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In the Middle East, water shortage is becoming more and more serious due to the
development of agriculture and industry and the increase in population. Saudi Arabia is one
of the most water-consuming countries in the Middle East, and urgent measures are
needed. Therefore, we integrated data from Gravity Recovery and Climate Experiment
(GRACE), and other relevant data to estimate changes in groundwater storage in Saudi
Arabia. The findings are as follows: 1) Average annual precipitation (AAP) was calculated to
be 76.4, 90, and 72mm for the entire period, Period I (April 2002 to March 2006) and
Period II (April 2006 to July 2016), respectively. 2) The average TWS variation was
estimated to be −7.94 ± 0.22, −1.39 ± 1.35, and −8.38 ± 0.34 mm/yr for the entire
period, Period I and Period II, respectively. 3) The average groundwater storage was
estimated to be +1.56 ± 1.35 mm/yr during Period I. 4) The higher average groundwater
depletion rate was calculated to be −6.05 ± 0.34 mm/yr during Period II. 5) Both soil
texture and surface streams in the study area promote lateral flow and carry surface water
to the Arabian Gulf and the Red Sea. 6) During Period II, average annual recharge rates
were estimated to be +9.48 ± 2.37 and +4.20 ± 0.15 km3 for Saudi Arabia and the Saq
aquifer, respectively. 7) This integrated approach is an informative and cost-effective
technique to assess the variability of groundwater resources in large areas more efficiently.
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INTRODUCTION

Water sustainability is a critical issue globally, given its importance for humans and ecosystems
(United Nations, 2013; Bernauer and Böhmelt, 2020). Water sustainability is affected by
anthropogenic water use and climatic conditions (United Nations, 2014; Wada et al., 2010).
Globally, irrigation accounts for about 70% of water extraction and 90% of water consumption,
with heavy groundwater withdrawal in arid regions (Siebert et al., 2010; Gerten et al., 2020).

Due to hot and arid climatic conditions, the water shortage has become a severe problem in the Arab
region. Therefore, recognizing the impacts of climate change, population growth, economic development,
and land management is a key strategy for achieving water security in this region (Trondalen, 2009). In
addition, desertification is affecting the Middle East region, particularly Iraq, Syria, Jordan, and Iran.

Several methods have been applied to evaluate the hydrological behavior of aquifers using in situ
observation techniques, such as modeling and chemical methods (de Vries and Simmers, 2002;
Milewski et al., 2009; Scanlon et al., 2012). However, it is difficult to estimate the spatial and temporal
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variations of groundwater storage on a large scale using a
relatively small number of scattered point measurements in
these conventional methods. Moreover, the results of these
methods are often questionable because they require
significant efforts and resources to obtain. To solve these
problems, several studies have been conducted to analyze and
integrate the outputs of the Gravity Recovery and Climate
Experiment (GRACE) and compare them with many climate
models and in situ data (Wahr et al., 1998; Rodell and Famiglietti,
2001; Wahr et al., 2004; Syed et al., 2008; Longuevergne et al.,
2010).

Many studies have been conducted to estimate the
hydrological components and settings of large basins and
transboundary aquifers in recent years. For example, Yeh
et al. (1998), Yeh et al. (2006), and Rodell et al. (2007)
applied GRACE, Global Land Data Assimilation System
(GLDAS) data, and in situ observations to partition the
water budget of the Mississippi River basin and obtained
reasonable results. Wang et al. (2014) compared monthly
total water storage variations obtained from GRACE with
those estimated from water budget equations for 16
Canadian basins. In addition, some studies have combined
GRACE and climate data with other relevant datasets to
estimate changes in groundwater storage and evaluate rates
of recharge, discharge, and depletion in aquifer systems in the
Arab region (Mohamed et al., 2014; Mohamed et al., 2015;
Ahmed and Abdelmohsen, 2018; Mohamed, 2019; Mohamed,
2020a; Mohamed, 2020b; Mohamed, 2020c; Mohamed, 2020d;
Mohamed et al., 2021; Mohamed and Gonçalvès, 2021; Taha
et al., 2021). On a continental scale, other global gravity field
datasets from the Earth Gravitational model have been used to
investigate the crustal structures (Mohamed and Al Deep,
2021). However, on a smaller scale, airborne and ground-
based geophysical data have been used for groundwater
studies, subsurface geology (Meneisy and Al Deep, 2020; Al
Deep et al., 2021; Mohamed and Ella, 2021), magma chamber
geometry (Mohamed et al., 2022), as well as for land
subsidence due to groundwater over-pumping (Othman,
2019; Othman and Abotalib, 2019).

The GRACE satellites provide vertically integrated terrestrial
water storage (ΔTWS) changes from regional to global scale.
These TWS values are expressed in terms of groundwater storage
(ΔGWS), surface water storage (ΔSWS), soil moisture storage
(ΔSMS), and snow water equivalent (ΔSWE). However, GRACE
cannot distinguish between the contributions from these
components, due to the low horizontal resolution of GRACE
data and the absence of its vertical resolution (Ahmed et al., 2016;
Mohamed et al., 2017). To overcome this weakness, outputs of
land surface models were integrated with GRACE data to
enhance the horizontal resolution of the data, and to isolate
individual components from the GRACE-derived ΔTWS
estimates.

Fallatah et al. (2017) calculated the Saq aquifer’s depletion
rates and found the governing factors that influence these
depletions. However, Fallatah et al. (2019) went farther and
calculated the modern recharge to the Saq aquifer, rather than
only the depletion rates.

It is worth noting that the current work differs from those
previous studies, where our current study aims to 1) provide the
best estimate of the groundwater storage variability in the Saudi
Arabia region and locally for the Saq aquifer using the spherical
harmonics (SH) and mass concentration (mascon) GRACE-
derived ΔTWS solutions and other climate datasets; and 2)
quantify the modern recharge to the Saudi Arabia region and
to the Saq aquifer. This aquifer is one of the most important
aquifers in Saudi Arabia’s northern region. Findings were
evidenced by results of land subsidence and water quality
degradation. Conducting this study for this arid environment
is important for agricultural activities, irrigation, and
domestic use.

GEOLOGICAL AND HYDROGEOLOGICAL
SETTING

According to Tariki, (1947), Saudi Arabia is divided into two
geological zones. The western zone is represented by
Precambrian crystalline igneous and metamorphic rocks
(Figure 1), sloping southeast, east, and northeast. The
eastern zone consists of sedimentary rocks that dip
eastward and overlay crystalline basement rocks (Figure 1).
These sedimentary rocks are composed of Paleozoic,
Mesozoic, Tertiary, and Recent deposits. The sedimentary
basin can be divided into the Nejd and Hassa regions. In
the eastern part of the Nejd region, sedimentary rocks of early
Paleozoic to early Eocene are distributed, with alternating
clastic and calcareous facies. Outcrop rocks in the Hassa
region are represented by Tertiary and younger sequences,
including lower to middle Eocene and Miocene to Pliocene.
Most of the Eocene rocks are calcareous. The Miocene and
Pliocene are formed by continental deposits, with some
exceptions of intercalating marine strata.

The Arab world is one of the driest places on the planet. Due to
a lack of surface water; the region relies heavily on groundwater
supplies, and excessive water stress in the region is met with
variable degrees of aquifer depletion and mining. As a result,
numerous groundwater supplies are in the risk of depletion
(Khater, 2010).

Climate change is considered as one of the most urgent
environmental issues facing humanity. Environmental changes
are expected from accelerated global climate change, which may
affect groundwater sustainability. Several important initiatives
are underway in Arabic countries to introduce integrated water
resource management to address water scarcity (Khater, 2010). In
the Arab region, groundwater is being consumed in large
quantities due to the expansion of cultivation, urbanization,
and industrialization. Climate change will likely impact the
dynamics of groundwater availability and sustainability in the
Arab world.

Saudi Arabia has two sources of groundwater: non-renewable
groundwater comes from deep fossil aquifers, and renewable
groundwater comes from shallow aquifers. These two sources
account for 40% of Saudi Arabia’s water supply. The deep
sandstone aquifer is of sedimentary origin and stores fossil
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water (DeNicola et al., 2015). Renewable groundwater is found in
shallow and deep layers in alluvial valleys. However, the shallow
aquifers are depleted due to high water extraction compared to
recharge. Fossil groundwater is stored in six major sedimentary
paleo-aquifers located in the eastern and central parts of the
country (Figure 2). It is confined in sand and limestone
formations of a thickness of about 300 m. One of these, the
Saq aquifer (Figure 1), extends more than 1,200 km northward in
the eastern part of the country (FAO, 2008).

DATA AND METHODOLOGY

The GRACE satellite is a joint US–German mission launched in
2002 and consists of twin satellites that measure spatial and
temporal changes in the Earth’s gravitational field (Tapley et al.,
2004). Changes in the Earth’s gravity field are mainly due to
changes in water content.

Data from GRACE are processed at three different centers:
The Jet Propulsion Laboratory (JPL), the Center for Space
Research at the University of Texas at Austin (CSR-UTA), and
German Research Centre for Geosciences (GFZ). These centers
provide the monthly GRACE solutions using the RL05 spherical
harmonic (SH) data (Tapley et al., 2004) as follows: 1) Removing
the atmosphere and ocean signals. 2) The C20 from GRACE has a
large uncertainty (Cheng et al., 2011), probably due to tidal and
other aliasing, so it is replaced by the C20 obtained from satellite
laser ranging. In addition, the first-order calculated coefficients
(Swenson et al., 2008) are added. 3) Corrections for glacial
isostatic adjustments (Geruo et al., 2013). 4) Minimization of
correlation errors using a de-striping filter. 5) Minimization of
random errors using a 300-km Gaussian filter.

We rescaled the GRACE-derived ΔTWS time series
to minimize the effects of smoothing and truncation (Long
et al., 2015) using a scale factor of 1.26 averaged from the
NCAR-CLM4.0 model (Landerer and Swenson, 2012). As a

FIGURE 1 | Saudi Arabia’s geological map. The aerial distribution of the Saq aquifer is also shown.
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result, the bi-monthly GRACE (CSR-SH and JPL-SH) solutions
show relatively similar results, with minor differences being
within the error range of GRACE. However, due to the
significant noise reduction in the signals (Sakumura et al.,
2014), the mean of the two rescaled solutions were used in the
calculations.

The second GRACE source is the mascon solutions (release
06, version 1; CSR-M and JPL-M). These solutions provide
high spatial resolution and minimum error because they
capture all signals within the noise levels of GRACE. There
is no need for spectral de-striping or smoothing filtering for
these solutions. Moreover, these solutions do not require any
scaling factor (Luthcke et al., 2013; Save et al., 2016; Wiese
et al., 2016).

We used the monthly spherical harmonic (CSR-SH and JPL-
SH) and mascon (CSR-M and JPL-M) GRACE solutions for the
study area throughout the period. Next, we calculated the secular
trend of the ΔTWS data by simultaneously fitting a trend term
and a seasonal term to each TWS time series. Finally, the errors
associated with the calculated trend values were estimated.

Monthly trends of non-groundwater components, such as soil
moisture storage and surface water storage dam capacity data, are
necessary to separate the ΔGWS variations in the study area.
Therefore, these components must be removed from the GRACE-
derived TWS variations. Due to the lack of data from the gauge
stations in the study area, we used the land surface model (e.g.,
CLM) of GLDAS (Rodell et al., 2004), which can be downloaded
from the Goddard Earth Sciences Data and Information Services
Center (GES DISC). The CLMmodel of the land surface provides
both monthly SMS and SWE data. The average of the monthly
ΔSMS data of the LSM was used.

This study used annual data of surface water reservoirs of
dams constructed in Saudi Arabia. These reservoirs may affect the
water budget calculated from the GRACE signals and the ΔGWS
values in the target area. Therefore, the SWS trend was calculated
and removed from the ΔTWS trend.

FIGURE 2 | Aquifers in the Arabian Shield and their locations.

FIGURE 3 | Average annual precipitation (mm) obtained from Tropical
Rainfall Measuring Mission (TRMM) data collected across the study area from
April 2002 to July 2016.
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In order to estimate changes in ΔGWS in the study area, it is
necessary to remove the non-groundwater contribution from the
changes in ΔTWS. The average of the non-groundwater outputs
from the GLDAS CLM model was used, and Eq. 1 was applied
(e.g., Rodell et al., 2009; Mohamed et al., 2017).

ΔTWS � ΔGWS + ΔSMS + ΔSWS + ΔSWE (1)
where ΔSMS, ΔSWS, and ΔSWE are variations in soil moisture,
surface water, and snow water equivalent, respectively. ΔSWE is
negligible.

Because climatic variability is thought to be one of the primary
drivers of changes in ΔGWS, and continuous ground-based
rainfall data are not available in the study area, monthly
rainfall data from the Tropical Rainfall Measuring Mission
(TRMM; http://disc.sci.gsfc.nasa.gov/) were employed
(Kummerow, 1998; Huffman et al., 2007; Huffman et al.,

2010). First, the rainfall data (April 2002 to July 2016) were
processed to create total monthly rainfall images. Second, a
monthly rainfall time series was generated by averaging the
rainfall rates of all the grid points lying within the study area.
Third, the average annual precipitation (AAP) (Figure 3) of the
study area was calculated. Finally, the TRMM data were used to
study the effect of rainfall on the changes in ΔGWS during the
study period in Saudi Arabia.

RESULTS AND DISCUSSION

Analysis of Rainfall Data
Figures 4, 5 depict the temporal fluctuations of the observed
mean monthly rainfall over Saudi Arabia and the Saq aquifer,
respectively. In the Middle East, two climatic periods have been

FIGURE 4 | Monthly precipitation (mm) across the Saudi Arabia throughout the two periods.

FIGURE 5 | Monthly precipitation (mm) over the Saq aquifer throughout the two periods.
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defined based on the drought that occurred in 2007 (Mohamed,
2020b). As a result, we used the AAP to determine the two
climatic periods that have dominated Saudi Arabia: Period I was
from April 2002 to March 2006, and the AAP rate was as high as
90 mm/yr (Figure 4). Period II was from April 2006 to July 2016,
after the onset of drought, and the AAP rate was as low as 72 mm/
yr (Figure 4). In Saudi Arabia, the AAP rate was 76.4 mm/yr
during the entire period (Table 1). In the southwestern
mountainous highlands, the AAP rate was as high as 550 mm/
yr (Figure 3). The Saq aquifer receives a minimum annual
precipitation rate of 63.3 mm throughout the entire period
(Table 2). Period I has a slightly higher precipitation rate of

74.0 mm/yr, whereas period II has a slightly lower rate of
59.4 mm/yr (Figure 5). Figure 6 shows the temporal variation
of the SMS time series estimated from GLDAS in Saudi Arabia
that ranged between −2.95 ± 0.003 mm/yr for Period I and
−2.46 ± 0.008 mm/yr for Period II (Table 1). Soil moisture of
the Saq aquifer varied from −3.14 ± 0.01 mm/yr estimated for
Period I to −2.10 ± 0.02 mm/yr estimated for Period II (Table 2).

Temporal Variations in ΔTWS
The secular trends of GRACE-derived TWS were calculated from
the monthly SH (CSR-SH and JPL-SH) and mascon (CSR-M and
JPL-M) solutions in Saudi Arabia. Their spatial distributions and

TABLE 1 | GRACE-estimated ΔTWS components over Saudi Arabia.

Component Units Entire time period Period I (04/2002–03/2006) Period II (04/2006–07/2016)

GRACE total (ΔTWS) CSR-M mm/yr −7.43 ± 0.20 −2.83 ± 1.37 −7.19 ± 0.31
km3/yr −15.97 ± 0.43 −6.08 ± 2.95 −15.46 ± 0.67

JPL-M mm/yr −8.80 ± 0.10 −3.38 ± 0.59 −8.63 ± 0.13
km3/yr −18.92 ± 0.21 −8.23 ± 1.27 −18.55 ± 0.28

CSR-SH mm/yr −7.58 ± 0.36 +2.14 ± 2.26 −8.57 ± 0.57
km3/yr −16.29 ± 0.77 +4.60 ± 4.86 −18.42 ± 1.23

JPL-SH mm/yr −7.95 ± 0.36 −1.49 ± 2.16 −9.12 ± 0.58
km3/yr −17.09 ± 0.77 −3.20 ± 4.64 −19.61 ± 2.41

AVG mm/yr −7.94 ± 0.22 −1.39 ± 1.35 −8.38 ± 0.34
km3/yr −17.07 ± 0.92 −2.99 ± 5.63 −18.01 ± 0.73

ΔSMS mm/yr −2.60 ± 0.01 −2.95 ± 0.003 −2.46 ± 0.008
km3/yr −5.59 ± 0.02 −6.34 ± 0.01 −5.29 ± 0.02

Dams mm/yr - - +0.13 ± 0.03
km3/yr +0.28 ± 0.06

ΔGWS mm/yr −5.33 ± 0.22 +1.56 ± 1.35 −6.05 ± 0.34
km3/yr −11.46 ± 0.47 +3.35 ± 2.90 −13.00 ± 0.73

D mm/yr - - −10.46 ± 1.05
km3/yr −22.48 ± 2.25

R mm/yr - - +4.41 ± 1.10
km3/yr +9.48 ± 2.37

AAP mm/yr 76.4 90 72
km3/yr 164.24 193.47 154.78

CSR-M, Mascon solution from the Center for Space Research; JPL-M, Jet Propulsion Laboratory mascon solution; CSR-SH and JPL-SH, Monthly GRACE spherical harmonic solutions;
ΔTWS, Changes in Terrestrial Water Storage; ΔGWS: Changes in groundwater storage; ΔSMS, Variation in Soil Moisture Storage; AAP, Average Annual Precipitation; D, Artificial
withdrawal; R, Recharge.

TABLE 2 | GRACE-estimated ΔTWS components over the Saq aquifer.

Component Units Entire time period Period I (04/2002–03/2006) Period II (04/2006–07/2016)

GRACE total (ΔTWS) CSR-M mm/yr −11.44 ± 0.20 −5.11 ± 0.12 −11.47 ± 0.30
JPL-M mm/yr −11.60 ± 0.15 −2.88 ± 0.04 −12.36 ± 0.18
CSR-SH mm/yr −10.92 ± 0.41 1.61 ± 0.38 −12.00 ± 0.64
JPL-SH mm/yr −11.48 ± 0.45 −1.51 ± 0.47 −13.19 ± 0.71
AVG mm/yr −11.36 ± 0.26 −1.97 ± 0.67 −12.25 ± 0.39

ΔSMS mm/yr −2.41 ± 0.02 −3.14 ± 0.01 −2.10 ± 0.02
ΔGWS mm/yr −8.95 ± 0.27 +1.17 ± 0.67 −10.16 ± 0.39
D mm/yr −21.39 −21.39 −21.39

km3/yr −8.00 −8.00 −8.00
R mm/yr +12.44 ± 0.27 +22.56 ± 0.67 +11.23 ± 0.39

km3/yr +4.65 ± 0.10 +8.44 ± 0.65 +4.20 ± 0.15
AAP mm/yr 63.3 74.0 59.4

CSR-M, Mascon solution from the Center for Space Research; JPL-M, Jet Propulsion Laboratory mascon solution; CSR-SH and JPL-SH, Monthly GRACE spherical harmonic solutions;
ΔTWS, Changes in Terrestrial Water Storage; ΔGWS, Changes in groundwater storage; ΔSMS, Variation in Soil Moisture Storage; AAP, Average Annual Precipitation; D, Artificial
withdrawal; R, Recharge.
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average values are shown in Figures 7, 8 during the entire period.
The figures show that Saudi Arabia had a general negative
GRACE-derived TWS trend during the entire period (April
2002 to July 2016). The southern part of Saudi Arabia shows a
positive TWS rate (+4.4 mm/year; Figure 7A), while the northern
part shows a high TWS depletion rate (−18.1 mm/year;
Figure 8B). A closer look at Figures 7A,B shows that the
trend images extracted from the CSR-SH and JPL-SH
solutions are similar. The images are also identical in spatial
distribution but with small differences in magnitude. These values
indicate that the trends of TWS vary from −12.9 and −15.7 to +4.4
and +3.2 from the CRS-SH and JPL-SH solutions, respectively
throughout the entire period over the entire study area.

Figures 8A,B shows the secular trends of GRACE-estimated
TWS from the mascon solutions. Their spatial distributions show
a similar pattern to those estimated from the monthly spherical

harmonic solutions in the study area. The results show that the
TWS trends remain positive in the southeast. However, the
northeastern area shows negative TWS trends. In the northern
and central parts of Saudi Arabia, the TWS trend show highly
negative values. The CSR-M and JPL-M solutions show quite
different spatial distributions. However, their magnitudes are
somewhat similar. The TWS trends of JPL-M and CRS-M
range from −18.1 and −16.7 to +1.1 and +3.8 mm/yr,
respectively, throughout the entire period (Figure 8).

The secular trends in TWS derived from GRACE (Figure 8)
demonstrate that the Saq aquifer is experiencing a significant
negative TWS trend for the entire period. Using JPL-SH and
CRS-SH, the TWS trend shows values ranging from −13.7 and
−12.9 mm/yr to −7.75 and −7.35 mm/yr, respectively (Figures
7A,B). The aquifer depletion appears to be localized over its
southern part. Figures 8A,B reveals that over the Saq aquifer,

FIGURE 6 | GLDAS-derived soil moisture (ΔSMS) across the whole study area throughout the investigated period.

FIGURE 7 | Secular Color-coded GRACE-derived ΔTWS trend map throughout the investigated period from averaging of the monthly CSR spherical harmonic
solution (A), and JPL spherical harmonic solution (B) over the Saudi Arabia. Also showing the location of the Saq aquifer.
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TWS depletion values range from −16.8 and −18.1 to −7.8 and
−9.0 mm/yr, using CRS-M and JPL-M, respectively.

Figure 9 shows the temporal variation of the TWS time series
and secular trends in Saudi Arabia from different solutions (CSR-
M, JPL-M, CSR-SH, and JPL-SH). The average values of monthly
SH and mascon solutions are shown in Figure 10. Figures 9, 10
show that these solutions and their averages are in good
agreement in the study area. In addition, a good correlation
was achieved between the different data and their averages in the
study area, varying between 0.92 and 0.96 (Figure 11).

The time series of ΔTWS (Figure 10) for the entire period,
showing two distinct trends with different slope values, based on a
linear regression analysis of the average of all TWS solutions. The
first trend that characterizes Period I shows slightly negative
signals and is calculated to be −1.39 ± 1.35 mm/yr (Figure 10;
Table 1). In contrast, the second trend that characterizes Period II

shows highly negative signals and is calculated to be −8.38 ±
0.34 mm/yr (Figure 10; Table 1). The entire period shows
negative signals estimated to be −7.94 ± 0.22 mm/yr (Table 1).
A closer inspection at Figure 12 reveals that over the Saq aquifer,
the TWS has a lower negative value of −1.97 ± 0.67 mm/yr during
Period I and a higher negative value of −12.25 ± 0.39 mm/yr
during Period II. The entire period shows negative signals
estimated to be −11.36 ± 0.26 mm/yr (Table 2).

Temporal Variations in ΔGWS
The non-groundwater components, represented by ΔSMS, were
subtracted from the ΔTWS trend value to estimate ΔGWS
(Table 1; Figure 13). The variation in groundwater storage in
Saudi Arabia shows values ranging from −0.43 ± 0.59 to +5.09 ±
2.26mm/yr, with an average value of +1.56 ± 1.35mm/yr for Period
I. The GRACE-estimated GWS values for the Saq aquifer vary from

FIGURE 8 | Secular Color-coded GRACE-derived ΔTWS trend map throughout the entire period from averaging of the CRSmascon solution (A), and JPLmascon
solution (B) over the Saudi Arabia. Also showing the location of the Saq aquifer.

FIGURE 9 | Time series for the terrestrial water storage obtained from various GRACE sources over the Saudi Arabia.
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−1.97 ± 1.33 to +4.76 ± 2.4 mm/yr, with an average value of +1.17 ±
0.67mm/yr throughout period I (Table 2; Figure 14). However, the
depletion in groundwater storage show higher rates ranging from
−6.66 ± 0.58 to −4.72 ± 0.31 mm/yr, with an average value of−5.92 ±
0.34mm/yr for Period II over the entire study area. The temporal
variations in surface water reservoirs, represented by the constructed
dams, are estimated to be +0.13 ± 0.03mm/yr (Table 1) for Period
II. We also subtracted this trend from the GRACE-derived TWS

trend. As a result, the depletion rate of the aquifer is estimated to be
−6.05 ± 0.34 mm/yr for Period II (Table 1). This higher depletion is
caused by a large amount of groundwater extraction for
anthropogenic activity and a decrease in rainfall throughout the
study area after the start of the 2007 drought. This is also supported
by the GRACE-calculated GWS over the Saq aquifer, which reveals a
larger depletion rate during Period II, estimated at −10.16 ±
0.39mm/yr (Table 2; Figure 14).

FIGURE 10 | Time series for terrestrial water storage from averaging of themonthly GRACE spherical harmonic solutions (TWS-SH) andmascon solutions (TWS-M)
and their averaging (Avg-TWS) across the Saudi Arabia.

FIGURE 11 | Correlation coefficients (R) between ΔTWS data from averaging of the monthly GRACE spherical harmonic solutions and averaging of the mascon
solutions (A), monthly CSR spherical harmonic solution and monthly JPL spherical harmonic solution (B), CSR and JPL mascon solutions (C) over the Saudi Arabia
throughout the investigated period.
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Surface Water Flow
Figure 15 shows an elevation map of Saudi Arabia created from
ETOPO1 Global Relief Model. It can be seen that there is a
difference in altitude from less than 100 m in a zone extending
parallel to the Arabian Gulf and near the Emirates to more than
2,500 m in the southern part of the mountainous area near the
Red Sea. More than half of Saudi Arabia is occupied by the
Arabian–Nubian Shield, stretching parallel to the Red Sea coastal
area. This area has highlands ranging from 500 to 2,900 m with
dissected wadis, faults, and fissures. The mountainous highlands
of southwestern Saudi Arabia receive substantial precipitation
(Figure 3), which flows into the Arabian Gulf to the east. These
streams may recharge the fractured basal aquifers in the
southwest and the unconsolidated sands of Rub’ al Khali near
the Saudi–Omani and the Saudi–UAE borders. This is evident
from the positive GRACE signals in southern Saudi Arabia.
However, small areas can be cultivated in the narrow valleys
of the fractured basement. Moreover, the sandy soil of Rub’ al

Khali cannot be cultivated because the terrain is covered with
sand sheets and dunes up to 250 m high, interspersed by plains of
gypsum and gravel. The reddish-orange color of the sand is due to
the presence of feldspar.

Sediment Thickness
We extracted sediment thickness data from NOAA National
Geophysical Data Center (Divins, 2003) and created a
sediment thickness map for Saudi Arabia (Figure 16). It
can be seen that the sediment thickness varies from 0 m in
the Red Sea Hills to about 300 m in wadis that dissected those
hills. Groundwater aquifers are present in the northern,
eastern, and southeastern parts of the study area. The
thickness of sediments in northern and eastern Saudi
Arabia varies from about 1,000 m near the Red Sea Hills to
more than 4,000 m downstream of the eastern border and
more than 6,000 m in the eastern part of Rub’ al Khali. In this
region, the aquifers are quite thick and are subject to intense

FIGURE 12 | Time series for terrestrial water storage variation from various GRACE sources over the Saq aquifer and their averaging (Avg-TWS).

FIGURE 13 | Time series for the averaging groundwater storage variations from the monthly spherical harmonic and Mascon solutions over the whole study area.
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exploitation due to low precipitation and subsequent poor
recharge. According to the soil map of the Arabian Peninsula
developed by De Pauw (2002), the shallow stony soils overlying
the western mountainous highlands may be suitable for lateral
flow rather than vertical recharge of deep aquifers.

Recharge Rate
The recharge mechanism is highly dependent on topography and
soil composition (Wehbe et al., 2018). Most of the Arabian

Peninsula is covered with thin and poorly developed soils, rich
in gypsum, lime, and salts. These soils indicate that the area is
dominantly arid, and most of the area is covered with sand dunes.
Moreover, annual precipitation is less than 100 mm/yr (Figure 3)
throughout Saudi Arabia, except for some parts of the Red Sea
highlands. These indicate that Saudi Arabia receives little
recharge over the entire area, except for a few areas with
higher precipitation rates of good conditions.

Over-exploitation and agricultural development are primarily
controlling the GWS variation during the study period in the Saq
aquifer, assuming that the aquifer receives a low rate of

FIGURE 14 | Time series for groundwater storage variation estimated from the different GRACE sources over the Saq aquifer and their averaging (Avg-GWS).

FIGURE 15 | A map of the ground surface elevation based on a Digital
Elevation Model (DEM) of the entire study area. The Saq aquifer’s distribution
and the area’s stream networks are also shown.

FIGURE 16 | Sediment thickness map (m) in the study area.
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precipitation. The groundwater in the Saq aquifer flows eastward
following the slope from the low-sediment thickness area near the
Red Sea Hills (Figure 16) to the higher-sediment thickness area
near the Arabian Gulf. Natural discharge in the Arabian Gulf
could occur in inland sabkhas close to the Gulf (Sultan et al.,
2008). The unconfined zone in the recharge domains near to the
Red Sea hilly area was thought to provide modern recharge to the
Saq aquifer.

Eq. 2 was used to calculate the average recharge rate (Rn)

Rn � ΔGWS +Discharge (2)
The average groundwater extraction rate (8.00 km3/yr;

–21.39 mm/yr: Abunayyan, 2008) for each period was added
to its GWS trend to compute the annual recharge value for
the Saq aquifer (using Eq. 2). The natural discharge rate was
considered to be insignificant.

During the investigated period, the recharge rate for the Saq
aquifer was estimated to be +4.65 ± 0.10 km3/yr (+12.44 ±
0.27 mm/yr). During periods I and II, the Saq aquifer appears
to be receiving modern recharge rates of +8.44 ± 0.65 km3/yr
(+22.56 ± 0.67 mm/yr) and +4.20 ± 0.15 km3/yr (+11.23 ±
0.39 mm/yr), respectively (Table 2).

These recharge rates were computed using the aquifer average
discharge rate of 8.00 km3/yr (Abunayyan, 2008). Our findings
are consistent with those calculated for the Saq aquifer by Fallatah
et al. (2019), who showed that the Saq aquifer received a modern
recharge rate of +11.85 ± 0.22 mm/yr (+5.21 ± 0.10 km3/yr) using
GRACE data during the period of April 2002 to December 2016.

The observed TWS depletion across the whole study area and
the Saq aquifer is mostly due to increased anthropogenic activities
and groundwater extraction that cannot be compensated for by
groundwater flow and/or recharge rate.

Saudi Arabia is the world’s largest country without running
surface water and has one of the world’s highest water use rates.
Providing additional supplies of potable water for the Kingdom’s
growing population and economy has long been a national
priority for the desert kingdom. The total estimated volume of
the average annual recharge rate for the country was obtained by
adding the available groundwater withdrawal rate for Period II,
averaged for the years of 2007–2017 (– 22.48 ± 2.25 km3/yr;
−10.46 ± 1.05 mm/yr; FAO, 2022) to the to the GRACE-derived
ΔGWS rate using Eq. 2. For the groundwater withdrawal values, a
ten percent error estimate was used. The average annual recharge
was estimated to be +4.41 ± 1.10 mm/yr (+9.48 ± 2.37 km3/yr) for
the Saudi Arabia (Table 1). However, the country is experiencing
severe water shortages, according to the scarcity index (Smakhtin,
et al., 2004), and the majority of the country’s areas have been
intensively exploited to over-exploited groundwater. The
majority of this recharge rate happens in inaccessible areas
like the unconsolidated sands of the Rub’ al Khali in southern
Saudi Arabia and narrow wadies in the basement rocks that cover
most of eastern Saudi Arabia. Saudi Arabia should build more
water desalination plants and more dams for water collection in
the wadies to meet rising demand due to the country’s growing
population. Moreover, the country should increase water transfer
efficiency and reduce waste. Furthermore, more wastewater

treatment plants should be built to produce grey water, which
can be utilized to irrigate crops and be reused in industrial
processes.

Uncertainty Estimates
The uncertainty of the monthly variation of ΔGWS and its trend
is calculated using Eq. 3 according to independent error sources.
Finally, we applied a Student’s t-test to analyze the calculated
trend data of ΔGWS.

σGWS �
���������������
(σTWS)2 + (σSMS)2

√
(3)

where (σGWS), (σTWS), and (σSMS) represent the errors associated
with GWS, TWS, and SMS, respectively. The error in ΔGWS was
estimated from the errors associated with TWS and SMS
using Eq. 3.

CONSEQUENCES OF HEAVY
GROUNDWATER EXTRACTION

Several locally reported data were addressed in this section to
demonstrate the effects of excessive groundwater pumping.

Land Subsidence
The Saq sandstone aquifer is widely exposed in central and
northern Saudi Arabia (Figure 1). The aquifer has a large
subsurface extension with an area of about 31 × 104 km2 and
a thickness of 250–700 m (UN-ESCWA and BGR, 2013). The
main Saq aquifer accounts for 65% of the production, especially
in central Saudi Arabia. In central and northern Saudi Arabia,
groundwater levels are declining due to increased anthropogenic
activities and massive extraction of groundwater. As a result,
fractured cavities are formed underground, which are considered
to have a serious impact on the stability of the ground, such as the
occurrence of sinkholes and associated cracks and land
subsidence. Othman and Abotalib, (2019) found that intense
extraction of fossil groundwater causes land subsidence, collapse
features, and ground fracturing in central Saudi Arabia. However,
the massive extraction of groundwater cannot be balanced by the
small amount of recharge in the mountainous highlands.

Degradation of Water Quality
The concentration of different types of salts in the water
determines the water’s quality. Excessive groundwater
extraction from an aquifer can lead to water quality
degradation. As a result, it may be incompatible with a wide
range of applications. The average groundwater level in six
piezometric wells in the Saq aquifer decreased from 597 to
526 m above mean sea level between 2002 and 2013. (Al-
Naeem, 2014). The total groundwater salinity of the aquifer is
impaired in the unconfined zone due to excessive extraction,
which causes more mineralized water from lower depths to rise to
the surface (Al-Naeem, 2014). Over-irrigation and runoff losses
from irrigated regions cause saline drainage water to percolate
deeply, resulting in water quality degradation. The significant
positive correlation (R2 = 0.914–0.998) between borehole depth
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and water salinity in both the confined and unconfined zones of
the Saq aquifer demonstrates that groundwater quality
deteriorates with depth because salinity is higher at deeper
depths than at shallower depths (Al-Naeem, 2014).

CONCLUSION

During the study period (April 2002 to July 2016), two different
climatic periods were recognized based on the analysis of the
rainfall in Saudi Arabia: Period I (April 2002 to March 2006) with
a higher average annual precipitation (AAP) of 90 mm/yr and
Period II (April 2006 to July 2016) with a lower AAP of 72 mm/yr.
The integrated outputs showed that Saudi Arabia was subjected to
groundwater depletion after the drought and heavy groundwater
extraction starting in 2007. The ΔGWS rate was calculated to be
+1.56 ± 1.35 mm/yr for Period I, while higher ΔGWS depletion
rate was estimated to be −6.05 ± 0.34 mm/yr for Period II over the
Saudi Arabia, with an overall depletion rate of −5.33 ± 0.22 mm/
yr during the entire period. The average annual recharge for the
Saudi Arabia was estimated to be +9.48 ± 2.37 km3 (+4.41 ±
1.10 mm/yr) during Period II. The Saq aquifer was presumably
recharged at a rate of +4.65 ± 0.10 km3 (+12.44 ± 0.27 mm/yr)
during the entire investigated period (April 2002-July 2016),
using an annual groundwater extraction rate of 8 km3 from
the aquifer as a constant. However, it does not appear that

water abstraction in the aquifer is balanced by groundwater
flow and recharge from the highlands. Moreover, the Saq
aquifer received only 63.3 mm/yr of rainfall over the entire
period. In arid areas, the combined GRACE and GLDAS
datasets provide a more precise assessment of water mass
fluctuations.
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