
A New Numerical Procedure for the
Excavation Response in
Mohr–Coulomb Rock Mass Exhibiting
Strain-Softening Behavior
Kai Guan, Quanyun Zhang, Honglei Liu* and Wancheng Zhu

Center for Rock Instability and Seismicity Research, Northeastern University, Shenyang, China

A new numerical procedure for calculating the excavation response of the Mohr–Coulomb
rock mass considering strain-softening behavior is proposed in this article. In this method,
the plastic zone of the strain-softening rock mass is divided into the sufficient small plastic
concentric annulus with constant radial stress increment, where the stress and strain
distributions are characterized based on the existing analytical solutions of the
brittle–plastic rock in the plastic zone. According to the equilibrium equation, geometric
equation, and Mohr–Coulomb yield criterion, the stresses of each annulus can be
calculated, and the explicit form of the displacement can also be determined by
invoking the non-associated flow law and Hooke’s law. On this basis, the excavation
disturbance-induced response and the ground reaction curve (GRC) in the strain-softening
rock mass can be calculated by iterative computation. The proposed method is verified by
comparing both the numerical simulation results and the existing theoretical solutions.
Extensive computations are then carried out to clarify some practical questions, including
the effect of ground condition, the computation efficiency, and the engineering
applicability. It is found that the proposed numerical procedure behaves more
efficiently and accurately than the previous one for the strain-softening rock mass. This
might, therefore, provide convenience and benefits from a computation standpoint for the
preliminary design of underground openings in rock masses with slight deformation.

Keywords: strain-softening behavior, ground reaction curve, excavation disturbance, slight deformation, wall
convergence

INTRODUCTION

The prediction of the excavation response for the surrounding rock plays an important role in
tunnel construction and support design (Huang et al., 2021; Qingke et al., 2021), and the
convergence–confinement method (CCM) provides an effective way for analyzing the rock
deformation by the ground reaction curve (GRC) and support capacity, in combination with the
longitudinal deformation profile (LDP) of a tunnel. For the average quality rock mass with a
geological strength index of between 30 and 60, the strain-softening behavior in the post-peak
stage of the stress–strain curve is common. Obtaining the excavation-induced ground response
in strain-softening rock mass remains a great interest to practical engineering, since it is
beneficial to the determination of the rock-support interaction process within the framework of
the CCM. The establishment of a proper prediction method for stability and deformation
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evolution of rock material is beneficial to the engineering
design and disaster control (Cui et al., 2021; Li H, et al.,
2022; Zhou et al., 2021; Li, et al., 2021a; Li, et al., 2021b; He
and Kusiak 2018).

At present, many scholars have theoretically performed
research on the elastic–plastic solutions of circular tunnels.
When studying the post-peak mechanical behavior based on
the elastic–plastic mechanics theory, the elastic–perfectly
plastic, elastic–brittle–plastic, and strain-softening rock mass
models are often adopted. On the basis of the previous studies
on post-peak mechanical behavior, many factors have been
considered. For an elastic–perfectly plastic model, Su et al.
(2018) have presented analytical solutions for the stress and
the displacement of a circular opening compatible with the
Drucker–Prager yield criterion. The analysis considered the
interaction between the ground response and the support
characteristic. Kabwe et al. (2020) have presented solutions
accounting for non-circular tunnels and intermediate principal
stress based on Mohr–Coulomb (M–C) and Hoek–Brown (H–B)
criteria. For an elastic–brittle–plastic model, Wang et al. (2012)
have proposed stress and displacement distribution solutions
around a circular tunnel in an M–C rock mass. Zareifard and
Fahimifar (2016) have considered the damaged zone based on
Park’s research in elastic–brittle–plastic rock masses. Among the
three models, the strain-softening model is most widely used in
practical engineering, and its special cases can be considered as
the elastic–perfectly plastic and elastic–brittle–plastic models.
Many scholars (Song and Rodriguez-Dono 2021; Cui et al.,
2019; Wang and Zou 2018; Zareifard 2021) have used plastic
variables, which characterize the strength deterioration for
examining the GRC of a strain-softening rock mass.
Meanwhile, there have been many strain-softening studies
considering over-excavation and support systems (Song and
Rodriguez-Dono 2021; Xue et al., 2021). Li et al. (2015) have
used a simple strain-softening model with a brittleness coefficient
to study the plastic radius, calculated using some assumptions
and simplifications of non-expansion conditions.

Many studies have focused on numerical solutions in
strain-softening rock masses based on the finite difference
method. Lee and Pietruszczak (2008) have deduced numerical
solutions in M–C and H–B rock masses based on the finite
difference method. Compared with the work of Brown
et al(1983), Lee and Pietruszczak (2008) have divided the
plastic zone into assuming a constant radial stress between
adjacent annuli instead of a constant radius. Wang et al. (2010)
have proposed an analytical solution for strain-softening rock
masses and established the corresponding program by dividing
the strain-softening process into some elastic–brittle–plastic
processes. Shen and Gu (2021) have calculated the
displacement of a tunnel after excavation by a layer-wise
summation method, which can provide accurate predictions.
In order to investigate the influence of intermediate principal
stress, Li J, et al. (2022) proposed a finite difference method to
calculate the excavation response in Drucker–Prager rock
mass exhibiting strain-softening behavior. Wang et al.
(2021) developed a strain-softening numerical procedure
considering the effects of confinement-dependent

characteristic and the generalized 3D Hoek–Brown strength
criterion. Yu-ming et al. (2021) established a numerical
solution for strain-softening rock mass under three-
dimensional principal stress condition, which is validated
by numerical simulation results. Cui et al. (2015) have
proposed a multistep brittle–plastic model with the
assumption that the material properties follow a piecewise
linear correction with plastic shear strain and proposed the
critical value of shear modulus based on H–B and M–C yield
criteria. Based on the previous studies, Zou et al. (2017) have
proposed a new method for calculating the GRC in the strain-
softening rock for a circular tunnel which starts with a
constant radius increment and the plastic radius obtained
by linear interpolation. However, the accuracy of this
method depends on the initial plastic radius, and it is not
convenient to calculate the stress field of each annulus. More
recently, Zhang et al. (2021) and Guan et al. (2018) have
defined the normalized radii for the plastic zone and
proposed a novel numerical procedure for strain-softening
rock mass, which provides convenience for obtaining GRC.
Ghorbani and Hasanzadehshooiili (2019) have proposed
strain-softening numerical procedure, considering unified
strength criteria.

To improve calculation accuracy and efficiency, a new but
simple method is developed here for calculating the ground
response in an M–C rock mass exhibiting strain-softening
behavior. First, the problem definition and the basic theory
are introduced. During the theoretical derivation, the plastic
zone is divided into some annuli, with the thickness
determined by a constant radial stress increment. Then, the
analytical solution of each annulus is obtained according to the
equilibrium equation, geometric equation, and M–C yield
criterion. The method is verified by numerical simulation.
Finally, the effects of ground conditions, the computation
efficiency, and the engineering applicability are examined.

FIGURE 1 | Mechanical model for a circular tunnel in strain-softening
rock mass.
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PROBLEM DEFINITION

A circular tunnel of radius r0 is excavated under the plane strain
condition (see Figure 1). The rock mass is considered to be a
continuous, homogenous, isotropic, and initially elastic before the
excavation disturbance. Here, a hydrostatic stress σ0 is imposed
around the rock, and there is an internal support pressure pi on
the inner tunnel surface. When the internal support pressure pi is
lower than a critical value pic, a plastic zone appears around the
tunnel. When the plastic zone develops, the strength parameters
gradually decrease.When strain-softening behavior is considered,
the plastic zone is divided into strain-softening and residual
zones, and the interfacial radius between them is Rs.

The mechanical behavior and constitutive relationship of the
rock mass can be determined by the definition of the plastic
internal variable η, which can be calculated according to the
plastic strain, expressed as follows (Zou, Li, and Wang 2017):

η � εpθ − εpr , (1)
where εpθ and εpr are the circumferential and radial plastic strain,
respectively.

The strength parameters of the strain-softening rock mass are
calculated according to the bilinear function as follows (Lee and
Pietruszczak 2008; Zou, Li, and Wang 2017):

ω(η) � ⎧⎪⎨⎪⎩
ωp − (ωp − ωr) η

ηc
, 0< η< ηc

ωr, η≥ ηc
, (2)

where ω denotes a strength parameter, such as cohesion force c,
friction angle φ, and dilation angle ψ; ηc denotes the critical
plastic internal variable that the strength parameter transforms
from strain-softening to the residual state; and subscripts p and r
denote peak and residual values, respectively. In order to simplify
the mechanical analysis, the deformation parameters (such as
rock stiffness) are assumed to be constant once yielded.

The M–C yield criterion shows the relationship between the
stress σθ and σr as follows:

σθ � α(η) · σr + Y(η), (3)
where α(η) � 1+sinφ(η)

1−sinφ(η) and Y(η) � 2c(η)cosφ(η)
1−sinφ(η) ,respectively.

To simplify the subsequent theoretical derivation and
numerical programming, the dimensionless stress ~σ is defined
as follows:

~σ � 1
E
(σ + Y(η)

α(η) − 1
), (4)

where E is the elastic modulus.
Combining Eqs 3, 4, the yield surface in the plastic zone can be

expressed as follows:

~σθ − α(η) · ~σr � 0, (5)
When the non-associated flow rule is adopted, the plastic

potential function is given by the following equation:

G(~σθ, ~σr, η) � ~σθ − β(η)~σr, (6)

where β(η) denotes the coefficient of dilation, which is expressed
as follows:

β(η) � 1 + sinψ(η)
1 − sinψ(η), (7)

THEORETICAL DERIVATIONS

The displacement and stress of the surrounding rock are derived,
and the calculation is progressed and equations are presented in
the following.

Solution for the Plastic Zone
To be convenient for the theoretical derivation and numerical
programming of the plastic zone in the following parts, the
following dimensionless radius ρ and dimensionless
displacement U are defined as follows:

ρ � r

Rp
, U � u

Rp
, (8)

The strains can be expressed in terms of the previous
dimensionless radial displacement and radius.

FIGURE 2 | Schematic figure of numerical calculation strategy: (A)
plastic region divided into the finite number of annuli and (B) stress boundary
of the jth annulus.
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εr � dU

dρ
, εθ � U

ρ
, (9)

The stress–strain field of the surrounding rock is solved by
the finite difference method, with the plastic zone of the
surrounding rock divided into n concentric annuli, and the
stress increment Δσr is maintained constant between adjacent
annuli (see Figure 2A). The radial stress at the elastic–plastic
interface is σr(1), while the stress at the tunnel wall is σr(n+1).
The locations at the outer and inner boundaries within the j th
annulus correspond to the dimensionless radius ρ(j+1) and ρ(j),
respectively (see Figure 2B), and the radial stresses are
denoted by σr(j+1) and σr(j), respectively. Therefore, the
increment of radial stress Δσr can be expressed as follows:

Δσr � σr(n+1) − σr(1)
n

, (10)

where σr(n+1) represents the internal support stress pi and σr(1) is
equal to the critical support stress pic.

When the internal support pressure is lower than the critical
value pic, a plastic zone appears around the tunnel. For the rock
mass which obeys the M–C yield criterion, the critical value pic is
calculated by the following equation:

pic � 2σ0 − Yp

αP + 1
, (11)

where Yp � 2cpcosφp

1−sinφp
and αp � 1+sinφp

1−sinφp
.

The radial stress at the inner radius of each annulus can be
solved as follows:

σr(j+1) � σr(j) + Δσr, (12)

For the jth annulus in the presented strain-softening model
here, if the annulus number is large enough, the stresses within
the jth annulus can be conveniently obtained by virtue of the
existing brittle–plastic closed form solution (Park and Kim 2006),
thus leading to the following stress expressions:

σr(j) � − Y(j)
α(j) − 1

+⎛⎝σr(j+1) +
Y(j)

α(j) − 1
⎞⎠⎛⎝ r(j)

r(j+1)
⎞⎠(α(j)−1)

,

(13)

σθ(j) � −
α(j) · Y(j)
α(j) − 1

+⎛⎝σr(j+1) +
Y(j)

α(j) − 1
⎞⎠⎛⎝ r(j)

r(j+1)
⎞⎠(α(j)−1)

+ Y(j),
(14)

where Y(j) � 2c(j)cosφ(j)
1−sinφ(j)

and α(j) � 1+sinφ(j)
1−sinφ(j)

.
For convenience in the programming, the dimensionless radial

and circumferential stress within the jth annulus can be also
expressed integrating Eqs 13, 14 and Eqs 4, 8 as follows:

~σr(j) � ~σr(j+1)⎛⎝ ρ(j)
ρ(j+1)

⎞⎠α(j)−1

, (15)

~σθ(j) � α(j)~σr(j) � α(j)~σr(j+1)⎛⎝ ρ(j)
ρ(j+1)

⎞⎠α(j)−1

, (16)

where ~σ is obtained according to Eq (4) with strength parameters
(Y and α) corresponding to those at ρ � ρ(j).

Then, the dimensionless radius ρ(j+1) can be derived using Eq
(15) as follows:

ρ(j+1) � ρ(j)⎛⎝ ~σr(j)
~σr(j+1)

⎞⎠ 1
α(j)−1

, (17)

If n is large enough, the displacement within the jth plastic
annulus can be given in a way similar to the brittle–plastic
analytical expression (Park and Kim 2006) combining the non-
associated flow law with Hooke’s law; that is,

u(j+1)
r(j+1)

� 1
2G

⎡⎢⎢⎢⎢⎣ U1(J+1)
β(j) + 1

+ U2(j+1)
β(j) + α(j)

− U1(j+1)
β(j) + 1

⎛⎝ r(j)
r(j+1)

⎞⎠β(j)+1

− U2(j+1)
β(j) + α(j)

⎛⎝ r(j)
r(j+1)

⎞⎠β(j)+α(j)

+ 2G⎛⎝ r(j)
r(j+1)

⎞⎠β(j) u(j)
r(j+1)

⎤⎥⎥⎥⎥⎦,
(18)

where U1(j+1) � (1 + β(j))(1 − 2μ)(A − σ0), U2(j+1) � [(1 − μ −
β(j)μ) + (β(j) − β(j)μ − μ)α(j)]B, A � −Y(j)/(α(j) − 1), and B �
pi + Y(j)

(α(j)−1).
To simplify the numerical programming, the dimensionless

radial displacement at ρ � ρ(j+1) is given by the following
equation:

U(j+1) �
1
2G

ρ(j+1)⎡⎢⎢⎢⎢⎣Ω1(j+1)
β(j) + 1

+
Ω2(j+1)

β(j) + α(j)

− Ω1(j+1)
β(j) + 1

⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j)+1

−
Ω2(j+1)

β(j) + α(j)
⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j)+α(j)

+ 2G⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j) U(j)
ρ(j+1)

⎤⎥⎥⎥⎥⎦, (19)

where Ω1(j+1) � (1 + β(j))(1 − 2μ)(−E~σ0) and Ω2(j+1) � [(1 −
μ − β(j)μ) + (β(j) + β(j)μ − μ)α(j)](E~σr(j+1)).

The circumferential strain εθ(j+1) and the radial strain εr(j+1)
within the j th plastic annulus is obtained by Eq (9) as follows:

εθ(j+1) �
U(j+1)
ρ(j+1)

(20)

and
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εr(j+1) �
dU(j+1)
dρ(j+1)

� 1
2G

⎡⎢⎢⎢⎢⎣Ω1(j+1)
β(j) + 1

+ α(j) ·Ω2(j+1)
β(j) + α(j)

+
β(j) ·Ω1(j+1)

β(j) + 1
⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j)+1

+
β(j) ·Ω2(j+1)
β(j) + α(j)

⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j)+α(j)

−2G · β(j)⎛⎝ ρ(j)
ρ(j+1)

⎞⎠β(j)+1U(j)
ρ(j)

⎤⎥⎥⎥⎥⎦, (21)

According to Hooke’s law, the radial and circumferential
elastic strain at ρ � ρ(j+1) can be expressed as follows:

εe
r(j+1) � (1 + μ)[(1 − μ)(~σr(j+1) − ~σ0) − μ · (~σθ(j+1) − ~σ0)]

(22)
and

εe
θ(j+1) � (1 + μ)[(1 − μ)(~σθ(j+1) − ~σ0) − μ · (~σr(j+1) − ~σ0)],

(23)
Since the radial and circumferential strains are divided into

elastic and plastic parts, combined with Eq (1), the
plastic internal variable η at ρ � ρ(j+1) can be expressed as
follows:

η(j+1) � (εθ(j+1) − εe
θ(j+1)) − (εr(j+1) − εe

r(j+1)), (24)

Then, the strength parameters at ρ � ρ(j+1) can be updated
according to Eq (2).

The radial displacement and the radius at ρ � ρ(j+1) can be
obtained by Eq (8) as follows:

u(j+1) � Rp · U(j+1) (25)
and

r(j+1) � Rp · ρ(j+1), (26)

When j � n, r � r(n+1) � r0 at ρ � ρ(n+1). Thus, the plastic
radius can be determined as follows:

Rp � r0
ρ(n+1)

, (27)

where ρ(n+1) is solved iteratively by Eq (17).
The wall convergence displacement can be expressed as

follows:

uα � u(n+1) � Rp · U(n+1), (28)
The deformation within the plastic zone can be computed by

combining Eqs 25–27.

Solution for the Elastic Zone
The tunnel surrounding rock is elastic in the initial stage of
excavation, and according to the research of Vrakas and
Anagnostou (2014) and Yu and Houlsby (1995), the response
in the elastic zone outside the plastic zone can be expressed as
follows:

~σr � ~σ0 − (~σ0 − ~pic)(Rp/r)2
~σθ � ~σ0 + (~σ0 − ~pic)(Rp/r)2

u � (1 + μ)(~σ0 − ~pic)(Rp/r)2r, (29)
Once the plastic radius Rp is solved via Eq (27), the stresses

and displacement in the elastic zone can be all obtained by
Eq (29).

Calculation Progress
A flow chart summarizing the calculation process for obtaining
the excavation response is shown in Figure 3, and the details are
presented in the following steps:

Step 1: The basic parameters are set first, including the
excavation radius r0, in situ hydrostatic field stress σ0,
internal support stress pi, critical plastic internal variable
ηc, and the peak and residual strength parameters of the
rock mass ωp and ωr. Moreover, accounting that the
calculation process starts from the elastic–plastic interface,
the initial values for the computation are set as: ω1 � ωp,
σr(1) � pic, ρ1 � 1, and η1 � 0.

Step 2: The thickness of each plastic annulus is determined by
a constant radial stress increment as shown in Eq (10).
Therefore, the radial stress σr(j+1) at the dimensionless inner
radius ρ(j+1) of the jth annulus is calculated using Eq (12),
while the dimensionless radius ρ(j+1) is solved by Eq (17).

Step 3: The dimensionless displacement within each annulus is
obtained in a way similar to the brittle–plastic analytical
expression. The total strain within each annulus is solved
using Eq (9). The elastic strain is calculated using Hooke’s
law, and plastic strain can be then determined.

Step 4: The plastic internal variable ηj+1 at ρ � ρj+1 is calculated
using Eq (24). The mechanical behavior of the rock mass is then
determined by comparing the plastic internal variable ηj+1 with
critical plastic internal variable ηc. The strength parameters of
each annulus are updated using Eq (2).

Step 5: Set j � j + 1 and repeat the previous steps n times.

Step 6: When j � n + 1, the plastic radius is determined by Eq
(27). The displacement and stresses of each annulus in the
plastic zone are calculated by Eq (25) and Eqs 15, 16,
respectively.

Step 7: The stresses and displacement in the elastic zone are
calculated according to Eq (29).
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VALIDATION OF THE NUMERICAL
PROCEDURE

Numerical Simulation Verification
The GRC obtained by the proposed method is compared with the
numerical simulation results from COMSOL Multiphysics to
verify the validity of the numerical procedure. The parameters
provided by Zou et al. (2017) are adopted, with r0 = 3 m, σ0 =

20 MPa, pi � 0 MPa, E = 10 GPa, μ = 0.25, cp = 1MPa, cr =
0.7 MPa, φp = 30°, φr = 22°, ψp = 3.75°, and ψr = 3.75°.

The two-dimensional rotational axisymmetric numerical
model is shown in Figure 4. The in-plane axial in situ stress q
is taken as 2μσ0 to satisfy the stress boundary conditions in the
plane strain problem, which is exerted on top of the model. The
right boundary is restrained by the confining stress σ0, while the
bottom end set as a roller, and left boundary is taken as a
symmetrical boundary. The strain-softening constitutive model

FIGURE 3 | Flow chart of the calculations.

FIGURE 4 | Two-dimensional axisymmetric numerical model. FIGURE 5 | Comparison results with numerical simulation.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8727926

Guan et al. Numerical Procedure for Strain-Softening Rockmass

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


is used in the numerical simulation and the plastic zone radius Rp

is obtained by measuring the radius for η> 0.
The comparison results between the numerical simulation and

the presented method with n � 50 and ηc = 0.008 are shown in
Figure 5. It can be observed that, the stresses and displacement
distribution of the strain-softening rock are in good agreement
with the numerical simulation results, which indicates that the
proposed numerical procedure is capable of predicting the
ground response accurately.

Theoretical Verification
The procedure result is also compared with the work of Lee
and Pietruszczak (2008). The relevant parameters are: r0 = 2.5 m,
σ0 = 37.5 MPa, n � 50, E = 36.5 GPa, μ = 0.25, cp = 3.637 MPa,
cr = 1.878 MPa, φp = 29.52°, φr = 20.64°, ψp = 7.38°, ψr = 7.38°,
and ηc � 0.1190. Figure 6 shows that the GRC obtained by the
procedure is perfectly consistent with that by Lee and

Pietruszczak (2008), which emphasizes the effectiveness of the
proposed method in analyzing the excavation response.

ANALYSIS OF THE EXCAVATION
RESPONSE

This section examines the influence of some parameters on the
ground response. The parameters are as follows: r0 = 2.5 m, σ0 =
37.5 MPa, E = 36.5 GPa, μ = 0.25, cp = 3.637 MPa, cr =
1.878 MPa, φp = 29.52°, φr = 20.64°, ψp = 7.38°, ψr = 7.38°,
and ηc � 0.1190.

Influence of the Annulus Number
Figure 7 shows the GRCs under different annulus numbers in the
plastic zone. It can be seen that the results are almost identical and
a stable numerical solution can be achieved, despite of a quite

FIGURE 6 | Comparison with theoretical solution of Lee and
Pietruszczak (2008).

FIGURE 7 | Influence of the annulus number.

FIGURE 8 | Influence of the dilatancy angle.

FIGURE 9 | Influence of the elastic modulus.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8727927

Guan et al. Numerical Procedure for Strain-Softening Rockmass

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


small n = 50 assumed. It means that a rapid numerical
convergence can be expected for the proposed procedure,
which is beneficial in providing an accurate but a simple
method in a preliminary tunneling design. For the purpose of
ensuring the speed and accuracy of numerical calculation, the
annulus number n in the plastic zone is taken as 50 in the
following parts.

Influence of the Dilatancy Angle
In order to examine the influence of the dilatancy angle on
ground response, three cases are compared, and those are ψp �
ψr � 15°, ψp � ψr � 7.38°, and ψp � ψr � 0°. As shown in
Figure 8, the rock displacement increases with the dilatancy
angle, and it tends to be identical for big support pressure, which
can be attributed to the pure elastic response in far field that is
independent of the rock dilatancy.

Influence of the Elastic Modulus
Figure 9 shows the influence of the elastic modulus E on GRC. It
can be seen that the elastic modulus plays an important role on
ground response. More specifically, the poorer quality of rock, the
higher the displacement then more easily the rock mass deforms.
Therefore, for the rock mass involving under adverse conditions,
cautions should be paid due to the high squeezing potential and
large deformation possibility.

DISCUSSION

1) Zou et al. (2017) established the first strain-softening
numerical procedure for GRC by resorting to existing
analytical solutions, which is similar to the present method,
so it would be beneficial here to discuss the present method
with respect to that by Zou et al. (2017). In their approach, the
computation starts with the assumption of constant radius
increment within the plastic zone instead of constant radial
stress increment in this study, which leads to the necessity to
determine the actual radius Rp of the plastic zone based on a
linear interpolation strategy in combination with the finite
difference analysis. Despite that, this manipulation makes the
calculation of GRC convenient, the accuracy and efficiency
highly depend on not only the annulus number n but also the
initially assumed value of the plastic radius and its increment
ΔR, which may bring negative influence on the robustness of
procedure. Moreover, the stress and displacement
distributions in the surrounding rock are also difficult to be
determined as stated by Zou et al. (2017), which makes the
analysis of the fictitious support pressure and the rock-
support interaction using the convergence–confinement
method quite inconvenient. Conversely, our numerical
procedure starts with constant radial stress increment
assumption (see Equation 10), and the ground response
including GRC and stresses and displacement can be all
solved for without additional variables required except the
annulus number, n.

In order to investigate the computation efficiency and
accuracy, comparison results are given for the
elastic–brittle–plastic rock mass. Table 1 lists the basic
parameter values, and Table 2 shows the computation data by
different methods. It can be observed that, the efficiency and
accuracy of procedure by Zou et al. (2017) varies with plastic
radius increment ΔR and annulus number n, while the present
method in this study shows better accuracy and convergence,
accounting that the results are perfectly consistent with the
analytical solutions even when the value of n is small.
Moreover, the distributions of stresses and displacement in the

TABLE 1 | Basic parameters for the elastic–brittle–plastic rock mass (Zou, Li, and
Wang 2017).

Parameters Hard rock Soft rock

Tunnel radius r0 (m) 1 1
Hydrostatic in situ stress σ0 (MPa) 1 1
Internal support stress pi (MPa) 0 0
Elastic modulus E (MPa) 50 5
Poisson’s ratio μ 0.2 0.2
cp (MPa) 0.173 0.276
cr (MPa) 0.061 0.055
φp (°) 55 35

φr (°) 52 30
ηc 1e−10 1e−10

TABLE 2 | Calculation results for different elasto-plastic analysis methods.

Calculation results by Zou, Li, and Wang (2017) This study Analytical solutions (Park
and Kim 2006)

Rp/r0 uE/r0σ0 Rp/r0 uE/r0σ0 Rp/r0 uE/r0σ0

ΔR/r0 = 0.5 ΔR/r0 = 0.2 ΔR/r0 = 0.1 ΔR/r0 = 0.05 ψ � 0° ψ � 30° ψ � 0° ψ � 30° ψ � 0° ψ � 30°

Hard rock
n = 500 1.332 1.170 1.153 1.144 1.588 2.083 1.144 1.586 2.080 1.143 1.586 2.080
n = 200 1.332 1.170 1.152 1.144 1.588 2.080 1.144 1.586 2.080
n = 100 1.332 1.170 1.152 1.144 1.587 2.081 1.144 1.586 2.080
n = 50 1.331 1.169 1.150 1.142 1.576 2.061 1.144 1.586 2.080

Soft rock
n = 500 1.812 1.764 1.761 1.759 4.031 12.218 1.762 4.044 12.303 1.761 4.044 12.30
n = 200 1.808 1.761 1.757 1.755 4.009 12.085 1.762 4.044 12.303
n = 100 1.802 1.755 1.751 1.749 3.977 11.886 1.762 4.044 12.303
n = 50 1.790 1.743 1.738 1.736 3.907 11.470 1.762 4.044 12.303
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surrounding rock can be all obtained based on our numerical
procedure, as shown in the previous Figure 5.

2) As shown in Figure 9, when the rock stiffness is low,
significant deformation can be observed, with the wall
convergence even reaching up to half of the designed
radius r0, which means that the undeformed (initial) and
the deformed (current) tunnel configuration differs
remarkably. This phenomenon can be magnified in weak
rocks with high deformability and low strength, which
makes the calculated wall convergence irrational within the
framework of the infinitesimal strain theory adopted in this
article, accounting that a slight configuration difference
observed in tunneling is one of the main prerequisites. In
fact, as emphasized by Vrakas and Anagnostou 2014; Vrakas
and Anagnostou 2015; Vrakas 2016 and Guan et al., 2018,
2020a, 2020b;; Guan, Zhu, and Zhang 2021, when tunneling
through rock masses under squeezing conditions with strains
exceeding 10%, the characteristic of geometric non-linearity
should be taken into consideration and the large deformation
elasto–plastic theory is recommended. Nevertheless, our
numerical procedure remains sufficiently accurate and high
efficiency for the plane strain excavation problem, as long as
the wall convergence rate is lower than 10%, and this aim
ought to be kept in mind.

CONCLUSION

A new numerical procedure is presented to analyze the
excavation-induced response in a strain-softening rock
mass. During the calculation process, the plastic zone is
divided into finite annuli, and thickness is determined by a
constant radial stress increment. The ground behavior in the
plastic zone is obtained explicitly by virtue of the existing
analytical solutions of the brittle–plastic rock, which makes the

derivation and calculation simple but effective. The
comparison results with existing studies and numerical
simulation show that the proposed method behaves more
efficiently and accurately than the previous numerical
procedure for strain-softening rock mass, and the ground
response including GRC and stresses and displacement can
be all calculated conveniently. However, more attention should
be paid when the proposed strain-softening numerical
procedure based on the infinitesimal strain theory is applied
to a practical problem involving in large deformations with
wall convergence over 10%.
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