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Based on the in situ data of the soil moisture-observation networks established

atMaqu, Naqu, Ali, and Shiquanhe (Sq) on the Tibetan Plateau (TP), and using five

evaluation indices [Pearson correlation coefficient (R), root mean square error

(RMSE), mean deviation (bias), standard deviation ratio (SDV), and unbiased

RMSE (ubRMSE)], the applicability of soil moisture datasets [COMBINED,

ACTIVE, PASSIVE, ERA5, ERA5-Land (LAND), ERA-Interim (INTERIM), CLSM,

and NOAH] was comprehensively evaluated. The results showed that, at the

observation-network scale, ACTIVE exhibited the best applicability in Maqu (R =

0.704, ubRMSE = 0.040m3/m3), COMBINED performed best in Naqu (R =

0.803, bias = 0.016 m3/m3), LAND displayed the best consistency with

observations in Ali (R = 0.734, bias = −0.035 m3/m3), and ERA5 not only

showed the best performance in Sq (R = 0.793, bias = −0.037 m3/m3) but

also exhibited good results in the other three observation networks (R >0.6). In a

smaller-scale evaluation in Maqu, ACTIVE performed best, followed by ERA5.

The COMBINED and PASSIVE products had serious gaps in Ali and Sq, and had

the worst applicability in the western TP. In conclusion, considering the

correlation results and temporal and spatial continuities, ERA5 is the most

suitable soil moisture dataset for the TP.
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1 Introduction

Soil moisture is not only an important variable in Earth’s climate system (Wu and

Dickinson, 2004), but it is also a key parameter regulating the exchange of energy and

water between the atmosphere and land surface (Liu et al., 2019). It is widely used in global

climate system simulations, numerical weather forecasts, climate predictions, land surface
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runoff forecasts, hydrological modeling, and drought/flood

monitoring (Massari et al., 2014; Hunt and Turner, 2017).

However, these practical applications require soil moisture

data with a high spatial and temporal resolution as well as

great accuracy (Zheng et al., 2018a). There are few global soil

moisture-observation stations, since it is unpractical to build a

high-density global soil moisture-observation network over a

short time. In addition, due to the strong spatial heterogeneity of

land surfaces, soil moisture observational data can only represent

information at a very small spatial scale, and cannot accurately

reflect large-scale soil moisture information (Crow et al., 2012).

To bridge the gap, researchers have exerted great efforts on the

development of various alternative soil moisture data methods,

including re-analysis data, land surface model data, and satellite

remote sensing products.

The global atmospheric re-analysis dataset published by the

European Centre for Medium-Range Weather Forecasts

(ECMWF Reanalysis, or ERA) is commonly known as ERA-

Interim (hereafter, INTERIM). The dataset has a high spatial and

temporal resolution with atmospheric dynamics and physical

characteristics (Zhang et al., 2018), and contains four layers of

soil moisture. Previous evaluations have claimed that the

INTERIM soil moisture performed better in deep soil than in

surface soil, and that it generally overestimated surface soil

moisture (Albergel et al., 2012; Albergel et al., 2013; Jing

et al., 2018). In 2018, the ECMWF released ERA5, the global

fifth-generation atmospheric re-analysis dataset, followed by the

ERA5-Land (hereafter, LAND) land re-analysis dataset in 2020,

both of which contained four layers of soil moisture with a higher

spatiotemporal resolution. The Global Land Data Assimilation

System (GLDAS) data published by the National Aeronautics

and Space Administration (NASA) are among the most

representative of the land surface model soil moisture data

(Zheng et al., 2015; Zheng et al., 2018b). With driving land

surface models, the GLDAS uses validated precipitation datasets

as inputs, which reduces many uncertainty errors caused by

observed precipitation. However, the accuracy of the GLDAS soil

moisture data is affected by the defects in the land surface models

(Chen et al., 2013). More recently, NASA has updated the

GLDAS dataset (GLDAS v2), which now contains three sets

of soil moisture data, although the quality of these needs to be

verified.

Satellite remote sensing is considered to be the most

promising method for spatiotemporal monitoring of soil

moisture (Ulaby et al., 1982; Li et al., 2018; Yang et al., 2020).

Over the past few decades, researchers have developed many soil

moisture products based on satellites or sensors, such as those

from the Advanced SCATterometer (ASCAT) and the Soil

Moisture and Ocean Salinity (SMOS) satellite (Gloersen, 1981;

Wagner et al., 1999; Paloscia et al., 2001; Bindlish et al., 2003;

Kawanishi et al., 2003; Gaiser et al., 2004; Bartalis et al., 2007;

Naeimi et al., 2009; Wagner et al., 2012; Al-Yaari et al., 2014;

Zheng et al., 2018c; Liu et al., 2019; Zhu et al., 2019). In general,

passive microwave soil moisture products have a greater

temporal resolution and are less influenced by surface

roughness disturbances, while active microwave products are

more sensitive to soil moisture (Jiang et al., 2017; Li et al., 2018;

Ruqing Zhang et al., 2021). In order to combine the advantages of

both active and passive microwave products, the European Space

Agency’s soil moisture climate change initiative (ESA CCI soil

moisture) uses a fusion algorithm to integrate soil moisture

retrieved from various satellites into a soil moisture climate

dataset (Alexander et al., 2019); ESA CCI soil moisture

product v4.7, released in 2020, was used in this article.

It is very important to assess the accuracy and reliability of

these datasets before use (Zeng et al., 2015). Previous assessments

have been mainly conducted in Europe (Albergel et al., 2013; Al-

Yaari et al., 2014), Australia (Draper et al., 2009), and the

United States (Pan et al., 2012; Leroux et al., 2014). However,

fewer verification activities have been conducted in the Tibetan

Plateau (TP) region (Su et al., 2011). The TP, also known as the

“third pole,” is one of the most important geographical

components of the Earth’s climate system (Qiu, 2008). Soil

moisture regulates the variation of water and heat between

land and atmosphere over the TP, which has an important

impact on the climate in East Asia and even the global

monsoon (Charney and Eliassen, 1949; Xu et al., 2008; Wu

et al., 2012). Due to the restrictions of its geographical

conditions, there is a shortage of observation data of the soil

moisture in the TP (Crow et al., 2012). As a result, very few

evaluation activities have been conducted in this region. There is

an urgent need to evaluate the new data, with the expectation that

the evaluation results can help users better understand the status

of the products and hence improve their practical application, as

well as provide a reference for product developers to develop or

improve data from the TP or similar areas.

In this article, using TP soil moisture observation network

data (Su et al., 2011), the applicability of the INTERIM,

ERA5, LAND, GLDAS v2, and ESA CCI v4.7 soil moisture

products is evaluated. The TP soil moisture observation

networks are located at Maqu, Naqu, Ali, and Shiquanhe

(Sq), which cover different climate and land surface

conditions across the TP. The observation data have been

widely used in the past decade to validate satellite- and

model-based soil moisture products (Zheng et al., 2015),

and the in situ data used are from 2013 to 2016, nearly

twice the length of the data used in previous evaluations

(Chen et al., 2013; Li et al., 2018; Cheng et al., 2019), which

greatly enhances the credibility of the evaluation results. The

structure of this article is as follows. Section 2 introduces the

data and methods. In Section 3, the evaluation results at the

observation-network scale are presented, and then the

applicability of alternative data at a smaller scale

within one network (Maqu) is analyzed. In Section 4,

the evaluation results are discussed, with a summary in

Section 5.
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2 Materials and methods

2.1 In situ observations

The four soil moisture observation networks located at

Maqu, Naqu, Ali, and Sq (Figure 1) represent the four typical

underlying surfaces of the TP. The Maqu observation network is

located in the east of the TP, which belongs to the alpine and

humid climate zone, and the underlying surface is grasslands.

The Maqu network has a total of 20 stations and its range is

approximately 40 km (south to north) by 80 km (west to east)

(Figure 2A). The Naqu observation network is located in the

middle of the TP, which belongs to the semi-arid and alpine

climate region. There are five sites in the Naqu network and its

underlying surface is mainly alpine grasslands (Figure 2B). The

Ali and Sq observation networks are located in the semi-arid

climate region of the western TP, and the underlying surface is

mainly composed of sparse vegetation, desert, or bare land. There

are four stations in the Ali network (Figure 2C) and 16 stations in

the Sq area (Figure 2D). The aforementioned observation

networks use capacitive detectors to measure the dielectric

permittivity of the soil, with a probe observation frequency of

15 min. Through the Topp equation (Topp et al., 1980), the soil

dielectric permittivity can be converted to the volumetric soil

moisture at depths of 5–80 cm (Rogier et al., 2008; Su et al., 2011;

Ikonen et al., 2016; Jiang et al., 2017; González-Zamora et al.,

2018; Pei Zhang et al., 2021). Due to the different installation and

maintenance dates at the observation stations, the time range of

the in situ data at each station is also different. Furthermore,

owing to the different data quality from different observation

stations, we first carried out some quality control procedures on

the data from these different observation stations. Specifically, for

each station, we deleted the times of data anomalies (soil

moisture >1 or <0 m3/m3) and instrument anomalies

(instrument voltage alarms). For each observation network,

those stations with serious cases of missing data were

discarded (the sample size of non-missing data was less than

50% of the whole comparison period). Ultimately, for the Maqu

observation network, 12 observation stations were selected, with

the time of the in situ data from July 2013 to June 2016; the Naqu

observation network had four selected stations, with data from

July 2014 to August 2016; three stations were selected from the

Ali observation network, with data from August 2014 to August

2016; and the Sq observation network had seven stations selected,

with the data from December 2013 to July 2016 (Table 1).

2.2 Re-analysis data

2.2.1 INTERIM soil moisture
INTERIM is a set of global atmospheric re-analysis

datasets released by ECMWF, covering the period from

1 January 1979 to August 2019. It is based on a variational

data assimilation system that includes satellite- and ground-

based measurements in a consistent framework (Makama and

Lim, 2020). The INTERIM data provide four layers of soil

moisture (0–7, 7–28, 28–100, and 100–289 cm) four times per

day. The spatial resolution of the INTERIM is 0.7° × 0.7°.

ECMWF stopped updating the INTERIM data in October

2019, but still provides a download service for existing data.

FIGURE 1
Location and topographic height of the plateau and soil moisture-observation networks. Red rectangles represent observation networks and
black marks represent observation points. Topographic height unit: meters.
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We used the INTERIM soil moisture of the upper layer

(0–7 cm) for comparison and evaluation in this study. It

can be downloaded from https://apps.ecmwf.int/datasets/

data/.

2.2.2 ERA5 soil moisture
As the successor to INTERIM, and using advanced four-

dimensional data assimilation methods, ERA5 merges more

ground and satellite observation data into re-analysis data.

FIGURE 2
Site distribution and underlying surface characteristics of the TP soil moisture-observation networks: (A) Maqu, (B) Naqu, (C) Sq, and (D) Ali.
Black hollow triangles represent soil observation points. Dashed lines represent grid lines that replace data resolution. Numbered red circles in Panel
(A) represent nine small regions in Maqu.

TABLE 1 Soil moisture data of the TP observation networks.

Observation network Sampling frequency
(min)

Data range Soil depth
(cm)

Land cover In-situ points

Maqu 15 2013.7–2016.6 5 Grassland 20

Naqu 15 2014.7–2016.8 5 Grassland 5

Ali 15 2014.9–2016.8 5 Sparse vegetation, bare land 4

Sq 15 2013.9–2016.7 5 Sparse vegetation, bare land 16
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The soil moisture data of ERA5 follow the INTERIM soil depths,

with the vertical depth divided into four layers. However, the

temporal resolution of ERA5 is increased to 1 h, the spatial

resolution is adjusted to 0.25° × 0.25°, and the unit of soil

moisture is volumetric water content (Gualtieri, 2021; Jiang

et al., 2021). It can be downloaded from https://cds.climate.

copernicus.eu/.

2.2.3 LAND soil moisture
LAND is a re-analysis dataset providing a consistent view of

the evolution of land variables over several decades at an

enhanced resolution compared to ERA5. LAND has been

produced by replaying the land component of the

ERA5 climate re-analysis (Nefabas et al., 2021; Ruqing Zhang

et al., 2021). It combines the model data with observations from

across the world into a globally complete and consistent dataset

using the land surface model, which is based on the laws of

physics and mathematical formulas. LAND uses atmospheric

variables, such as temperature and humidity, as inputs to control

the simulated land fields of ERA5. Without the constraint of

atmospheric forcing, the model-based estimates can rapidly

deviate from reality. Therefore, while observations are not

directly used in the production of the LAND data, they have

an indirect influence through the atmospheric forcing used to

run the simulation. The LAND resolution is increased to 1 h, and

the spatial resolution is increased to 0.1° × 0.1°. Its soil moisture

unit, like ERA5, is the volumetric water content. It can be

downloaded from https://cds.climate.copernicus.eu/.

2.3 Satellite soil moisture products

The ESA CCI soil moisture product is a merged product,

integrating active and passive satellite retrieval of soil moisture

(González-Zamora et al., 2018). In essence, the product merges

the soil moisture retrieval products of various satellites with

limited life and significantly different instrument characteristics

(frequency, spatial resolution, time coverage, polarization, revisit

time, etc.), into three long-term datasets: an active-microwave-

based-only product (hereafter referred to as ACTIVE); a passive-

microwave-based-only product (hereafter, PASSIVE); and a

combined active–passive product (hereafter, COMBINED)

(Alexander et al., 2019). The generation process of the ESA

CCI soil moisture product mainly includes, first, the

observational times of multiple level 2 active and passive

satellite remote sensing data matched to the same time

and, second, the cumulative distribution function used to

calibrate the level 2 product, with the Advanced Microwave

Scanning Radiometer for EOS (AMSR-E) soil moisture used

as the scale reference. The PASSIVE and ACTIVE products

were obtained by fusing the passive and active microwave

products. The COMBINED dataset was obtained by using

ACTIVE and PASSIVE data for scaling evaluation and

weighted calculation. The ESA CCI released its first-

generation soil moisture product (ESA CCI v0.1) in 2012.

Since then, the ESA CCI has continuously updated its soil

moisture products by improving the data fusion algorithm

and satellite sensor calibration, expanding the scope of the

spatiotemporal coverage of data. The ESA CCI v4.7 soil

moisture product was released in February 2020.

Compared with previous versions, ESA CCI v4.7 integrated

a new soil moisture sensor and extended the dataset to

31 December 2019. Three sets of ESA CCI soil moisture

include the global surface soil moisture data with a spatial

resolution of 0.25° × 0.25° and a temporal resolution of 24 h. A

more detailed description of the ESA soil moisture data is

available in Cheng et al. (2019). The ESA CCI data can be

downloaded from https://cds.climate.copernicus.eu/.

2.4 Land surface model soil moisture
products

GLDAS ingests satellite- and ground-based observational

data products, using advanced land surface modeling and

data assimilation techniques, to generate optimal fields of

land parameters (Zheng et al., 2017). GLDAS drives multiple,

offline (not coupled to the atmosphere) land surface models,

integrates a huge quantity of observation-based data,

executes globally at high resolutions, and is capable of

producing results in near real-time. Observation-based

atmospheric and radiation products from atmospheric data

assimilation systems are used to force the land surface

models. Recently, the GLDAS-driven Noah land surface

model and CLSM have developed GLDAS2-Noah and

GLDAS2-CLSM data. In the Noah dataset, soil moisture is

divided into four vertical layers (0–10, 10–40, 40–100, and

100–200 cm) and CLSM soil moisture is divided into two

layers (0–2 and 2–100 cm) (Han et al., 2020; Rzepecka and

Birylo, 2020). GLDAS data are archived and distributed in the

website of the Goddard Earth Sciences Data and Information

Services Center (http://disc.sci.gsfc.nasa.gov/hydrology/

data-holdings). In this study, the 3-h soil moisture data of

GLDAS-Noah (hereafter NOAH) and GLDAS-CSLM

(CLSM) v2.1 with a 0.25° resolution were used.

We also used the land cover classification gridded maps

released by the ESA CCI with a spatial resolution of 300 m to

draw Figure 2 (Kobayashi et al., 2014). This dataset provides

global maps dividing the land surface into 22 classes, which have

been defined according to the United Nations Food and

Agriculture Organization’s (UN FAO) Land Cover

Classification System (LCCS). The digital elevation data from

the Shuttle Radar Topography Mission (SRTM) (Chen et al.,

2020), which are jointly compiled by NASA and the German and

Italian space agencies with a spatial resolution of 10 m, were used

to draw Figure 1.
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2.5 Methods

Since the ESA CCI provides only surface soil moisture

data, the evaluation depth in this article is the surface layer.

The evaluation time of each set of alternative data is

consistent with the length of the observation data. The

unit of the ACTIVE soil moisture product is soil

saturation (%); the unit of the NOAH soil moisture is

relative soil moisture (kg/m2); and the unit of other

alternative data is volumetric water content (m3/m3)

(Table 2). The NOAH soil moisture unit can use soil depth

to convert to volumetric water content, and the ACTIVE

product unit can use soil porosity for the same conversion

(Chen et al., 2019). The soil porosity data come from

supporting data L3 V1 (LANDMET_ANC_SM) in the

LANDMET Ancillary Soil Moisture data from

land–atmosphere boundary interactions. The data can be

downloaded from NASA’s Goddard Earth Science Data

and Information Service Center (GES DISC, https://disc.

gsfc.nasa.gov/datasets).

The observed soil moisture represents the content of

water in the soil, while the alternative data represent the

total water content. Therefore, to achieve an accurate

evaluation between the soil moisture observation data and

alternative data, the non-freezing period (April to October)

was selected as the comparison period in the TP region (Yuan

et al., 2019; Yuan et al., 2020; Pei Zhang et al., 2021). As

shown in Table 2, the temporal and spatial resolutions of the

alternative data and the observation data are inconsistent. In

this article, the daily average method is used to convert the

temporal resolution of all the data into 24 h. The observed

value represents the soil moisture within the limited range of

the station, and the grid value of the alternative data

represents the average state in the minimum resolution

space (0.25° × 0.25°). The natural neighborhood method

(Watson, 1992) was used to interpolate the alternative

datasets for each station and to calculate the average value

of all stations in each network, representing the average soil

moisture of the observation network. Neighborhood

interpolation uses the weight of the proportional area to

calculate the target value, not the distance from the target

point, so that the characteristics of the original data can be

preserved as far as possible. The proportional area of the

Voronoi polygon where the grid point is located is used as the

weight. Since the area of the Voronoi polygon is different, the

contribution of each grid point to the target point is different.

Using the five indices of correlation coefficient (R), mean

deviation (bias), root mean square error (RMSE), standard

deviation ratio (SDV), and unbiased RMSE (ubRMSE)

(Kovačević et al., 2020), the applicability of alternative

data in the TP region was quantitatively evaluated. The

Student’s t-test was used to test the significance of

correlation coefficients. The specific calculation formulas

are as follows:

R � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ (1)

bias � 1
n
∑n
i�1
(xi − yi) (2)

RMSE �

����������∑n
i�1
(xi − yi)2

n

√√
(3)

SDV �

����������
1
n ∑n
i�1
(xi − �x)2

√
�����������
1
n ∑n
i�1
(yi − �y)2√ (4)

ubRMSE �
�����������������������
1
n
∑n
i�1
{[(xi − �x) − (yi − �y)]2}√

(5)

where n denotes the number of data samples, x denotes the

sequence of the alternative data, y denotes the sequence of the

observation data, and �x and �y denote the average values of the

alternative data and the observation data in the comparison

period, respectively.

TABLE 2 Details of the multisource satellite and re-analysis data used in this article.

Data name Data range Time resolution
(h)

Spatial resolution Soil depth Unit

COMBINED 1978.11.1–2016.12.31 24 0.25°×0.25° 0–2 cm m3/m3

ACTIVE 1991.8.5–2016.12.31 24 0.25°×0.25° 0–2 cm %

PASSIVE 1978.11.1–2016.12.31 24 0.25°×0.25° 0–2 cm m3/m3

ERA5 1979.1.1–2016.12.31 1 0.25°×0.25° 0–7 cm m3/m3

LAND 1979.1.1–2016.12.31 1 0.1°×0.1° 0–7 cm m3/m3

INTERIM 1979.1.1–2016.12.31 6 0.7°×0.7° 0–7 cm m3/m3

NOAH 2000.1.1–2016.12.31 3 0.25°×0.25° 0–10 cm kg/m2

CLSM 2000.1.1–2016.12.31 3 0.25°×0.25° 0–2 cm m3/m3
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3 Results

In this section, we evaluate each observation network. Firstly, we

analyzed the spatial heterogeneity of soil moisture reflected by the in

situ data. For each network, we compared the dynamic characteristics

of observation and alternative soil moisture data over the entire

period. This can reveal the performance of soil moisture products

over daily, monthly, and seasonal timescales. Five evaluation

indicators (R, bias, RMSE, SDV, and ubRMSE) were calculated

separately in each network, and these were used to quantify the

performance of the eight soil moisture products, summarized in

Table 3, Table 4, Table 5, and Table 6. Scatterplots of soil moisture

showing the observational and alternative data were drawn to display

their consistency more clearly, as shown in Figure 5. To further

TABLE 3 Statistical results of the evaluation indexes in the Maqu network (observation sample size: 635 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 635 0.675* 0.104 0.721 0.131 0.041

LAND 635 0.606* 0.116 0.565 0.168 0.044

INTERIM 635 0.607* 0.061 0.427 0.084 0.045

COMBINEDD 635 0.676* 0.005 0.783 0.043+ 0.041

ACTIVE 635 0.704*+ 0.072 0.844+ 0.119 0.040+

PASSIVE 635 0.445* 0.067 1.494 0.126 0.077

NOAH 635 0.432* −0.003+ 0.653 0.051 0.051

CLSM 635 0.461* 0.034 0.328 0.052 0.050

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index.

TABLE 4 Statistical results of the evaluation indexes in the Naqu network (observation sample size: 339 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 399 0.751* 0.114 1.473 0.122 0.045

LAND 399 0.593* 0.169 0.781 0.173 0.038

INTERIM 399 0.688* 0.105 0.616 0.111 0.034+

COMBINED 399 0.803*+ 0.016 1.277 0.039+ 0.035

ACTIVE 399 0.698* 0.083 1.779 0.102 0.060

PASSIVE 399 0.801* 0.075 2.491 0.113 0.084

NOAH 343 0.575* 0.005 1.063+ 0.041 0.041

CLSM 399 0.525* 0.045+ 0.564 0.061 0.040

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index.

TABLE 5 Statistical results of the evaluation indexes in Ali (observation sample size: 403 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 403 0.708* −0.048 1.904 0.073 0.055

LAND 403 0.734*+ −0.035+ 2.151 0.068+ 0.059

INTERIM 403 0.121 0.101 1.131 0.113 0.053

COMBINED 128 — — — — —

ACTIVE 403 −0.683* 0.043 2.494 0.144 0.142

PASSIVE 33 — — — — —

NOAH 353 0.701* 0.056 1.095 0.071 0.021+

CLSM 403 −0.162* 0.065 0.938+ 0.844 0.053

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index; — indicates not counted.
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analyze the real performance of each alternative dataset, we carried

out a small-scale evaluation of the Maqu data.

3.1 Soil moisture heterogeneity

As described in Methods (Section 2.5), we adopted a site-

average approach to represent the average state of the

observation networks as much as possible. However,

considering the significant impact of soil moisture

heterogeneity on the spatial average, it is necessary to analyze

whether there is a consistent change among stations. For this

reason, we calculated the correlation coefficient between stations

within each observation network (Figure 3). The heterogeneity of

the soil moisture in the Maqu network was relatively strong

(Figure 3A). Although some correlation coefficients exceeded 0.5,

the correlations of the stations were significantly different,

ranging from −0.07 to 0.96. Some of the correlation

coefficients were lower than 0.4, or even negative, which

indicated that the soil moisture changes were different at

some stations in the Maqu network. This may be due to the

large range of the Maqu observation network and the different

characteristics of the stations, such as land cover, soil texture,

instrument installation slope, and so on, leading to differences in

short-term changes of soil moisture.

The spatial heterogeneity of the Naqu and Ali networks is

relatively small, especially Naqu, and the correlation coefficient

between stations was more than 0.77 (Figure 3B). This indicates

that the stations of these two observation networks are fairly

representative and can reflect the average state of soil moisture in

their respective observation networks. In the Sq network

(Figure 3D), the correlation coefficients were all over

0.66 except for one station, indicating that there was

heterogeneity in this network, but that it was very weak. The

possible reason for these differences is that the Naqu and Ali

observation networks are small, the distribution of the stations is

concentrated, and the external factors affecting soil moisture

change at each station are similar. As a result, the stations of the

Naqu, Ali, and Sq networks are more representative. It is worth

noting that the resolution of the alternative data should be

considered when evaluating them using these in situ data.

Data with resolutions that are too coarse cannot reflect the

spatial heterogeneity and may not be suitable for Maqu.

3.2 Maqu network

Figure 4A shows the daily variation curves of the observed

and alternative soil moistures. The observed soil moisture had

little inter-annual variation but a significant daily variation. The

sample size of the observed and all alternative data was 635 days

(excluding missing data). Both of the GLDAS datasets failed to

capture the main dynamic changes of soil moisture. In many

periods, the daily variation trend reflected by NOAH was

contrary to the observations, and CLSM almost remained at

0.27 m3/m3, so their R results were only 0.432 and 0.461,

respectively (Table 3). The scatter points of NOAH and

CLSM are more concentrated and closer to the reference line

(Figure 5A), indicating that NOAH and CLSM have weak

volatility and low error. The bias and RMSE rank in the top

three among the eight sets of alternative data.

The performance of the three sets of satellite products varied

greatly. Both the COMBINED and ACTIVE data captured the

dynamic change characteristics of soil moisture well (R > 0.67).

ACTIVE reflected the dynamic change closest to the observations

and had the optimal R and SDV, of 0.704 and 0.844, respectively;

however, strong volatility also increased its relative bias, with bias

and RMSE values of 0.072 m3/m3 and 0.119 m3/m3, respectively.

In terms of the R and SDV index, COMBINEDwas slightly worse

than ACTIVE, and the weak fluctuation should reduce the error

relative to the observations, as confirmed in Figure 5A. The

COMBINED scatter was located below ACTIVE and closer to the

reference line; its RMSE (0.043 m3/m3) was optimal, and its bias

(0.05 m3/m3) was also ranked in the top three. The dynamic

change reflected by PASSIVE was poor, with a correlation

coefficient of only 0.445.

TABLE 6 Statistical results of the evaluation indexes in the Sq network (observation sample size: 447 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 447 0.793*+ −0.037 2.398 0.063+ 0.051

LAND 447 0.741* -0.027+ 2.485 0.072 0.061

INTERIM 447 0.562* 0.128 1.565 0.132 0.034

COMBINED 77 — — — — —

ACTIVE 447 −0.182* 0.098 2.471 0.134 0.094

PASSIVE 82 — — — — —

NOAH 373 0.274* 0.091 1.769 0.094 0.024+

CLSM 447 0.365* 0.125 1.005+ 0.121 0.031

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index; — indicates not counted.
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The performances of the three sets of the re-analysis data were

similar, showing good temporal variation of soil moisture (R > 0.6).

The correlation coefficient of ERA5 reached 0.675, second only to the

ACTIVE result. The scatter points of the three sets of the re-analysis

data are all above the reference line, indicating that they all have

different overestimations of soil moisture. Comparing the RMSE and

ubRMSE results, the ubRMSE values of ERA5 and LAND were

smaller, indicating that a large part of the overestimation of soil

moisture by these products came from systematic errors.

3.3 Naqu network

As described previously, the climate and surface

vegetation types of the Naqu network are similar to those

of Maqu, so, it is speculated that the variation characteristics

of the soil moisture in Naqu and Maqu will be similar.

Compared with Maqu, the daily fluctuation range of the

soil moisture in Naqu was weakened (Figure 4B), and the

seasonal differences between dry (low values) and wet (high

FIGURE 3
Correlation coefficients between stations in the networks of (A) Maqu, (B) Naqu, (C) Ali, and (D) Sq (* indicates significance at the
0.01 confidence level). Black open circles indicate data mismatch.
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values) periods increased. The high-value period was from

June to August and the low-value period was from October to

April. In general, the eight sets of data captured the main

dynamic characteristics of soil moisture (R > 0.5) (Table 4).

NOAH and CLSM scatter were very concentrated

(Figure 5B), with correlation coefficients of 0.575 and

0.525, respectively.

The COMBINED data can capture the fluctuation of soil

moisture well, and their R (0.803), RMSE (0.039 m3/m3), and

SDV (1.227) were the best results. The correlation coefficient of

PASSIVE (R = 0.801) was significantly better than that of

ACTIVE (R = 0.698), which was contrary to the evaluation

results in Maqu. ACTIVE and PASSIVE overestimated the

fluctuation range of the soil moisture (Figure 5B), with SDV

results of 1.779 and 2.491, respectively, and caused a large error

(RMSE >0.1 m3/m3).

ERA5 showed the best dynamic change of soil moisture (R =

0.751). INTERIM underestimated the daily fluctuations of soil

moisture (SDV = 0.616). Three sets of the re-analysis data are all

above the reference line (Figure 5B), they all overestimated soil

moisture. Their ubRMSE were relatively small

(ubRMSE <0.045 m3/m3), indicating that their error relative to

the observations was mainly due to systematic error.

3.4 Ali network

The Ali observation network is located in the western part of the

TP, with climate and surface characteristics that are quite different

from those of Maqu, which may indicate different a applicability of

alternative data between the two networks. Daily changes of soil

moisture were gradual in Ali (Figure 4C). The difference between the

dry and wet seasons was enhanced, with the duration of the dry

season becoming longer and the change between the dry and wet

seasons becoming faster. The performance of the eight sets of data

varied greatly in Ali, with the satellite products performing very

poorly. COMBINED and PASSIVE datasets had serious cases of

missing data; their sample sizes were less than 30% of the

observations (Table 5), so their evaluation indicators were not

calculated. Although the ACTIVE set had no missing data, it

failed to capture the dynamic change of the soil moisture

(R = −0.683), with a large error (SDV = 2.494, RMSE > 0.14 m3/m3).

ERA5 and LAND both showed outstanding performances.

Specifically, they could grasp the dynamic changes of the soil

moisture and reflect the differences between the dry and wet

seasons well. The weak fluctuation in dry seasons and the strong

fluctuation in wet seasons were well reflected, as was the rapid

change of the dry and wet seasons (R > 0.7), which meant that

their errors were small. These results are confirmed by Figure 5C.

LAND was closest to the observations, and not only captured the

dynamic change of the soil moisture (R = 0.734), but also had the

smallest error relative to the observations, with bias and RMSE

values of −0.035 and 0.068 m3/m3, respectively. Unexpectedly,

the performance of the INTERIM was significantly worse, and its

correlation was only 0.121, possibly due to the overly gradual

change reflected by the INTERIM.

NOAH better grasped the dynamic change of soil moisture

(R = 0.701), reflecting the fluctuation difference and rapid

transition process of soil moisture from dry to wet seasons

(SDV = 1.095). Although it had some small degree of error

FIGURE 4
Daily variations of soil moisture in the four observation
networks on the TP: (A) Maqu, (B) Naqu, (C) Ali, and (D) Sq. Soil
moisture unit: m3/m3.

Frontiers in Earth Science frontiersin.org10

Dong et al. 10.3389/feart.2022.872413

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.872413


from the observations, this may have been caused by the

decreased total number of samples, due to a lack of

measurements in 2016. CLSM was worst at reflecting the

dynamic changes of soil moisture (R = −0.162), and did not

reflect the obvious difference between dry and wet seasons or the

rapid transition process between the seasons.

3.5 Sq network

Sq is close to the Ali network, and their climatic conditions

and underlying surface characteristics are similar. Compared

with Ali, the dry season in Sq is longer and the variation is more

gentle (Figure 4D). The performances of the eight sets of data in

Sq were similar to those in Ali. The measurements of the

COMBINED and PASSIVE datasets had serious gaps, and the

number of samples was less than 20% of the observations

(Table 6). The ACTIVE dataset did not capture the main

variation of the soil moisture, and its correlation coefficient

was only −0.182. ACTIVE overestimated the fluctuation

intensity of soil moisture (SDV = 2.471) and caused a large

error (RMSE = 0.134 m3/m3).

The three sets of the re-analysis data showed the best

performance in Sq (R > 0.56). ERA5 was closest to the

observations, and its R (0.793) and RMSE (0.063 m3/m3) were

the best. Compared with ERA5, LAND had an R of 0.741, and its

FIGURE 5
Scatterplots of the soil moisture observation data and alternative data in four observation networks on the TP: (A)Maqu, (B)Naqu, (C) Ali, and (D)
Sq. Soil moisture unit: m3/m3. The diagonal line is the reference line. Scatter points parallel to the reference line indicate better correlation, and those
closer to the reference line mean less errors relative to the observations.
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bias was the smallest (−0.027 m3/m3). The performance of

INTERIM was the worst among the re-analysis data, but it

maintained the advantage of gradual change, resulting in an

optimal SDV (1.156). As shown in Figure 5D, the scatter points of

ERA5 and LAND are not concentrated, indicating that they

reflect a relatively high intensity of daily fluctuation (SDV >2.39).
However, it was unexpected that both the error of ERA5 and

LAND relative to the observations was the best, which was

different from the conclusion reached in other areas of the

TP. This may be because ERA5 and LAND underestimated

soil moisture at low values and overestimated it at high

values, making the overall error smaller.

The performances of the two GLDAS datasets in Sq were

similar to those in Ali, and their correlation with the observations

was weak (R < 0.37). They reflected a gentle variation of the soil

moisture, especially CLSM, which was closest to the observations

(SDV = 1.005). NOAH also had a small error relative to the

observations, just as the analysis results in Ali showed, whichmay

be because the number of samples was smaller than for

other data.

3.6 Maqu small-scale evaluation

In the previous sections, the applicability of eight sets of

alternative data at the observation network scale was evaluated.

However, in those evaluations we used the station average to

represent the soil moisture average level of the observation

network. The advantage of this simple method is that the

ground observational and alternative data are matched in

space, but the deficiency is also very obvious: the strong

heterogeneity of the soil moisture in the observation network

will be ignored. Therefore, it is necessary to further analyze the

performance of alternative data on a smaller spatial scale to find

any more significant advantages or disadvantages of the various

products.

In order to carry out such a small-scale survey, the evaluation

field needs to have certain characteristics, such as strong spatial

heterogeneity of the soil moisture, a large observation network,

and many, relatively scattered observation points. The main

reason for this screening is that if the spatial heterogeneity is

too weak, it cannot achieve the purpose of the evaluation. If the

observation network is too small and the stations are too

concentrated, the observation network can only match one or

two grid points, which may result in the same assessment results

as the observation network scale. Therefore, the Maqu soil

moisture observation network was selected as the evaluation

field. According to the minimum spatial resolution of the

alternative data and the distribution characteristics of the

observation stations in Maqu, the Maqu network was divided

into 15 small regions, of which only nine had observation

stations. We chose these nine small regions, and the average

value of observation stations in each was used as ground

observations to discuss the performance of alternative data

(Figure 2A).

Figure 6 shows the time-varying curve of the observed soil

moisture in the nine regions of the Maqu observation network. It

can be seen from Figure 6 that the soil moisture values in the

different small regions were significantly different at the same

time. The soil moisture of Reg6 was highest, at more than 0.4 m3/

m3 in most periods, and the average soil moisture of Reg9 was

lowest, at less than 0.1 m3/m3 in most periods. On the other hand,

the daily variation trends and amplitudes of the soil moisture in

different regions were also significantly different. For example, in

May 2014, there was no obvious daily variation of soil moisture in

Reg6, but the soil moisture in the other regions had a strong daily

variation, which indicated that different stations in the Maqu

observation network represented different dynamic changes of

the soil moisture.

Figure 7 shows the correlation coefficients between the

alternative and the observed soil moisture in the nine small

regions. It can be seen that there are significant differences in the

correlation between each set of alternative data and observations.

In the nine small regions, the ACTIVE, ERA5, and COMBINED

results have good correlation with the observations, and for each

of those sets of data, five small regions had a correlation

coefficient of more than 0.6. ACTIVE performed best, with a

correlation coefficient greater than 0.5 in eight small regions, and

greater than 0.6 in seven of them. The performance of ERA5 was

second only to ACTIVE, with the correlation coefficient of eight

small regions greater than 0.5, and five of them greater than 0.6.

The performance of COMBINED was similar to that of ERA5.

The performances of INTERIM and LAND were average, with

four and five regions, respectively, exceeding 0.6. The PASSIVE

performance was poor, and the correlation coefficient of only

three small regions exceeded 0.5. NOAH and CLSM performed

the worst, with most of their small regions at less than 0.4.

In general, the performances of ACTIVE, ERA5, and

COMBINED were better, mainly because the high resolution

of the data better reflected the spatial heterogeneity. However, it

is not just down to the higher resolution as, for example, the

performance of LAND was inferior to that of ERA5. The possible

reason for this is that the forcing field does not have

corresponding high-resolution data, and thus improving the

model resolution alone cannot achieve the expected results.

LAND uses ERA5 outputs as the meteorological forcing field,

including wind, temperature, precipitation, and other variables.

Note that these fields are interpolated from the

ERA5 resolution of about 31 km to the LAND resolution of

about 9 km via a linear interpolation method based on a

triangular mesh (Muñoz-Sabater et al., 2021). Although the

meteorological forcing field after interpolation meets the input

requirements of the LAND model, the numerical change of the

forcing field after interpolation is similar to that of ERA5, and the

interpolation process may produce errors. Therefore, the

performance of the LAND data has not significantly improved
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compared with that of ERA5. The performance of each set of data

in Reg3, Reg5, Reg7, and Reg9 is better than in Reg4, Reg6, and

Reg8, which may be because the latter has more water body

coverage (Figure 2A). Studies have pointed to the performance of

numerical models and satellite products being unsatisfactory for

underlying surfaces containing water, as the calculations of the

soil moisture in these areas are susceptible to land cover

classification (Chen et al., 2013; Zheng et al., 2015). The

station average method may have affected the results of the

small-scale evaluation. Reg6 has three stations: NST04, NST05,

and CST02. NST04, which was a severe case of missing data, was

discarded. Because CST02 and NST05 do not match in time

(Figure 3A), the Reg6 sequence is actually a splicing of the data of

two stations with different variation characteristics, and this

FIGURE 6
Time series of the soil moisture in nine regions of Maqu from July 2013 to June 2016. Soil moisture unit: m3/m3.

FIGURE 7
Correlation coefficient distribution of the alternative data in nine small regions of Maqu (* indicates significance at the 0.01 confidence level).
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caused the low correlation of the alternative data in Reg6. At the

same time, the interpolation process can also affect the evaluation

result. In Reg1, the CST04 in situ data only represent the

variation characteristics of the station, but the interpolation

point data do not. When the alternative data were

interpolated to the CST04 station, the grid points around it

were used to calculate the interpolation point, and the variation

characteristics were the combination of multiple points, which

may have caused the low correlation of the alternative data

in Reg1.

4 Discussion

Through the aforementioned analysis, we found that the

performance of the eight sets of soil moisture data differed greatly

in the TP region. Some datasets could capture the dynamic

characteristics of soil moisture, while others could not provide

the accuracy we expected. Meanwhile, any one set of data could

have good applicability in some regions and poor performance in

others. It is necessary to explore the sources of error of data, and

analyze the causes of performance differences of alternative data,

especially in the TP region where the underlying surface is highly

complex. The possible sources of error are as follows:

1) Mismatches between observation stations and alternative data

on the spatial scale: At present, there is no soil moisture

observation network that can accurately represent the spatial

scale of alternative data. In order to reduce the impact of this

well-known problem (Qin et al., 2013), we interpolated the

alternative data to the stations, and used the average of the

stations to represent the average soil moisture of the

observation network. However, the interpolation process

can still bring some errors, especially in the complex

topography of the TP. Some studies have pointed out that

it is difficult for in situ data to describe the spatial

characteristics of regional soil moisture, and that sparse

observations can only reflect the temporal change of soil

moisture and cannot reproduce the numerical absolute

change (Koster et al., 2009; Wagner et al., 2013).

Therefore, evaluation results should focus more on

correlation rather than RMSE or bias.

2) Mismatch of the soil depth: In this study, the surface soil

depth of the observation network was 5 cm, the surface soil

moisture of the three sets of the satellite products was

0.5–5 cm, and the surface soil moisture of the three sets of

re-analysis data was 0–7 cm. NOAH used 0–10 cm, and the

surface soil depth of CLSM was 0–2 cm. It should be noted

that the observed value refers to soil moisture at the depth of

5 cm, whereas the alternative soil moisture is an average in the

vertical direction.

3) Mismatch of the soil moisture unit: NOAH uses the unit of

soil depth to convert to volumetric water content, which

causes relatively small errors in the calculation process.

However, the unit of ACTIVE is soil saturation, which

requires soil porosity data to convert to volumetric water

content. The accuracy of porosity data has an important

influence on the evaluation results, which may be the

reason for the large error of the ACTIVE product.

4) Inaccuracy of the input data (such as soil texture, land use

type, observation, and satellite data) in the numerical model

calculation and satellite inversion: These errors in the input

data will be carried into the soil moisture product by the

model or algorithm, and may even be magnified, eventually

making the error of the product even bigger.

Passive microwave products are widely used throughout the

world. This is due to the fact that passive microwave detectors

work in the L band: the longer the wavelength, the better the

penetration, so they are less affected by surface roughness (Zheng

et al., 2019). However, in the Maqu network, the performance of

the ACTIVE soil moisture data is significantly better than that of

PASSIVE, which is different from our usual understanding and

may be related to the underlying surface characteristics of Maqu.

Located in the eastern part of the TP, Maqu has a long rainy

season and is mainly covered by grasslands and low shrubs with

dense vegetation. ACTIVE microwave products have advantages

in regions of greater vegetation density and stronger soil moisture

change, mainly because active microwave detectors have a higher

sensitivity to soil moisture, and low sensitivity to vegetation

coverage. This means that they can separate the short

timescale changes in soil moisture contained in backscattering

signals from seasonal vegetation cycles, thus making it easier to

detect dynamic changes in the surface soil moisture (Qin et al.,

2013). The COMBINED products demonstrated an excellent

performance in Maqu and Naqu, not only capturing dynamic

changes in the soil moisture, but also with low error. This shows

that this is a very effective method to invert soil moisture by

integrating the advantages of active and passive remote-sensing

products, which is consistent with the evaluation results of

previous research (Dorigo et al., 2017). The results confirm

the validity of the COMBINED soil moisture products over

the TP. However, there was a serious issue with missing data

for the COMBINED and PASSIVE products in Ali and Sq, which

may be related to climate and surface features. The Ali and Sq

observation networks are located at high altitudes and belong to a

cold and arid climate zone. The soil is mostly sandy loam, with

the dry season exceeding half a year, and almost no daily

variation of soil moisture. The microwave detectors can barely

scan the changes of the soil moisture on the surface, and will even

judge the microwave signal from the soil as noise (Pei Zhang

et al., 2021). When producing COMBINED data, many of the

PASSIVE products are integrated, so the gaps are also a problem

with this product.

The three sets of re-analysis data can accurately reflect the

dynamic changes of the soil moisture. This is mainly because re-
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analysis data use an advanced assimilation technology to

integrate large amounts of precipitation, temperature, and

other data from ground and satellite observations, which have

been verified by multiple climate regions, making the re-analysis

data close to observations in long-term climate trends (Jing et al.,

2018). This indicates that the quality of ground and satellite data

should be taken into consideration in the assimilation model,

because the uncertainty error of the observation data will be

brought into the model and may be further magnified.

Meanwhile, compared with INTERIM, the performances of

the ERA5 and LAND data were greatly improved, indicating

that the quality of the re-analysis data can be enhanced by

optimizing the numerical model and parameterization scheme,

as well as the resolution, and incorporating more high-quality

observation data. The variation of the surface vegetation can

affect soil moisture by affecting soil-–water storage properties,

land–atmosphere water exchange, canopy interception, and so

on. Although dynamic vegetation data have been introduced into

LAND, the data are on the seasonal scale (Li et al., 2020), which

do notmatch well with the hourly output of LAND, and thusmay

be an important factor affecting LAND’s performance.

The two sets of GLDAS data did not reflect the dynamic

changes of soil moisture in the TP region well. The surface soil

moisture responds quickly to short-term meteorological forcing

variables; when precipitation variability is strong, soil moisture

variability increases (Chen et al., 2013). GLDAS-2 does not

couple the atmospheric module and uses the Princeton

Meteorological Forcing Dataset, which is a re-analysis product

using observational products for the period 1948–2010, as the

sole source of forcing data for deviation correction. The deviation

correction process greatly reduces the deviation of GLDAS-2

precipitation data, but at the same time reduces the ability to

describe precipitation variability (Sheffield et al., 2006). When

GLDAS drives NOAH and CLSM by verified atmospheric

forcing data, it makes NOAH and CLSM have a weak ability

to simulate the dynamic changes of soil moisture in the TP

region, but the error is lower.

In summary, the soil moisture dynamic changes of the

COMBINED products in the Maqu and Naqu observation

networks are consistent with the ground observations, and the

error is relatively low. The performance of the active–passive

fusion products has been verified in the central and eastern parts

of the TP. However, as the evaluation of the ACTIVE and PASSIVE

data shows, the performance of satellite products varies from place to

place. The ACTIVE soil moisture performance is best in Maqu, with

its dense vegetation, while the PASSIVE products are closer to the

observations in Naqu, with its sparse grasslands. The three sets of

satellite products showed an obvious inapplicability in the Ali and Sq

areas, because the COMBINED and PASSIVE products had serious

gaps in these regions, while the ACTIVE set failed to capture the

main variation characteristics of soil moisture. NOAH and CLSM

seemed to have a weak ability to reflect the dynamic changes of soil

moisture, and their simulated soil moisture changes were too gradual.

Compared with INTERIM, the performances of the ERA5 and

LAND data showed significant improvements, and the

correlations of both the ERA5 and LAND data in Ali and Sq

were good, with the smallest relative error. Meanwhile, in Maqu

and Naqu, ERA5 was consistent with the observations, and the

correlation was only slightly worse than that of the satellite products.

Therefore, relatively, ERA5 has the best applicability in the TP region.

5 Conclusion

The applicability of the COMBINED, ACTIVE, PASSIVE,

ERA5, LAND, INTERIM, NOAH, and CLSM data products was

studied during the non-freezing periods in the TP region using

the in situ data of the Maqu, Naqu, Ali, and Sq soil moisture

observation networks. The results showed that:

1) The applicability of the eight sets of data differed obviously in

different regions of the TP, and the applicability of any one set

of data also differed among the regions. In general, the

applicability of the eight sets of data was better in the

Maqu region than in the Ali and Sq areas.

2) At the observation-network scale, the COMBINED, ACTIVE,

and ERA5 products had a better correlation with the

observations in Maqu and Naqu, with correlation

coefficients of over 0.65. The COMBINED, NOAH, and

CLSM data had small errors relative to the observations. In

terms of trend and amplitude of temporal change, the

COMBINED, ACTIVE, and ERA5 data products were

closer to the observations. In the Ali and Sq areas on the

western TP, the COMBINED and PASSIVE data had serious

gaps. The ERA5 and LAND datasets in the Ali and Sq regions

had a high correlation, with correlation coefficients above 0.7.

3) At the small scale of Maqu, it was found that the correlation of

no one set of data was best in all nine regions. Among the

datasets, ERA5, COMBINED, and ACTIVE had good

correlation with observations of the small regions, and the

correlation coefficient of seven small regions was more

than 0.5.

This article comprehensively evaluates the overall

performance of eight sets of alternative data on the TP, with

emphasis on the correlations between the alternative data and the

observations and temporal continuity, which are the important

factors affecting the results of climate assessments. This work

found that ERA5 is the most suitable dataset for studying soil

moisture on the TP.
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https://data.tpdc.ac.cn/en/. The combined, active, and passive

soil moisture products of ESA CCI v4.7 can be downloaded from

https://www.esa-soilmoisture-cci.org. The ERA5 and ERA5-land

soil moisture data are available at https://cds.climate.copernicus.

eu. The ERA–INTERIM soil moisture data are available at

https://apps.ecmwf.int/datasets/data/. The NOAH and CLSM

soil moisture data of GLDAS v2.1 can be downloaded from

https://disc.gsfc.nasa.gov/datasets/. The ESA land cover data are

available at http://maps.elie.ucl.ac.be/CCI/viewer/download.php.

The SRTM digital elevation data can be downloaded from

https://srtm.csi.cgiar.org/srtmdata/.
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