κ

h
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M

m�1
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Δt ≈ − 1

ρh
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M

m�1
am(P0
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υ1/2z(1/2,0) − υ−1/2z(1/2,0)
Δt ≈ − 1

ρh

⎧⎨⎩∑
M

m�1
am(P0

1/2,m−1/2 − P0
1/2,−m+1/2) + b1[P0

3/2,1/2 − P0
3/2,−1/2 + P0
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(4)

Equation 4 is the FD discrete acoustic wave equation given by
M-SFD (N=1). Similarly, the FD discrete acoustic wave equation
given by M-SFD (N=2,3,4) can be derived.

2.1.2 FD Discrete Elastic Wave Equation
The 2D stress–velocity elastic wave equation is given by

zυx
zt

� 1
ρ
(zτxx

zx
+ zτxz

zz
), zυz

zt
� 1
ρ
(zτxz

zx
+ zτzz

zz
),

zτxx
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+ λ
zυz
zz

,
zτzz
zt

� λ
zυx
zx

+(λ + 2μ) zυz
zz

,
zτxz
zt

� μ(zυx
zz

+ zυz
zx
),

(5)

where υx � υx(x, z, t) and υz � υz(x, z, t) are the particle
velocities, τxx � τxx(x, z, t), τzz � τzz(x, z, t) and τxz �
τxz(x, z, t) are the stress components, λ � λ(x, z) and μ �
μ(x, z) are the Lamé constants, and ρ � ρ(x, z) is the density.

Similar to the derivation process of the FD discrete acoustic
wave equation, the FD discrete elastic wave equation given by
M-SFD (N=1) can be derived. Here, we only gave one of the five
FD equations:

υ1x(0,0) − υ0x(0,0)
Δt ≈

1
ρh
∑M
m�1

am[(τ1/2xx(m−1/2,0) − τ1/2xx(−m+1/2,0)) + (τ1/2xz(0,m−1/2) − τ1/2xz(0,−m+1/2))]

+b1
ρh
⎡⎢⎢⎢⎢⎢⎣ (τ

1/2
xx(1/2,1) − τ1/2xx(−1/2,1)) + (τ1/2xx(1/2,−1) − τ1/2xx(−1/2,−1))+

(τ1/2xz(1,1/2) − τ1/2xz(1,−1/2)) + (τ1/2xz(−1,1/2) − τ1/2xz(−1,−1/2))
⎤⎥⎥⎥⎥⎥⎦,

(6)

where a1, a2, . . . , aM; b1 are the FD coefficients.
Using the same method, the FD discrete elastic wave equation

given by M-SFD (N=2,3,4) can be derived.

2.2 FD Coefficient Calculation
2.2.1 FD Coefficient Calculation for the FD Discrete
Acoustic Wave Equation

In a homogeneous medium, Eq. 1 has the following discrete plane
wave solution

Pj
m−1/2,n−1/2 � APe

i[kx(x+(m−1/2)h)+kz(z+(n−1/2)h)−ω(t+jΔt)],
υj−1/2x(m,n−1/2) � Aυxe

i[kx(x+mh)+kz(z+(n−1/2)h)−ω(t+(j−1/2)Δt)],
υj−1/2z(m−1/2,n) � Aυze

i[kx(x+(m−1/2)h)+kz(z+nh)−ω(t+(j−1/2)Δt)],
kx � k cos θ, kz � k sin θ,

(7)

where AP, Aυx, and Aυz are the plane wave amplitude factors, k is
the wavenumber, ω is the angular frequency, and θ is the
propagation angle.

Substituting Eq. 7 into Eq. 4, we can get

AP

Δt sin(ωΔt2 ) ≈ − κAυx

h

⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
−κAυz

h
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M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )
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Aυx

Δt sin(ωΔt2 ) ≈
AP

ρh
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M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )
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Aυz

Δt sin(ωΔt2 ) ≈
AP

ρh
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M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭.

(8)

By eliminating AP, Aυx, and Aυz and considering ω � vk and
κ � ρv2, we obtain

1

(vΔt)2 sin(
rkh

2
) ≈

1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
2

+ 1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭
2

, (9)

where v represents wave velocity, and r � vΔt/h is the Courant
number.

Equation 9 represents the dispersion relation of the FD
discrete acoustic wave equation given by M-SFD (N=1), and it
is also named as a time-space domain dispersion relation.

Taking the Taylor series expansion for cosine and sine
functions in Eq. 9, we have

TABLE 1 | Number of the off-axial grid points required by our M-SFD and the
previous M-SFD to make the FD discrete acoustic wave equation reach
specified order accuracy.

FD accuracy Number of the off-axial grid points

Our M-SFD M-SFD proposed by
Tan and Huang

(2014) and Ren and Li (2017)

4th-order 4 4
6th-order 8 12
8th-order 16 24
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⎧⎨⎩∑
∞

j�0
cjβj(kx/2)2j+1h2j + 2b1⎡⎢⎢⎣∑∞
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2

,

(10)
where the expressions of cj, βj and γj are

cj � ∑M
m�1

(2m − 1)2j+1am + 2b1, βj �
(−1)j(2j + 1)!, γj �

(−1)j(2j)! .
(11)

Comparing the coefficients of k2xk
2
zh

2 on both sides of Eq. 11,
we obtain

c0b1 � r2

24
. (12)

Comparing the coefficients of k2j+2x h2j(j � 0, 1, 2, . . . ,M − 1)
on both sides of Eq. 11, we obtain

c20 � 1 (j � 0) ,
∑j
p�0

cpcj−pβpβj−p � ∑j
p�0

βpβj−pr
2j (j � 1, 2,/,M − 1) . (13)

Equation 13 gives c0 � ± 1, when c0 changes from 1 to -1, the
FD coefficients a1, a2, . . . , aM; b1 will become their opposite
number, which doesn’t affect the final result. Therefore, we let
c0 � 1. Then, we can obtain

cj � r2j (j � 0, 1,/,M − 1) . (14)
Substituting Eq. 14 into Eq. 11, we have

∑M
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Rewriting Eq. 15 into a matrix equation, we have
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1
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..

.

r2M−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(16)
Equation 16 is a type of Vandermonde matrix equation.
Combining c0 � 1 and Eq. 12, we get b1 � r2/24. Then, by

solving Eq. 16, we obtain

b1 � r2

24
, a1 � ∏

2≤ k≤M

[r2 − (2k − 1)2
1 − (2k − 1)2 ] −

r2

12
,

am � 1
2m − 1

∏
1≤ k≤M,k≠m

r2 − (2k − 1)2
(2m − 1)2 − (2k − 1)2 (m � 2, 3,/,M) .

(17)
Equation 17 gives the analytical expression of the FD

coefficients for M-SFD (N=1). Analogously, the analytical
expression for M-SFD, with N taking any positive integer
value, can be derived as well. The analytical expressions of
the FD coefficients for M-SFD (N=2,3,4) are given in the
Appendix.

2.2.2 FD Coefficient Calculation for the FD Discrete
Elastic Wave Equation

Similar to the derivation of the dispersion relation of the FD
discrete acoustic wave equation, substituting the discrete plane
wave solution into the FD discrete elastic wave equation and
eliminating the amplitude factors, we have

[sin2(ωΔt
2
) − λ + 2μ

ρ
(f2

x + f2
z)][sin2(ωΔt

2
) − μ

ρ
(f2

x + f2
z)] � 0,

fx � Δt
h

⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭,

fz � Δt
h

⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭.

(18)
Equation 18 is the dispersion relation of the FD discrete elastic

wave equation given by M-SFD (N=1).
From Eq. 18, we can get

1

(vpΔt)2 sin(
rpkh

2
) ≈

1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
2

+ 1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭
2

,

(19)
1

(vsΔt)2 sin(
rskh

2
) ≈

1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
2

+ 1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭
2

,

(20)

where vp � ���������(λ + 2μ)/ρ√
and vs �

���
μ/ρ

√
represent the P- and

S-wave velocity, respectively, rp � vpΔt/h and rs � vsΔt/h are
the P- and S-wave Courant numbers.

Eq. 19 and 20 are the P- and S-wave time–space domain
dispersion relation. We can see that Eq. 19 and 20 have the same
format with Eq. 9, so the FD coefficients in the FD discrete elastic
wave equation given by M-SFD (N=1) can be calculated with the
same method. Equations about the FD coefficients are established
via expanding the trigonometric functions in Eq. 19 with the
Taylor series. Solving the equations, we can get
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b1(rp) �
r2p
24
, a1(rp) � ∏

2≤ k≤M

⎡⎣r2p − (2k − 1)2
1 − (2k − 1)2

⎤⎦ − r2p
12

,

am(rp) �
1

2m − 1
∏

1≤ k≤M,k≠m

r2p − (2k − 1)2
(2m − 1)2 − (2k − 1)2 (m � 2, 3,/,M) .

(21)
Equation 21 is one of the analytical expressions of the FD

coefficients in the FD discrete elastic wave equation given by
M-SFD (N=1), and the other analytical expression can be obtained
by substituting rp with rs, which is based on the S-wave time-space
domain dispersion relation. Using the same method, the analytical
solutions of the FD coefficients in the discrete elastic wave equations
given byM-SFD (N=2,3,4) can be worked out. They are similar to the
analytical solutions of the FD coefficients in discrete acoustic wave
equation given in the Appendix, just substituting r with rp or rs.

For simulation of the elastic wave equation, the FD coefficients
calculated based on the P-wave time-space domain dispersion
relation ensure high modeling accuracy of P-wave, whereas the
accuracy of S-wave is relatively low. On the contrary, the FD
coefficients calculated from the S-wave time-space domain
dispersion relation ensure high modeling accuracy of S-wave,
but the accuracy of P-wave is relatively low.

2.3 Accuracy Analysis of the FD Discrete
Wave Equation
According to Eq. 9, we can define the error function EM−SFD(N�1)
of the dispersion relation as

EM−SFD(N�1) � 1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
2

+ 1

h2
⎧⎨⎩∑

M

m�1
am sin[(m − 1/2)kzh] + 2b1 cos(kxh) sin(kzh2 )

⎫⎬⎭
2

− 1

(vΔt)2 sin(
rkh

2
).

(22)

Using Eqs. 10–13, Eq. 22 can be rewritten as

EM−SFD(N�1) � ∑∞
j�M
∑j
p�0
(cpcj−p − r2j)βpβj−p 1

22j+2
(k2j+2x + k2j+2z )h2j

+∑∞
j�2
∑j−1
p�0
⎡⎢⎢⎣4b1γj−p
22p+2

∑p
q�0
(cqβqβp−q) + 4b1γp+1

22(j−p) ∑j−p−1
q�0
(cqβqβj−p−1−q)⎤⎥⎥⎦k2p+2x k

2(j−p)
z h2j

−∑∞
j�2
∑j−1
p�0
⎡⎢⎢⎣r2jCp+1

j+1
22j+2

∑j
q�0
(βqβj−q)⎤⎥⎥⎦k2p+2x k

2(j−p)
z h2j,

(23)
where Cp+1

j+1 � (j+1)!
(p+1)!(j−p)! is the number of combinations, and the

expressions of cj, βj, and γj are given by Eq. 11.
Equation 23 shows that the minimum power of h in the

error function EM−SFD(N�1) is 4, so the FD discrete acoustic
wave equation given by M-SFD (N=1) can reach fourth-order
accuracy. Similarly, we can demonstrate that the discrete
acoustic wave equation given by M-SFD can reach sixth,
sixth, and eighth-order accuracy when N takes 2, 3, and 4.
Theoretically, arbitrary even-order accuracy can be reached by
increasing the value of N. The FD discrete acoustic wave
equations given by C-SFD has only second-order accuracy,
so M-SFD can improve the modeling accuracy more
effectively.

For elastic wave simulation with M-SFD (N=1,2,3,4), with the
FD coefficients calculated based on the P-wave time-space
domain dispersion relation, the P-wave can reach fourth, sixth,
sixth, and eighth-order accuracy respectively, but the accuracy of
S-wave remains second-order. On the contrary, with the FD
coefficients calculated from the S-wave time–space domain
dispersion relation, the S-wave can reach fourth, sixth, sixth,
and eighth-order accuracy, but the accuracy of the P-wave
remains second-order.

Table 1 lists the number of off-axial grid points required by
our M-SFD and the previous M-SFD (Tan and Huang, 2014; Ren
and Li, 2017) to make the FD discrete acoustic wave equations

FIGURE 3 | Phase velocity dispersion curves of the acoustic staggered-grid FD schemes with r � 0.3. (A–C) C-SFD (M=2, 5, and 8); (D–F) M-SFD (M=2, 5, and
8; N=1).
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reach fourth, sixth, and eighth-order accuracy. We can find that
our M-SFD usually needs fewer off-axial grid points than that of
the previous M-SFD, to achieve the same order accuracy, which
enables our M-SFD to be more efficient.

3 ELASTIC WAVE MODELING STRATEGY
WITH HIGH ACCURACY

For elastic wave simulation with M-SFD, the FD coefficients
calculated with P- or S-wave time–space domain dispersion
relation can only ensure the P- or S-wave to achieve high
modeling accuracy respectively. In order to improve the
modeling accuracy of P- and S-wave simultaneously, the
elastic wave Equation 5 can be decomposed as (Li et al., 2007)

υx � υPx + υSx, υz � υPz + υSz , (24)

zυPx
zt

� 1
ρ

zτPxx
zx

,
zυPz
zt

� 1
ρ

zτPzz
zz

,

zτPxx
zt

� (λ + 2μ)(zυx
zx

+ zυz
zz
), zτPzz

zt
� (λ + 2μ)(zυx

zx
+ zυz

zz
) ,

(25)
zυSx
zt

� 1
ρ
(zτSxx

zx
+ zτSxz

zz
), zυSz

zt
� 1
ρ
(zτSxz

zx
+ zτSzz

zz
) ,

zτSxx
zt

� −2μ zυz
zz

,
zτSzz
zt

� −2μ zυx
zx

,
zτSxz
zt

� μ(zυx
zz

+ zυz
zx
) .

(26)
The workflow to solve the decomposed elastic wave equations

with M-SFD is as follows: ① the FD discrete equations for the
decomposed P-wave (equation 25) and S-wave (Equation 26)
with M-SFD are derived. ② The discrete P-wave equation is

FIGURE 4 | Phase velocity dispersion curves of the acoustic staggered-grid FD schemes with r � 0.3. (A–D)M-SFD (M=6;N=1, 2, 3, and 4), (E–H)M-SFD (M=18;
N=1, 2, 3, and 4), (I–L) M-SFD (M=30; N=1, 2, 3, and 4).
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solved with the FD coefficients computed by the P-wave time-
space domain dispersion relation. ③ The discrete S-wave
equation is solved with FD coefficients computed by the
S-wave time-space domain dispersion relation. ④ υx and υz
are updated at the current moment using Eq. 24. ⑤ Steps
②-④ are repeated until the maximum recording time is reached.

According to the aforementioned workflow, the decomposed
P- and S-wave equations are solved with the FD coefficients
calculated based on the P- and S-wave time-space domain

dispersion relation respectively, and then P- and S-wave can
reach high modeling accuracy at the same time.

4 DISPERSION AND STABILITY ANALYSES

4.1 Dispersion Analysis
According to Eq. 9 and the phase velocity formula vph � ω/k, we
define an error function εph(θ) of normalized phase velocity to

FIGURE 5 | P-wave and S-wave phase velocity dispersion curves of the elastic staggered-grid FD schemes with rp � 0.45 and rs � 0.25. (A) C-SFD (M=8) and (B)
M-SFD (M=8; N=1) with the FD coefficients calculated based on the P-wave time–space domain dispersion relation. (C) M-SFD (M=8; N=1) with the FD coefficients
calculated based on the S-wave time–space domain dispersion relation. (D) M-SFD (M=8; N=1), the P-wave, and S-wave phase velocity dispersion curves are plotted
with the FD coefficients calculated based on the P-wave and S-wave time–space domain relation, respectively.

FIGURE 6 | Stability curves of the FD discrete (A) acoustic wave and (B) elastic wave equation given by C-SFD and M-SFD (N=1, 2, 3, and 4). In (B), the FD
coefficients are calculated with the S-wave time–space domain dispersion relation for M-SFD (N=1, 2, 3, and 4).
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describe numerical dispersion for M-SFD (N=1), and εph(θ) is
given by

εph(θ) � vph
v

− 1 � 2
rkh

sin−1(r �
q

√ ) − 1,

q � ⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kh cos θ] + 2b1 cos(kh sin θ) sin(kh cos θ2

)⎫⎬⎭
2

+⎧⎨⎩∑
M

m�1
am sin[(m − 1/2)kh sin θ] + 2b1 cos(kh cos θ) sin(kh sin θ2

)⎫⎬⎭
2

.

(27)

If εph(θ) equals 1, there is no dispersion, if εph(θ) is smaller
than 1, space dispersion will occur, and if εph(θ) is larger than 1,
time dispersion will occur.

Similarly, we can derive the expressions of εph(θ) for M-SFD
(N=2, 3, and 4). Furthermore, according to the P- and S-wave
time-space domain dispersion relation, the expressions of εph(θ)
for P- and S-wave can be derived.

Using the expressions of εph(θ), we can plot the phase velocity
dispersion curves of C-SFD and M-SFD (N=1, 2, 3, and 4) and
then analyze the numerical dispersion characteristics.

Figure 3 gives the phase velocity dispersion curves of C-SFD
(M=2, 5, 8) and M-SFD (M=2, 5, and 8; N=1) with r � 0.3 for
acoustic wave simulation. This figure shows several important
phenomena: i) Both C-SFD (M=2) and M-SFD (M=2; N=1) have

obvious space dispersion. ii) C-SFD (M=5,8) shows obvious time
dispersion, and the dispersion does not decrease as M increases
from 5 to 8. iii) The dispersion curves of M-SFD (M=5,8)
converge well, and the dispersion decreases further as M
increasing from 5 to 8. Based on the analyses we can infer
that when M is small (M is about 2), both M-SFD and C-SFD
cannot suppress the numerical dispersion well, and when M is
large (M is about 8) M-SFD can suppress the numerical
dispersion more effectively than C-SFD, to gain higher
accuracy for acoustic wave modeling.

Figure 4 gives the phase velocity dispersion curves of M-SFD
(M=6, 18, 30; N=1, 2, 3, and 4) with r � 0.3. This figure involves
three columns (A-D), (E-H), and (I-L); each column has its own
scale on the vertical axis. From this figure, there are some points
that deserve to be mentioned: i) When M is 6, the differences in
the numerical dispersion of M-SFD (N=1,2,3,4) are negligible. ii)
When M is 18, the dispersion curves of M-SFD are of better
convergence and display lower numerical dispersion when N
varies from one to two; nonetheless, the dispersion characteristics
of M-SFD have a high similarity even if N has been increased to
four after then. iii) WhenM is 30, the dispersion curves of M-SFD
are of better convergence asN varies from one to two, and further
increasing N up to four, the dispersion curves will exhibit much
better convergence and even lower numerical dispersion.

From the aforementioned analyses, we can infer that, for
acoustic wave simulation with M-SFD, the modeling accuracy

FIGURE 7 | Acoustic snapshots at 3.0s for the three-layered model. (A,B)C-SFD (M=10) with the time step Δt � 1.0ms and Δt � 1.5ms. (C) (D)M-SFD (M=8;N=1)
with time step Δt � 1.0ms and Δt � 1.5ms.
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is relatively high for general usage withN=1 andM being about 6,
and the modeling accuracy can meet extremely strict conditions
with N=2 and M being about 18. The modeling accuracy further
improves with N=4 and M being about 30, but it is not
recommended due to very low efficiency. So wave equation
modeling with M-SFD can balance modeling accuracy and
efficiency by taking proper values for N and M.

We can also find in Figure 4 that, increasingN from 2 to 3 while
M is fixed, the dispersion characteristics of M-SFD are unchanged.
This is due to the fact that the FD discrete acoustic wave equations
given by M-SFD (N=2,3) are both sixth-order accuracy.

Figure 5 displays the P-wave and S-wave phase velocity
dispersion curves of C-SFD (M=8) and M-SFD (M=8; N=1)
with rp � 0.45 and rs � 0.25. The dispersion curves of M-SFD
(M=8;N=1) are plotted with the FD coefficients calculated with
different methods. From this figure, four conclusions can be
deduced: i) For C-SFD (M=8), both the P-wave and S-wave have
obvious time dispersion. ii) For M-SFD (M=8;N=1), with FD
coefficients calculated based on P-wave time-space domain

dispersion relation, P-wave shows small dispersion but S-wave
shows obvious space dispersion, and with FD coefficients
calculated based on S-wave time-space domain dispersion
relation, S-wave shows small dispersion but P-wave shows
obvious time dispersion. iii) For M-SFD (M=8;N=1), with the
FD coefficients calculated based on the P- and S-wave time-space
domain dispersion relation respectively, the dispersion of both P-
and S-wave is small, i.e., solving the decomposed P- and S-wave
equation with the FD coefficients calculated based on the P- and
S-wave time-space domain dispersion relation respectively can
ensure both P- and S-wave to reach high modeling accuracy. iv)
Comparing Figures 5A, C, the numerical dispersion of both
P-wave and S-wave of M-SFD (M=8;N=1) is smaller than that of
C-SFD (M=8), when the FD coefficients of M-SFD (M=8;N=1)
are calculated based on the S-wave time-space domain dispersion
relation.

4.2 Stability Analysis
According to Eq. 9, we can get

FIGURE 8 | (A) Typical complex structural model of the Tarim Basin in Western China; (B) acoustic record modeled by M-SFD (M=8; N=1) with time step
Δt � 1.5ms; (C) (D) local parts of the acoustic record modeled by C-SFD (M=10) with Δt � 1.0ms and Δt � 1.5ms; (E,F) local parts of the acoustic record modeled by
M-SFD (M=8; N=1) with Δt � 1.0ms and Δt � 1.5ms.
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M

m�1
am sin[(m − 1/2)kxh] + 2b1 cos(kzh) sin(kxh2 )

⎫⎬⎭
2

+⎧⎨⎩∑
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2

.

(28)

Letting kx � kz � π/h and considering 0≤ sin2(rkh/2)≤ 1, we
have

r≤ S � 1�
2

√ ∣∣∣∣∣∣∣∣∑M
m�1(−1)m−1am − 2b1

∣∣∣∣∣∣∣∣
, (29)

where S is the stability factor.

FIGURE 9 | Elastic snapshots of υx and decomposed P- and S-wave components at 2.4 s for the three-layered model simulated with time step Δt � 1.5ms. (A–C)
C-SFD (M=10), (D–F), and (G–I)M-SFD (M=8;N=1) with the FD coefficients calculated based on the P- and S-wave time-space domain dispersion relation, respectively.
(J–L) M-SFD (M=8; N=1), solving the decomposed P- and S-wave equations.
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Equation 29 represents the stability condition of the FD
discrete acoustic wave equation given by M-SFD (N=1).
Similarly, the stability condition of C-SFD and M-SFD
(N=2,3,4) can also be derived. Furthermore, we can also derive
the P-wave and S-wave stability conditions of C-SFD and M-SFD
(N=1,2,3,4) in the same way.

Figure 6 displays the curve of maximum r limited by the
stability condition with M, which is called the stability curve.
Figure 6A shows the stability curves of the FD discrete
acoustic wave equation given by C-SFD and M-SFD

(N=1,2,3,4). In most cases rp > rs, so the stability of the FD
discrete elastic wave equation is determined by the P-wave
stability. If the FD coefficients are calculated based on the
P-wave time-space domain dispersion relation for M-SFD
(N=1,2,3,4), the P-wave stability curves of C-SFD and
M-SFD (N=1,2,3,4) are identical to Figure 6A. With the FD
coefficients calculated based on the S-wave time-space domain
dispersion relation for M-SFD (N=1,2,3,4), the P-wave
stability curves of C-SFD and M-SFD (N=1,2,3,4) are shown
in Figure 6B.

FIGURE 10 | Elastic snapshots of υz and decomposed P- and S-wave components at 2.4 s for the three-layeredmodel simulated with time step Δt � 1.5ms. (A–C)
C-SFD (M=10), (D–F), and (G–I)M-SFD (M=8;N=1) with the FD coefficients calculated based on the P- and S-wave time-space domain dispersion relation, respectively.
(J–L) M-SFD (M=8; N=1), solving the decomposed P- and S-wave equations.
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Figure 6 demonstrates that for acoustic and elastic wave
simulation, the stability of M-SFD (N=1,2,3,4) is better than
C-SFD. In addition, the stability of M-SFD with N=2 and N=3
is identical. This can be explained by the same order accuracy of
the FD discrete wave equations given by M-SFD (N=2,3).

5 NUMERICAL MODELING AND RTM

5.1 Acoustic Wave Modeling
A three-layer model is designed to test our M-SFD method. The
horizontal and vertical grid numbers of the model are both 601,
with grid size equaling 15 m. The depths of the two reflecting
interfaces are 3000 and 4950m, respectively. The acoustic
velocities of the three layers are 2400, 2700, and 3200 m/s,
respectively. A Ricker wavelet source with a dominant
frequency of 20 Hz is located at (750 m, 750 m). Acoustic
simulations are performed with C-SFD (M=10) and M-SFD
(M=8; N=1), with time step Δt � 1.0ms and Δt � 1.5ms,
respectively. Figure 7 shows the modeling snapshots at 3.0 s.

A complex structure model representative of the Tarim Basin
in Western China is shown in Figure 8A. The horizontal and
vertical grid numbers of the model are 1,201 and 526 respectively,
with grid size equaling 15 m. A Ricker wavelet with a dominant
frequency of 25 Hz is used as the source, located at (9000 m,
150 m). Acoustic numerical simulations are conducted with

C-SFD (M=10) and M-SFD (M=8; N=1), with time step Δt �
1.0ms and Δt � 1.5ms respectively. Figure 8B shows a seismic
record modeled by M-SFD (M=8; N=1) with Δt � 1.5ms. Figures
8C–F give the amplified local parts of the seismic records
modeled by C-SFD (M=10) and M-SFD (M=8; N=1) with Δt �
1.0ms and Δt � 1.5ms.

The spatial FD operators of C-SFD (M=10) and M-SFD (M=8;
N=1) are both composed of 20 grid points, so the computational
amount of one iteration for C-SFD (M=10) and M-SFD (M=8;
N=1) is almost the same. Then, C-SFD (M=10) and M-SFD
(M=8; N=1) will be almost the same computational efficiency
when the same time step is adopted.

Comparing the snapshots in Figure 7 and the amplified
regions of the seismic records in Figures 8C–F, we find that
slight time dispersion exists in the results simulated by C-SFD
(M=10) with time step Δt � 1.0ms. As the time step increasing
to Δt � 1.5ms, the time dispersion becomes more serious.
However, there is no obvious dispersion in the results
modeled by M-SFD (M=8; N=1) with time step Δt � 1.0ms
and Δt � 1.5ms. Therefore, M-SFD (M=8; N=1) can suppress
the numerical dispersion better than C-SFD (M=10), when the
same time step is adopted. That is to say, with almost the same
computational efficiency, M-SFD (M=8; N=1) can reach
higher modeling accuracy than C-SFD (M=10).
Furthermore, we find that M-SFD (M=8; N=1) with Δt �
1.5ms can suppress the numerical dispersion better than

FIGURE 11 | Local parts of the elastic record of the υz component for the complex structural model simulated with time step Δt � 1.0ms: (A) C-SFD (M=10); (B,C)
M-SFD (M=8; N=1) with the FD coefficients calculated based on the P-wave and S-wave time-space domain dispersion relation, respectively; (D) M-SFD (M=8; N=1),
solving the decomposed P-wave and S-wave equation.
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C-SFD (M=10) with Δt � 1.0ms, so compared to C-SFD
(M=10), M-SFD (M=8; N=1) can take larger time step to
reach higher computational efficiency and get higher
modeling accuracy at the same time.

5.2 Elastic Wave Modeling
The first elastic wave modeling is carried out on a three-layered
model. The horizontal and vertical grid numbers of the model are
both 601, with grid size equaling 10 m. The P-wave velocities of
the three layers are 2400, 2700, and 3200 m/s, and the S-wave
velocities of the three layers are 1500, 1620, and 1800 m/s
respectively. The depths of the two reflectors are 2000 and
3300 m. A Ricker wavelet source with a dominant frequency
of 20 Hz is located at (500 m, 500 m). Figures 9, 10 show the
snapshots of the υx and υz component at 2.4 s modeled by C-SFD
(M=10) and M-SFD (M=8; N=1) with Δt � 1.5ms.

Figures 9, 10 indicate that in the result modeled by C-SFD
(M=10), both P-wave and S-wave show obvious time dispersion.
In the result modeled by M-SFD (M=8; N=1) with the FD
coefficients calculated based on the P-wave time-space domain
dispersion relation, P-wave has no obvious numerical dispersion,
but obvious space dispersion exists in S-wave. In the result
modeled by M-SFD (M=8; N=1) with the FD coefficients

calculated based on the S-wave time-space domain dispersion
relation, S-wave has no obvious numerical dispersion, but slight
time dispersion exists in P-wave. In the result modeled by M-SFD
(M=8; N=1) with the decomposed P- and S-wave equation, both
P- and S-wave have no obvious numerical dispersion.

Based on the aforementioned analyses, we can infer that with
almost the same computational efficiency, M-SFD (M=8; N=1),
with the FD coefficients calculated based on the S-wave time-
space domain dispersion relation, suppresses the numerical
dispersion of both P- and S-wave more effectively to obtain
higher modeling accuracy than C-SFD (M=10). In addition,
solving the decomposed P- and S-wave equations with M-SFD
(M=8; N=1) can further improve the modeling accuracy. But it
will increase the amount of computation and the occupation of
memory. Calculating The FD coefficients based on the P-wave
time-space domain dispersion relation for M-SFD (M=8; N=1) is
not recommended, which causes serious spatial dispersion for
S-wave.

The typical complex structural model of the Tarim Basin of
Western China is used in the following simulation. The P-wave
velocity model is shown in Figure 8A. The S-wave velocity is
generated by dividing 1.8 by the P-wave velocity. The grid size is
changed to 10 m. A Ricker wavelet with a dominant frequency of
20 Hz is used as the source, located at (6000 m, 100 m).
Figure 11A–D display the amplified regions of the seismic
records of the υz component modeled by C-SFD (M=10) and
M-SFD (M=8; N=1) with time step Δt � 1.0ms.

By examining the zoomed region of the seismic records we can
see that the seismic record modeled by C-SFD (M=10) shows
obvious time dispersion. With the FD coefficients calculated
based on the P-wave time-space domain dispersion relation,
the seismic record modeled by M-SFD (M=8; N=1) shows
some space dispersion. With the FD coefficients calculated
based on the S-wave time-space domain dispersion relation,
the seismic record modeled by M-SFD (M=10; N=1) displays
no obvious dispersion. The seismic record obtained by solving the
decomposed P-wave and S-wave equation with M-SFD (M=10;
N=1) also has no obvious dispersion, but it is of high
computational expense and memory occupation.

The aforementioned analyses demonstrate that for elastic
wave simulation, with almost the same computational
efficiency, M-SFD (M=8; N=1), with the FD coefficients
calculated based on the S-wave time-space domain dispersion
relation, can suppress the numerical dispersion more effectively
to reach higher modeling accuracy than C-SFD (M=10).

5.3 Acoustic RTM
We further extend M-SFD to acoustic wave RTM and then
perform an RTM test on the complex structure model in
Figure 8A. The source wavelet is a Ricker wavelet with a
dominant frequency of 25 Hz. And 150 shot gathers without
numerical dispersion are modeled by C-SFD (M=15) with a very
small time stepΔt � 0.1ms, which is used as the input gathers for
RTM. Each shot gathered has 600 traces. The source interval is
120 m and the trace interval is 30 m.

We use C-SFD (M=10) and M-SFD (M=8; N=1) as the
wavefield propagation operator of the RTM with the time step

FIGURE 12 | Acoustic wave RTM results with (A)C-SFD (M=10) and (B)
M-SFD (M=8; N=1) for the typical complex structural model of the Tarim Basin
in Western China.
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Δt � 1.5ms. The cross-correlation imaging condition is adopted
and the Laplace filter is used to suppress the low-frequency noise
that existed in the RTM results. Figure 12 shows the final RTM
result with C-SFD (M=10) and M-SFD (M=8; N=1) respectively.
It exhibits that, there are serious imaging artifacts caused by the
numerical dispersion in the deep portion of the RTM result with
C-SFD (M=10). While the imaging artifacts are successfully
suppressed in the RTM result with M-SFD (M=8; N=1). So
M-SFD used as the wavefield propagation operator in RTM
can improve the imaging accuracy and resolution of deep
structures.

6 DISCUSSION

In this section, we discussed the stability of C-SFD andM-SFD for
elastic wave simulation on a medium with a high Poisson’s ratio.
A two-layered model shown in Figure 13 is adopted, with a grid
size equaling 10 m. The Poisson’s ratios of the layer are 0.395 and
0.306. Figure 13(B-E) displays the snapshots of the υz component
at 1.8 s simulated by C-SFD (M=10) and M-SFD (M=8; N=1).

Limited to the stability condition, the simulation by C-SFD
(M=10), with a time step Δt equaling 1.0 ms, is stable, while Δt
increasing to 1.5 ms, it becomes unstable. Similarly, with the FD
coefficients calculated based on the S-wave time-space domain
dispersion relation, the simulation by M-SFD (M=8; N=1) is stable
with Δt � 1.0ms but unstable with Δt � 1.5ms. With the FD

coefficients calculated based on the P-wave time-space domain
dispersion relation, the simulation by M-SFD (M=8; N=1) is stable
with Δt � 1.5ms, but obvious space dispersion exists in the
modeling snapshot. Solving the decomposed P- and S-wave
equations by M-SFD (M=8; N=1) with Δt � 1.5ms is also stable.

The aforementioned analyses show that both C-SFD and
M-SFD are suitable for elastic wave simulation on a model
with a high Poisson’s ratio. However, the stability of M-SFD is
better than C-SFD, when the FD coefficients are calculated based
on the P-wave time-space domain dispersion for M-SFD or the
simulation is implemented by solving the decomposed P- and
S-wave equations with M-SFD. The better stability ensures
M-SFD to adopt a larger time step.

After the comprehensive considerations of the modeling
accuracy and stability, elastic wave simulation with M-SFD by
solving the decomposed P- and S-wave equations could be a
feasible option. Nevertheless, this scheme is at the expense of
rather high computational resources, so its superiority of it should
be further evaluated thoroughly.

7 CONCLUSION

In this article, by constructing the spatial FD operator with the
axial and off-axial grid points jointly to approximate the first-
order spatial derivatives, we developed an M-SFD for acoustic
and elastic wave equation simulation. Furthermore, we

FIGURE 13 | Layered model and snapshots of the υz component simulated by different SFD schemes. (A) Two-layered model. (B) C-SFD (M=10) with Δt � 1ms.
(C) M-SFD (M=8; N=1) with Δt � 1ms, the FD coefficients calculated based on the P-wave time-space domain dispersion relation. (D) M-SFD (M=8; N=1) with
Δt � 1.5ms, the FD coefficients calculated based on the S-wave time-space domain dispersion relation. (E) M-SFD (M=8; N=1) with Δt � 1.5ms, solving the
decomposed P-wave and S-wave equations.
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successfully derived the analytical expression of the FD
coefficients based on the time-space domain dispersion
relation and TE. Then, FD accuracy analysis, dispersion
analysis, stability analysis, numerical simulation, and RTM
tests are performed. Several conclusions can be deduced:

1) The FD discrete acoustic equation given by C-SFD can only
reach the second-order accuracy, while the FD discrete
acoustic equation given by M-SFD (N=1, 2, 4) can reach
the fourth, sixth, or eighth-order accuracy, and theoretically, it
can reach arbitrary even-order accuracy with increasing N
continuously.

2) For acoustic wave simulation, compared to C-SFD, M-SFD
can suppress the numerical dispersion more effectively to
reach higher modeling accuracy with almost the same
computational efficiency. Moreover, M-SFD can achieve
higher computational efficiency by adopting a larger time
step and reach higher modeling accuracy at the same time.

3) The FD coefficients calculated based on P- or S-wave time-
space domain dispersion relation can ensure only the P- or
S-wave in the FD discrete elastic wave equation given by
M-SFD (N=1,2,4) reaches the fourth, sixth, and eighth-order
accuracy respectively. Solving the decomposed P- and S-wave
equation with M-SFD (N=1, 2, 4) can make P- and S-waves
reach the fourth, sixth, and eighth-order accuracy at the
same time.

4) For elastic wave simulation, with almost the same efficiency,
M-SFD, with its FD coefficients calculated based on the S-wave
time-space domain dispersion relation, can suppress both P- and
S-wave dispersion more effectively to achieve higher modeling
accuracy than C-SFD. By solving the decomposed P- and S-wave
equation with M-SFD, the modeling accuracy can be improved
further, but the computation efficiency degrades. The FD
coefficients calculated based on the P-wave time-space domain
dispersion relation should not be adopted for M-SFD, which
causes serious spatial dispersion for the S-wave.

5) For both acoustic and elastic wave simulations, M-SFD has
better stability than C-SFD.

6) Compared to C-SFD, M-SFD used as the wavefield
propagation operator in RTM more effectively eliminates

the imaging artifacts caused by the numerical dispersion,
which successfully improves the imaging accuracy and
resolution of the deep structure.
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