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Landslides are well-known phenomena that cause significant changes to the relief of an area’s
terrain, often causing damage to technical infrastructure and loss of life. One of the possible
means of reducing the negative impact of landslides on people’s lives or property is to
recognize areas that are prone to their occurrence. The most common approach to this
problem is preparing landslide susceptibility maps. These can factor in the actual location of
landslides or the causal relationship between landslides and selected environmental factors.
Creating a classification of landslide-prone areas is a challenging taskwhen landslide density is
not high and the area of analysis is large. We prepared shallow 10m × 10m resolution
landslide susceptibility maps of the Wiśnickie Foothills (Western Carpathians, Poland) using
eleven different machine learning algorithms derived from the Python libraries Scikit-learn and
Imbalanced-Learn. The analyzed area is characterized by a mean density of 3.4 surficial
landslides (composed of soils and rocks) per km2. We also compared different approaches to
imbalanced sets of data: Logistic Regression, Naive Bayes, Random Forest, AdaBoost,
Bagging, ExtraTrees (Extremely Randomized Trees), Easy Ensemble, Balanced Bagging,
BalancedRandom Forest, RUSBoost and a hybridmodel combining RandomUnder Sampler
andMulti-layer Perceptron algorithms. The environmental factors (slope inclination and aspect,
distance from rivers, lithology, soil type and permeability, groundwater table depth, profile and
plan curvature, mean annual rainfall) were categorized and divided into training (70%) and
testing (30%) sets. Accuracy, recall, G-mean and area under receiver operating curve (AUC)
were used to validate the quality of themodels. The results confirmed that algorithms based on
decision tree classifiers are suitable for preparing landslide susceptibility maps. We also found
that methods that generate random undersampling subsets (Easy Ensemble, Balanced
Bagging, RUSBoost) and ensemble methods (Bagging, AdaBoost, Extra-Trees) both yield
very similar test results to those that use full sets of data for training. Relatively high-quality
results can also be obtained by integrating the Random Under Sampler algorithm with the
Multi-layer Perceptron algorithm.
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INTRODUCTION

Mass movements are common denudational processes that have
a significant impact on the formation of the Earth’s relief. They
often cause significant technical and social damage and even loss
of life. In Poland, since 2006, the Landslide Counteracting System
Project (SOPO) has gathered evidence of 58,000 landslides to
date, a number that may exceed 100,000 once all inventory work
is completed (Wójcik and Wojciechowski, 2016). In terms of
frequency, the largest share of all landslides (more than 95%)
occurs in the southern part of the country, in the Carpathian
Mountains (Poprawa and Rączkowski 2003). Analyses by
Wojciechowski (2019) for the whole area of Poland indicate
that more than 1 million buildings are located in areas
threatened by mass movements, which are crisscrossed by
around 7,000 km of motor roads and nearly 600 km of
railroads. These data show that the presence of mass
movements in Poland has a significant impact on technical
infrastructure and human property. Thus, in order to
minimize or limit the effects of mass movements, it is
important to identify the areas that are at highest risk of such
movements occurring.

Assessing the susceptibility of a site to mass movements can be
done using qualitative or quantitative methods. Qualitative
methods generally involve determining the susceptibility of the
area in question based on the judgment of the person (or group of
people) conducting the analysis; the input is derived from field
observations and may be supported by interpretation of aerial or
satellite imagery. These assessments fall under either
geomorphological analysis or map analysis with (or without)
assigned weights. These are referred to as expert methods and are
problematic due to the difficulties inherent in objectively
evaluating the results of the data analysis (Aleotti and
Chowdhury, 1996). On the other hand, quantitative methods
for assessing susceptibility to mass movements include statistical
analysis and geotechnical calculations, whose continuous
development stems from the availability of information
technology tools, the popularity of the GIS (Geographic
Information Systems) environments, and the ever-increasing
accuracy and availability of spatial data. Geotechnical
calculations (e.g., Montgomery and Dietrich, 1994; Pack et al.,
1999; Morrissey et al., 2001; Arnone et al., 2011; Montrasio et al.,
2011; Zizzioli et al., 2013; Kim et al., 2013; Ciurleo et al., 2017;
Canli et al., 2018) are performed using a physical model of the soil
environment and, unlike other methods, allow us to conduct an
accurate assessment of slope stability (landslide hazard
assessment) in real time. The accuracy of these analyses
increases in line with how accurately we are able to recognize
the structure of the soil environment. Therefore, applying these
methods to the spatial analysis of large areas requires large
expenditures for field and laboratory investigations, and
oversimplifying or overgeneralizing the model can cause its
parameters to deviate significantly from reality. For this
reason, the methods above are used relatively rarely for large-
scale mass movement hazard assessments. Conversely, statistical
methods provide a tool that, like the expert methods, uses various
environmental parameters to determine their relationship to the

occurrence of mass movements, and the selection of weights for
individual factors is optimized by various computational
algorithms.

The development of computer science techniques that has
occurred in recent years has driven the popularization of machine
learning for solving problems in various fields of science. Among
other uses, these approaches make it possible to identify areas
with different degrees of landslide hazard by looking for patterns
and relationships in large datasets. Unlike in typical statistical
methods, here the path to solve the task/problem is not
programmable. Among the most widely used machine learning
algorithms is logistic regression, which was originally a widely
used statistical tool in binary classification (Merghadi et al., 2020).
Other algorithms that have found relatively widespread use in
categorizing the susceptibility of terrain to mass movements
include the support vector method and neural networks, and
to a lesser extent, the naive Bayes classifier and the nearest
neighbor method (Merghadi et al., 2020). In recent years,
methods based on the decision tree algorithm have also
become very popular; their main advantages are high
intuitiveness, easy interpretation of computational results, and
versatility of applications. These models are often used in
machine learning as ensembles of classifiers with the purpose
of improving their accuracy and counteracting overfitting;
however, this also makes them more difficult to interpret and
turns the results into something of a “black box”, much like neural
networks.

Statistical methods, including machine learning, provide
better results than other deterministic methods, but this is not
always the case (Ciurleo et al., 2017). Accuracy depends on the
quality and preparation of the data and the computational
techniques used, the effectiveness of which can vary depending
on the dataset. Reichenbach et al. (2018) point out that statistical
models are significantly affected by the extent of the area, making
it difficult to compare classes with different landslide
susceptibility in different areas. Merghadi et al. (2020) note
that a narrow group of researchers is applying machine
learning techniques to landslide hazard mapping issues, and
that there is a lack of comprehensive reviews addressing
complexities, comparisons, and challenges of machine learning
techniques.

Another important issue in the classification of landslide areas
is the fact that the area in which a landslide occurs or the area of
the landslide itself is often small relative to the total area under
consideration. In such situations, various methods are used to
address the imbalance in the size of the respective datasets,
i.e., landslide areas and areas not affected by these processes.
A common procedure at the model learning and validation stage
is to reduce the size of the dominant class to a level corresponding
to the size of the smaller class (Wang L-J et al., 2016; Mao et al.,
2017; Lombardo and Mai 2018; Guo et al., 2021; Ng et al., 2021;
Pourghasemi et al., 2021; Saha et al., 2021a, 2021b), which may
result in the loss of important information. In practice, model
training is rarely conducted for the entire dataset. Hence, in this
paper, we both compute results for both the entire dataset and
employ algorithms that apply different approaches to imbalanced
datasets.
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The goal of this study was to determine the study area’s
susceptibility to shallow mass movements using selected
standard machine learning techniques and techniques designed
for imbalanced datasets. In addition, we aimed to describe the
relationship between selected environmental factors and slope
susceptibility to mass movements, and to compare the accuracy of
the predictions generated by the machine learning algorithms
used in the study.

CHARACTERISTICS OF THE STUDY AREA

Geographical and Geological
Characteristics
The study area includes the Wiśnickie Foothills mesoregion
(Lesser Poland Voivodeship, Poland—Figure 1), which is the
eastern part of theWestern Beskidian Foothills (Kondracki 2009).
In geomorphological terms (Klimaszewski 1972), it is the eastern

part of the Wieliczka Foothills. The Wiśnickie Foothills stretch
from the Raba Valley in the west to the Dunajec Valley in the east.
The southern boundary of the region is formed by the isolated
hills of the Beskid Wyspowy; to the north, it borders the
Sandomierz Basin. In terms of geological structure, the
Wiśnickie Foothills are located within two tectonic units—the
Carpathian Foredeep and the Outer Carpathians (Oszczypko
et al., 2008).

The Carpathian Foredeep is a foreland trench of the
Carpathians, formed in the Neogene as a result of the Alpine
orogenesis. It is filled with Miocene sediments covered by a thin,
discontinuous layer of Quaternary sediments. The thickness of
Miocene sediments in the foreland of the Carpathians is
estimated to be between 800 and over 1,000 m (Poborski and
Skoczylas-Ciszewska 1963; Połtowicz 1991). A narrow belt
stretching from Wieliczka to Przemyśl contains salt-bearing
sediments. Heavily folded rock salt layers are interlayered with
anhydrite claystones (Bukowski 1996). The majority of the

FIGURE 1 | Location on the study area.
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Wiśnickie Foothills area is located within the Silesian unit, a
tectonic unit of the Outer Carpathians that is very differentiated
stratigraphically, facially, and tectonically. The bulk of the unit is
composed of outer-Carpathian flysch rocks that developed as
sandstones and shales (Lower Istebna strata—Upper Cretaceous,
Krosno strata—Paleogene) (Połtowicz 1974; Cieszkowski et al.,
1994).

The youngest lithostratigraphic formations are Quaternary
formations ranging from several to a dozen or so meters thick.
They are developed mainly as fluvial deposits of valleys, slope
deposits in the form of aeolian material, diluvial covers, and
colluvial slope formations (Burtan 1954; Skoczylas-Ciszewska
1954; Skoczylas-Ciszewska and Burtan 1954; Burtan 1977).
The slope sediments are represented by silty loess-like
formations. These were formed as a result of the weathering of
the Carpathian flysch and the simultaneous eolian sedimentation
of loess during the Vistula glaciation. The thickness of the loess
deposits in the northern part of the study area is estimated at
3–5 m, whereas the thickness of loess-like formations, silts, and
sandy loams varies, ranging from 2–3 m to 6–12 m. At the foot of
the slopes there are formations created as a result of denudation,
flushing, washing of loess and loess-like covers. Also in the lower
part of the slopes, diluvial-salifluction formations can be found, as
can colluviums formed at the turn of Pleistocene and Holocene,
as well as in the Holocene itself (Burtan 1954). The thickness of
landslide colluviums, formed as clays, loams, and loams with
debris, can reach 30 m (the Landslide Counteracting System -
SOPO).

The Wiśnickie Foothills are an example of a mature fluvial-
denudational sculpture, consisting of flat upland patches
350–420 m above sea level. The course of the humps and
ridges reflects the main tectonic units of the Silesian unit
and outcrops of more resistant bedrock. The series of the
Silesian unit form large synclinal troughs, which
orographically split the Foothills area into two strings of
low foothills patches (relative heights 40–100 m above the
valley bottom) and medium foothills (relative heights
120–250 m above the valley bottom). The foothill level,
within both types of foothills, cuts and levels ridges that are
composed of less resistant flysch. This level dates back to the
lower Pliocene and developed in a cool and dry climate. Within
the larger valleys one can find the valley level, cut to 40–60 m in
relation to the height of the bottoms of modern river valleys. It
consists of almost flat surfaces with a slope that does not always
face in the direction of the valleys but always slopes towards
their axis. This level dates back to the early Pleistocene
(eopleistocene) (Starkel 1972).

The relief of the mountain ridges is dominated by long slopes
with convex-concave profiles. More than 77% of the slopes fall
between 2° and 15°. Moderately inclined slopes (2°–7°) occupy
38.8% of the total land area. A similar area is occupied by steeply
inclined slopes (38.6%). Areas of flat ridge culminations and
valley bottoms occupy 11.8% of the total. Steep slopes (15°–35°)
occupy 10.7% of the area of the Foothills. The dominant
orientation of the hills is northern and southern. Slopes with
eastern and western exposure are less represented in the
topography.

The whole area of the Wiśnickie Foothills is located in the
warm temperate climate zone (Hess 1965; Obrębska-Starklowa
1977). It is characterized by an average annual air temperature of
8.3°C, with the average temperature of the coldest month
(January) ranging from−3.2°C to−4.0°C, and the average
temperature of the warmest month (July) ranging from 17.5 to
18.2°C (Obrębska-Starklowa 1988). According to IMGW data
from the Scientific Station of the Jagiellonian University in Łazy,
the average precipitation in 1989–2013 was 694.3 mm. The
number of days with precipitation in this period ranged from
182 to 233. The greatest amount of precipitation occurs fromMay
to October and constitutes 59.9%–79.8% of the annual
precipitation total (the average across the entire
aforementioned period was 69.5%). Precipitation during this
period was characterized by high daily, monthly, and seasonal
variability. Maximum daily precipitation ranged from 21 to
91.9 mm; maximum monthly precipitation ranged from 87.3
to 337 mm.

The main rivers of the Wiśnickie Foothills are right-bank
tributaries of the Vistula River. 48% of the analyzed area is
drained by the Raba River and its tributaries. The second
largest watercourse is the Uszwica, which drains 25% of the
study area. The third most important system is the Dunajec river
basin, whose left-bank tributaries drain 20% of the Wiśnickie
Foothills. In the northern part of the area, the Gróbka (Grabka)
and Kisielina rivers represent a small share in the hydrographic
system of the Foothills.

A significant part of the Wiśnickie Foothills (66%) is
covered by formations with low permeability, with a
permeability coefficient from 10–5 to 10−8 m s−1, represented
by cohesive soils (silty and loamy sands, loams, silty and sandy
loams, and silts). The remaining area is dominated by
medium-permeability soils (19%) represented by sands,
fluvisols, silts, and sedimentary and solid rocks that are
strongly sealed. The remaining part of the Wiśnickie
Foothills area consists of soils with very low permeability,
lower than 10–8 m s−1, represented by clays, loams, silt loams,
and fluvisols on clays. The depth of the groundwater table
within the foothills varies. In the valley bottoms and within the
inflow cones, they usually do not exceed 0.5–3.0 m. On the
slopes and in the upper parts, the water table may range from
1 m to 6–10 m (Kleczkowski 1992).

The soil cover of the Carpathian Foothills and their structure
reflect the geological substrate, the relief, the climate, and the
vegetation. These conditions resulted in the development of acid
brown soils and rainwater-gley soils. The conditions in large river
valleys favored the formation of mud and swamp soils (Uziak
1962; Siuta and Rejman, 1963; Firek 1977; Zasoński, 1981; Skiba,
1992; Skiba and Drewnik, 1995; Skiba et al., 1995). The grain size
composition of the slope formations is characterized by low sand
fraction content (up to 10%), significant silt fraction content
(50%–70%), and considerable clay fraction content (8%–18%)
(Święchowicz 2012). About 60% of the study area is covered by
complexes of loess and loess-like formations of varying thickness.
The second largest land cover is a complex of medium loams
(covering about 12% of the area). The greatest concentration of
these is in the southern (highest) part of the area and in the west,
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FIGURE 2 |Characteristics of the analyzed area (A,B) and summary of thematic maps used in landslide susceptibility analysis (C–L): (A)Numerical terrain model [m
below terrain] (1. 800–900; 2. 700–800; 3. 600–700; 4. 500–600; 5. 400–500; 6. 300–400; 7. 200–300; 8. 190–200). (B) Landslide density map (number of landslides/
1 km2) (1. 0; 2. 0–2; 3. 2–5; 4. 5–15; 5. 15–30; 6. 30–45). (C) Geological map (1. siltstone, claystone, sandy siltstone, sands and sandstone (Miocene); 2. variegated
shale; 3. shale and sandstone; 4. sandstone; 5. sandstone and shale; 6. other (gypsum, anhydrite, rock salt, gaize, siliceous marl, gray marl). (D) Annual
precipitation [mm] (1. 675–700; 2. 700–725; 3. 725–750; 4. 750–775; 5. 775–800; 6. 800–825; 7. 825–850; 8. 850–875; 9. 875–900). (E) Slope map (degrees) (1. 0–2;

(Continued )
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on the hills along the Raba river valley. In the close vicinity of the
heavy loams there are light loams, which occupy about 6% of the
whole study area.

Detailed studies on the number and location of landslides in
the Wiśnickie Foothills were carried out within the SOPO
program (the Lanslide Counteracting System) coordinated by
the Polish Geological Institute - National Research Institute (PIG-
PIB). The program recorded over 5,000 landslides in the area.
Their average density in the study area is 4.9 landslides per 1 km2

(6 landslides per 1 km2 of slopes). With respect to the type of
slope material in which landslides are formed, the dominant types
are landslides of weathered rocks on bedrock (41.3%) and deep-
seated landslides (composed of rock and weathered
rock—43.9%).

A closer examination of the map of landslide locations in the
Wiśnickie Foothills (Figure 2B) shows a high concentration of
landslides in the northern part of the study area, in the Brzeskie
Foothills belt. The character of mass movements registered within
the SOPO program is varied. In this study we focused on shallow
landslides which were formed within slope covers, that means
landslides composed of soils or those which were formed on the
contact zone of soil and weathered bedrock. These landslides are
almost 60% of all landslides registered within the SOPO program
and they are activated usually more rapidly than deep-seated
ones. Considering the forecasts of climate change, it is predicted
that in the future shallow landslides will be activated more and
more often in this region of Europe (Gariano and Guzetti, 2016).
These landslides are present in the whole area of the Wiśnickie
Foothills, primarily in its central, west-northern and western part.
The average density of these landslides in the study area is 3.4
landslides per km2, while the maximum density is 36 landslides
per km2.

Shallow landslides are most common on slopes between 10°

and 14° (40.6% of shallow landslides). Areas with slopes that are
smaller than 10° contain 25.3% of the remaining shallow
landslides. As slope increases, the number of landslides
decreases. Only 6.2% of landslides are located in areas with
slopes above 20°, which is due to the dynamics of
denudational processes (largely flushing) in the geological past.
In areas with steep slopes, which are the most predisposed to the
formation of slope processes, the presence of surface runoff and
surface and furrow flushing processes is more frequent; these
areas are the first to achieve a state of slope equilibrium, thus
reducing the risk of landslides.

Shallow landslides in the Wiśnickie Foothills mostly
develop on straight (29.6% of shallow landslides), convex-
concave (24.6%) and convex-convex (24.2%) slopes. On
straight slopes, landslides are proportionally distributed
across the slope profile. In the other types of slopes, one
part clearly shows a greater proclivity for landslides. For

convex-concave slopes, most landslides occurred in the
upper part of the slope (39.3%). The presence of shallow
landslides on a convex slope is most often associated with
the lower part of the slope (32.9%) or the landslide occupies the
entire length of the slope (20.7%). The only slope type with a
dominant presence of shallow landslides in its central part is
the concave slope, within which their 21% of shallow
landslides occurred.

In the Wiśnickie Foothills, shallow landslides most often
occur in the steep parts of a given slope type (e.g., lower part
of convex slope, middle part of concave slope), due to their
presence in the main relief elements and slope types. Their
presence is also connected with the level of moisture in a
given part of the slope (lower part of the slope, where springs
are more abundant) and the distance from the riverbed. In the
case of landslides located in the lower part and covering the
whole slope profile, respectively, 23% and 25% of shallow
landslides are located no farther than 1 m from the riverbed,
and about 80% occur at a distance up to 100 m. Landslide
activity is high on northern, north-western and north-eastern
slopes in relation to the other slopes, especially those with
southern and south-eastern exposure. It should be added that
there are no significant differences in the inclination of slopes
that face each other. The dominance of the presence of
shallow landslides on the northern and north-western
exposed slopes can also be observed when analyzing the
ratio of the area of the landslides themselves to the total
area of slopes that have the same exposure (2.0 and 2.3%,
respectively). For the south and southeast slopes, these values
are 1.6% and 1.0%, respectively. The proportion of shallow
landslides on the other slopes does not exceed 12.1% of its
total number.

The greatest number of shallow landslides within the
Wiśnickie Foothills (57.8%) occurs within silts. About 30%
occur within heavy or medium loams. The fourth most
abundant complex in terms of shallow landslides is light loam,
which accounts for 7.5%. Analyzing the ratio of the area of the
landslides themselves to the total area of a given complex, we can
conclude that complexes of clayey soils are the most susceptible to
landslides, followed by light loams and the complex of loess
formations.

Preparation of Data for Analysis
A 1 m× 1 m spatial resolution numerical terrain model developed
via LiDAR from ALS flybys was used to assess landslide
susceptibility of the Wiśnickie Foothills. The terrain model
was aggregated to a resolution of 10 m × 10 m and a slope
model and slope exposure were created based on the model.
Slope curvature data (Plan and Profile Curvature) were developed
in the SAGA software.

FIGURE 2 | 2. 2–7; 3. 7–15; 4. 15–35; 5. greater than 35). (F) Slope exposure (1. N; 2. NE; 3. E; 4. SE; 5. S; 6. SW; 7.W; 8. NW). (G)Map of soils (1. Skeletal soils; 2. Light
loams; 3. Medium loams; 4. Heavy loams; 5. Clay; 6. Silt; 7. Light loamy sands; 8. Strong loamy sands). (H) Soil permeability map (1. very low permeable soils; 2. high
permeable soils; 3. low permeable soils; 4. average permeable soils; 5. variably permeable soils). (I) Map of distance to rivers and streams (m) (1. 0–5; 2. 5–100; 3.
100–500; 4. 500–1,000; 5. 1,000–2,000). (J) Map of depth to groundwater (m below terrain) (1. 0–1; 2. 1–2; 3. 2–3; 4. 3–4; 5. 4–5; 6. 5–6; 7. 6–7; 8. 7–8; 9. 8–9; 10.
9–10). (K) Plan curvature map (1. ≤−0.005; 2. (−0.005–0.005>; 3. > 0.005). (L) Profile curvature map (1. ≤−0.001; 2. (−0.001–0.001>; 3. >0.001).
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Vector data from the 1:25,000 Soil and Agricultural Map,
produced by the Institute of Soil Science and Plant Cultivation -
National Research Institute (IUNG) in Puławy, were used to
evaluate the mechanical composition of the slope covers (soils).

Based on IMGW-PIB (Institute of Meteorology and Water
Management - National Research Institute) data, we analyzed the
annual precipitation totals from meteorological stations and posts in
theWiśnickie Foothills and its surroundings (1984–2013). In order to
ensure that the study remained representative, only those stations that
had at least 30-year-long precipitation measurement sequences were
evaluated (Wojnicz, Dobczyce, Łapanów, Łazy, Borusowa, Borzęcin,
Igołomia, Kraków-Balice, Limanowa, Łapanów,Maków Podhalański,
Nowy Sącz, Rozdziele, Tarnów,Wadowice, Węglówka). The maps of
mean annual precipitation for the Wiśnickie Foothills were based on
the mean values of precipitation across time.

To statistically analyze the distribution of landslide forms in
the Wiśnickie Foothills, we used the materials collected during
the SOPO program (the Landslide Counteracting System). We
obtained permission from the authorities of the Polish
Geological Institute - National Research Institute to use data
from 2021. Details included:

• location and shape of the landslide (vector data),
• the type of material in which they formed: soil landslides,
weathered rock landslides on bedrock, rock landslides, rock
and weathered rock landslides, and mixed landslides.

To analyze the location of landslides in theWiśnickie Foothills
area, data from the following municipalities were used:

- Dobczyce (authors: Zbigniew Koluch, Danuta Nowicka),
- Gdów (authors: Zbigniew Koluch, Danuta Nowicka),
- Bochnia (authors: Izabela Laskowicz, Bartłomiej Warmuz,
Paweł Marciniec),

- Bochnia miasto (authors: Izabela Laskowicz, Bartłomiej
Warmuz, Bogusław Bąk, Paweł Marciniec),

- Rzezawa (authors: Izabela Laskowicz, Bartłomiej Warmuz,
Ziemowit Zimnal),

- Brzesko (authors: Dariusz Wieczorek, Andrzej Stoiński),
- Wojnicz (authors: Witold Popielski, Sławomir Kurkowski,
Maciej Falkiewicz),

- Zakliczyn (authors: Leszek Jurys, Tomasz Woźniak, Anna
Małka, Władysława Rudeńska, Jerzy Frydel),

- Czchów (authors: Dariusz Wieczorek, Andrzej Stoiński,
Rafał Dąbrowski),

- Łososina Dolna (authors: Michał Bąk, Michał Długosz,
Elżbieta Gorczyca, Krzysztof Kasina, Tomasz Kozioł,
Dominika Wrońska-Wałach, Przemysław Wyderski),

- Gnojnik (authors: Jerzy Jodłowski, Jacek Puchyra, Agnieszka
Winiecka),

- Iwkowa (authors: Sylwester Sydow, Piotr Dobrzański,
Karolina Neczyńska),

- Lipnica Murowana (authors: Maciej Multan, Joanna
Bagrowska, Tomasz Dobosz),

- NowyWiśnicz (authors:Mariusz Kmieciak, Łukasz Dudziak),
- Żegocina (authors: Jarosław Winnicki, Jacek Puchyra,
Aleksandra Smyrak-Sikora),

- Trzciana (authors: Jarosław Winnicki, Aleksandra Smyrak-
Sikora, Agnieszka Kruzel),

- Łapanów (authors: Zbigniew Koluch, Danuta Nowicka),
- Limanowa (authors: Jerzy Jodłowski, Tomasz Dobosz,
Konrad Poroszewski, Agnieszka Winiecka),

- Jodłownik (authors: Bartłomiej Szałamacha, Błażej Trzmiel),
- Raciechowice (authors: Józef Boratyn, Konrad Boroń,
Konrad Górka),

- Wiśniowa (authors: Bartłomiej Szałamacha, Błażej Trzmiel),
- Myślenice (authors: Józef Boratyn, Michał Bąk, Krzysztof
Kasina).

Data on geological structure, rock permeability, depth to
groundwater table, and distance to watercourses and rivers
were derived from mapping studies such as:

• 1:10,000 topographical maps in the 1992 system and in the
1965 system,

• 1:50,000 Detailed Geological Map of Poland (sheets: Bochnia,
Brzesko,Wieliczka, Mszana Dolna) and 1:200,000 map (Nowy
Sącz sheet),

• 1:30,000 soil maps of Poland (sheets: Nowy Sącz, Cieszyn),
• 1:50,000 hydrographic Map of Poland (sheets: Bochnia,
Brzesko, Wieliczka, Mszana Dolna, Limanowa, Łososina
Dolna, Wojnicz).

Original geological map of study area contained 25 basic
lithological units. The map of soils was contained over 800
unique classes, where each one contained up to five horizons.
To simplify calculations and to avoid too many different data in
training and testing datasets we have merged smaller units into
the more generalized ones. The division of geological units into
bigger ones was partly based on the criterion of classification of
flysch slopes proposed by Zabuski et al., (1999) for the Outer
Carpathians in Poland. In this classification lithology of an area is
simplified and only includes the content of shales in rock massif.
The criterion used for merging soils was the based on the soil type
present in the upper horizons.

The individual thematic maps are shown in Figures 2C–2L,
and the detailed relationship of each factor to landslide terrain is
summarized in Figure 3.

METHODOLOGY

Data Preprocessing
Data from ten thematic maps, one of which was a landslide
map, were used in the calculations. The parameter values on
each map were categorized; next, sparse matrices were created
for the calculations and combined to form an input array
containing binary values. Data categorization was performed
using the pandas library. Prior to computation, the data was
divided into training and test sets using a 70:30 ratio. Previous
studies by Ng et al. (2021), Saha et al., (2021a), and others
indicate that this ratio of training data to test data usually
yields the best results. The scope of the analysis is shown in
Figure 4.
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Computational Algorithms
The susceptibility of slopes to mass movements can be assessed
using supervised learning methods. Given that the research
question involves determining whether the area in question is
susceptible to mass movements or not, this analysis is a binary
classification task. There are many machine learning algorithms
with a plethora of common applications to natural phenomena
and processes. In this paper, the research problem we tackle
represents an analysis characterized by large variation in the size
of individual classes (landslides comprise about 2.0% of the
Wiśnickie Foothills). The lack of balanced classes may lead the
algorithm to seek to maximize metrics that describe the larger
class, as it has a greater impact on the overall result. To
counteract this process, at the preprocessing stage,
researchers employ methods that balance individual classes
(“oversampling,” “undersampling”) (He and Garcia, 2009;
Sun et al., 2009; Galar et al., 2012) or adjust the values of
individual class weights (Chen et al., 2010; Albon 2018). In this
paper, both solutions were applied and the Scikit-Learn
(Pedragosa et al., 2011) and Imbalanced-Learn (Lemaitre
et al., 2017) libraries, available in the Python environment ,
were used for computation. Eleven computational methods
(algorithms) were used in this study; their assumptions and
characteristics are described below:

Logistic regression (LR). This method, much like linear
regression, considers the relationship between the values of
input and output parameters. The logistic function makes it
possible to determine the probability of belonging to
particular classes. Due to the size of the dataset (a table
with more than 8.5 million records), we used the Stochastic
Gradient Descent (SGD) algorithm from the Scikit-Learn

module, which optimizes the results using the stochastic
gradient descent method. Due to the imbalanced size of the
analyzed data, the algorithm was regularized using the
different values of the weights for each class (inversely
proportional to class frequencies in the input data). The
regularization of the model was performed using the grid
method with cross-validation (GridSearchCV module) for
three validation sets.

Naive Bayes (NB) classifier. This model determines the
probability of event A conditional on the occurrence of event
B P (A|B) given the availability of information P(B|A) and the
probability of events A and B occurring. The Categorical Naive
Bayes classifier is used in this paper. The cross-validated grid
method (GridSearchCV module) was used to optimize the model
using three validation sets, and the optimization was based on
finding the optimal value of the alpha parameter and the prior
probabilities of the classes.

AdaBoost (AB), Bagging (B), Random Forest (RF), and Extra
Trees (ET) are ensemble methods built with several predictors,
and each predictor is trained on a randomly generated subset
from the learning set using the same algorithm. The AdaBoost,
Bagging, and Extra Tress methods are based on the Decision
Tree Classifier method; a detailed description of these
algorithms can be found in Géron (2019). For the Bagging
Classifier (Bootstrap Aggregating) model, an ensemble of
classifiers is trained using random subsets (with returns), and
the final prediction outcome is determined by the most
frequently computed prediction. Random Forest, on the
other hand, is a convenient and algorithm-optimized decision
tree ensemble in which an ensemble of decision trees is learned
on different subsets (bootstrap samples), and the final result is

FIGURE 3 | Distribution of environmental factors within analyzed area and relationship between landslides and the analyzed factors.
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averaged to improve model accuracy and control model
overfitting. For the Bagging model library used here, the
number of features considered in finding the best tree
partitioning criterion corresponds to the square root of the
features used in the computation. Conversely, for the Random
Forest model, it is equal to their total number. The Extra-Trees
(Extremely Randomized Trees) ensemble takes into account a
random subset of features during the partitioning of each
Random Forest node. This generates random thresholds for
each feature and consequently more random trees. Unlike the
Random Forest method, Bagging and AdaBoost samples are not
bootstrapped. The Extra-Trees algorithm is significantly faster
than the Random Forest algorithm. By contrast, the Adaptive
Boosting (AdaBoost) algorithm is a reinforcement learning
algorithm in which each successive predictor attempts to
correct its predecessor. In this method, each successive
predictor “focuses” on the errors of the predecessor. After

each prediction, the predictor’s weighted error rate and its
weight are calculated, the sample weights are updated, and
the next predictor is learned using the updated weights. The
final result takes into account the predictions of all predictors,
with the prediction following a majority vote. For the AdaBoost,
Bagging, and Random Forest algorithms, the default estimator is
the Decision Tree Classifier algorithm. In order to optimize it,
we applied the grid method with cross-validation
(GridSearchCV module) by taking different values of tree
depth and using three validation sets. The gini index was
used to determine the information gain. Then, having a
predetermined tree depth for each algorithm, we performed
the calculations and compared the classifier quality index values
for the training (learning) and test sets. If the values of this
parameter did not differ by more than 0.015, we concluded that
the model was not overfitted. Balanced weights were used to
balance the validity of the two classifiers.

FIGURE 4 | Computational procedure.
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Balanced Bagging (BB), RUSBoost (RB), Balanced Random
Forest (BRF), and Easy Ensemble (EE) are composite (hybrid)
computational methods designed to work with imbalanced
datasets and are available in the Imbalanced-Learn library
(Lemaitre et al., 2017). For each of these algorithms,
computations are performed in two stages. The first stage
involves generating a subset in which data from the
dominant class are reduced (e.g., to a value corresponding
to the amount of data present in the minority class, i.e., the
class containing landslides). In the second stage, the subset is
trained. The subset is generated (bootstrap trials without
replacement) and trained repeatedly. The Balanced Bagging
algorithm uses the Bagging ensemble for the purpose of
training; its default estimator is the Decision Tree Classifier
algorithm. Meanwhile, the Easy Ensemble algorithm is trained
using the AdaBoost ensemble of predictors, and the Balanced
Random Forest is the equivalent of the Random Forest
algorithm from the Scikit-Learn library. Both algorithms use
balanced boostrap sampling. Easy Ensemble uses samples to
generate results using a boosting technique, while Balanced
Random Forest trains random decision trees (Liu et al., 2009).
The RUSBoost algorithm enables us to use any algorithm (the
default option is the Decision Tree Classifier); this study uses
Random Forest. This algorithm provides a hybrid solution in
which data from the dominant class are reduced randomly
using the Random Under Sampling algorithm and then
subjected to learning using an arbitrary algorithm. The
advantage of this solution is that it reduces computation
time, while the disadvantage is that it loses information
from the majority class due to the use of the boosting
technique (Seiffert et al., 2010). In this model, the Random
Forest Classifier was used as the learning algorithm. In the
Bagging Balanced, Balanced Random Forest, and Easy
Ensemble algorithms, the training set is reduced before
learning and the default model is the Decision Tree
Classifier. In these models, the main parameter that was
optimized was maximum tree depth, and the model was
considered appropriate if the difference in the classifier
index value between the test set and the learning set did not
exceed 0.01. In general, for all these models, after reduction,
the size of the dominant class was the same as that of the
smaller class.

Multi-layer Perceptron (MLP) is a neural network algorithm
and is classified as a deep-learning method (Géron, 2019). This
algorithm contains a hidden layer, and its output is a logistic
function. In this paper, this algorithm is integrated with the
Random Under Sampler algorithm from the Imbalanced Learn
library. This algorithm randomly removes data from the
dominant class, which helps to speed up the computation, and
on the other hand avoids over-fitting the model with data from
the dominant class. In this paper, different data proportions were
tested between the two data classes (between 1:1 and 1:
0.5—i.e., the count of the larger class was reduced to the
number of pixels corresponding to the number of instances in
the smaller class, or at most, the number of instances from the
larger class was twice the count of the smaller class). After
removing data from the dominant class, calculations were

performed with the Multi-Layer Perceptron algorithm, and
optimization (selection of the activation function and the
regularization parameter l2) was performed using the cross-
validation grid method on three validation sets.

Based on these calculations, we evaluated the impact of
individual factors (parameters) on the presence of landslides.
Calculations were performed in Google Colaboratory using
the Scikit-learn (https://scikit-learn.org/stable/) and
Imbalanced-Learn (https://imbalanced-learn.org/stable/).
The Matplotlib (Hunter 2007) and Seaborn (Waskom
2011) libraries were used to visualize the results of the
analyses.

In the case of linear models (e.g., logistic regression, linear
support vector machines), it is important that the variables are
not correlated with each other. The collinearity of the variables
can cause numerical instability in the fit of the regression
equation (Bruce et al., 2020). In the study, the calculations
were performed for categorical data and therefore the
collinearity calculations were performed using the Cramer’s V
coefficient, which was determined with the use of a reseachpy
(Bryant 2018) library.

Validation of Results
To accomplish to the goal of this study, we adopted a framework
with two classes (landslide events) that describe different parts of
the Wiśnickie Foothills from the point of view of their
susceptibility to landslides:

• Class 0: the area is not exposed to mass movements, i.e., no
such processes have been recorded there), and

• Class 1: the area is landslide-prone. i.e., mass movements
have been recorded there, irrespective of the degree of
current activity.

Comparing our results on the susceptibility of different sites to
mass movements with the observation of landslide processes, four
cases can be distinguished:

⁃ True Positive (TP): the predicted class (landslide event) is
consistent with reality,

⁃ True Negative (TN): the classifier did not predict a Class 1
event and it does not occur in reality,

⁃ False Positive (FP), the classifier predicted a landslide event,
whereas in fact it did not occur,

⁃ False Negative (FN), the classifier did not predict a landslide
event, whereas in fact it did occur.

Based on the counts of each computational instance, the
following metrics can be identified:

Accuracy � TP + TN

TP + FP + TN + FN
(1)

Recall � TP

TP + FN
(2)

Precision � TP

TP + FP
(3)
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F1 − score � 2 · Recall · Precision
Recall + Precision

(4)

G −Mean �
�����������������

TP

TP + FN
· TN

TN + FP

√
(5)

Dominance � TP

TP + FN
− TN

FP + TN
(6)

For analyses involving classes of varying size, the Accuracy
parameter is not an appropriate metric because the effect of a
smaller class (which is oftenmore significant) on its value is much
smaller than that of a larger class. An alternative to this parameter
is the area under receiver operating characteristics curve (AUC)
(Branco et al., 2015). The value of this parameter ranges from 0.5
to 1.0; the larger it is, the better the model.

The Recall parameter indicates how accurate the prediction of
positive cases is, and the precision metric indicates what
proportion of the data classified as positive cases represents
the proportion of all cases classified as positive. A low
precision value indicates that a lot of data classified as positive
was misclassified (FP are common here). In turn, the F1-score
value represents the harmonic mean of recall and precision.

The G-Mean parameter describes the geometric mean of the
classifier accuracy of the two classes. This parameter is
important to determine the degree to which the classifier
avoids the negative class and the degree to which the

positive class 1) is omitted from the analysis (Wang D
et al., 2021). The Dominance value can range from −1 to 1
and describes how each class affects the overall computational
performance. A value of 1 means that the ideal Accuracy value
for the smaller class is achieved but all cases from the larger
class are omitted (Branco et al., 2015).

RESULTS

Correlation of the Input Data
The results of the collinearity calculations between the
analyzed environmental factors are shown in Figure 5.
General, it can be stated that the values of Cramer’s V
coefficient are low indicating a slight association between
the analyzed parameters. Only in three cases the values of
the coefficient were greater than 0.2, but the majority of results
were lower than 0.1.

Model Parameters
Each model trained for an array described by 73 features. For
the logistic regression (LR) model, the value of Ralph’s
parameter was 0.0005 and the quotient of weights for
classes 0 and 1 was 1:42.5, with a maximum number of
iterations of 5,000. For the Naive Bayes (NB) classifier, the

FIGURE 5 | Matrix of Cramer’s V.
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value of the additive smoothing parameter was 0.00001, with
a class prior probabilities of 1.3:1 between classes 0 and 1.

For the composite models that used the Random Forest (RF)
algorithm, the maximum tree depth was 15 and the number of

estimators was 100. The maximum tree depth was 14 for the
Bagging (B) and Extra Trees (ET) models and 6 for the AdaBoost
(AB) model, with 50 estimators. The computational results
showed that all estimators had an equal effect on the final result.

FIGURE 6 | Values of metrics for each algorithm.
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The hybrid algorithms had similar parameter values to their
Scikit-learn counterparts. For the Balanced Bagging (BB) and
Balanced Random Forest (BRF) algorithm, a maximum tree
depth of 14 and 15, respectively, was used, with 60 and 100
estimators, respectively. The maximum tree depth for the Easy
Ensemble (EE) model was 6, with 10 estimators. For the
RUSBoost (RB) model, the AdaBoost classifier, with a
maximum tree depth of 9, was used to train the model, with
10 classifiers.

For the Multi-layer Perceptron (MLP), the activation function
was a logistic function, the learning speed was 0.001, with a
maximum number of iterations of 2,000, a penalty coefficient of
l2 = 0.0005, and a hidden layer comprising 100 neurons.

Accuracy of Models
Figure 6 shows the computational results of selected metrics for
each computational algorithm. The highest Accuracy values
(88.6%) for the test set were obtained by the Multi-layer
Perceptron model with a 1:0.5 ratio of classes 0 and 1; the
other models based on this algorithm had an accuracy of
75.7%–86.6%. For the remaining models, the RusBoost and

Easy Ensemble achieved the highest value of this parameter
(76.1%), while the AdaBoost model yielded a slightly lower
value (74.7%). On the other hand, the Extra Trees (68.3%)
and Balanced Random Forest (68.4%) models produced the
lowest Accuracy (65.0%).

For the Recall parameter, the best results were obtained for
the Multi-layer Perceptron models (87.5%) for the balanced
dataset (MLP 1:1), with slightly poorer results for the Balanced
Random Forest (87.1%), Extra Trees (86.3%), Easy Ensemble
(85.6%), and Balanced Bagging (85.3%) models. By contrast,
the linear algorithms yielded the lowest results, with Logistic
Regression (68.9%) outperforming Naive Bayes (66.7%).
Relatively poor results were obtained for Neural Network
(67.9%) when the class proportions were not balanced
(MLP 1:0.5).

On the other hand, the highest AUC values (Figure 7) were
obtained for the neural network (88.0%–90.0%), and the results
from the Easy Ensemble and RUSBoost models were very close
(89.0% and 88.7%). Overall, the values of this parameter were
relatively similar across the models used, which allows us to
consider them serviceable (Li and He 2018). The exceptions were

FIGURE 7 | Receiver Operator Curves for the test set.
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NaiveBayes (75.8%) and Logistic Regression (77.3%), which
obtained significantly smaller values for the auc parameter.

In terms of the G-Mean value (Figure 6), the algorithms
that were used are of similar quality (76.6%–81.5%) except for
Naive Bayes (68.0%) and Logistic Regression (69.5%). The
best values of this parameter were obtained for the neural
network; models based on reinforcement learning (Easy

Ensemble, RUSBoost, and AdaBoost) achieved slightly
lower results.

The values for the Dominance parameter (Figure 5)
indicate that the neural network (except 1:1 MLP),
NaiveBayes, and logistic regression do not “favor” any of
the classes. For the other classes, the algorithms have
parameter values between 0.08 and 0.19, indicating that

FIGURE 8 | Probability distribution maps of shallow mass movements for the algorithms used.
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the algorithms are more focused on the class 1
(the positive class, indicating the occurrence of landslide
events).

The Precision and F1-score values were also considered when
analyzing the computational results. Precision values are
generally low and do not exceed 11%, which is due to the
proportions of the classes. Only in the case of neural network,
where learning was conducted for sets of the same number of
classes, did the precision values reach 77.3%–78.5%, while F1-
score values were at 73.3–84.1. Figure 8 presents maps of the
distribution of landslide probability values generated for the
algorithms used here. For the purpose of the analyses, we
distinguished 5 classes of mass movement susceptibility, as
proposed in Ng et al. (2021):

• Very low susceptibility (probability of site being classified as
a landslide is 0%–20%),

• Low susceptibility (probability of site being classified as a
landslide is 20%–40%),

• Medium susceptibility (probability of site being classified as
a landslide is 40%–60%),

• High susceptibility (probability of site being classified as a
landslide is 60%–80%),

• High susceptibility (probability of site being classified as a
landslide is 80%–100%).

It is clear that the AdaBoost, Easy Ensemble, and RUSBoost
algorithms indicated that most of the analyzed area is located in the
zone of medium susceptibility class, with the AdaBoost and Easy
Ensemble models producing higher variability than RUSBoost. They
also separately distinguished the presence of zones of very low and
low landslide susceptibility. This type of relationship may be due to
the fact that these models were characterized by lower tree depths for
individual classifiers and thus may have influenced their conservative
estimate of the probability value of belonging to Class 1. In the case of
the other models, it is noticeable that the lowest susceptibility class
occurs in the western, southwestern and northern parts of the
analysis area.

The proportion of the total comprised by each susceptibility
zone was compared with the number of landslides recorded
(Figure 9). These results indicate that about 50%–80% of the
area is at very low and low landslide susceptibility classes. It is

FIGURE 9 | Percentage distribution of area and landslides classified in landslide susceptibility category by each algorithm.
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important to note that the largest part of this area was obtained
by the artificial neural network algorithm. The presence of real
landslide pixels in these zones does not exceed 20% of their
total number. The largest share of landslides in the very low
and low landslide susceptibility class was obtained for the
logistic regression algorithms, Naive Bayes, and one of the
variations of the neural network (MLP 1:0.5), which was
learned on the most imbalanced dataset. Except for the

AdaBoost, Easy Ensemble, and RUSBoost algorithms, the
proportion of areas with high and very high landslide
susceptibility class does not exceed 30%, and the actual area
of landslides classified in these zones ranges from 50% to 80%.
The largest share of landslides in the zone of high and very high
landslide susceptibility class was obtained by using the Multi-
layer Perceptron algorithm, learned on a set with balanced
class size. In general, for artificial neural network models in the

FIGURE 10 | Binary classification results for the analyzed area.
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high landslide susceptibility zone, the proportion of actual
landslides is the largest. On the other hand, the models based
on the decision tree algorithm—Bagging, Balanced Bagging,
Balanced Random Forest, Extra Randomized Trees and
Random Forest—classified the most landslides into the high
landslide susceptibility zone of all the models. For the
AdaBoost, Easy Ensemble, and RUSBoost models, almost
the entire analysis area was classified as a medium landslide
susceptibility class, which was likely due to the relatively
shallow depth of the decision trees and thus the high
generalizability of these models.

The calculations obtained by employing neural networks
provide interesting data. It is clear that, as the share of class 0
areas in the learning set increases, the share of areas with high and
very high landslide susceptibility decreases and the share of actual
landslide areas classified into zones with low and very low
landslide susceptibility class increases. These relationships
demonstrate the tendency of the algorithm to adjust itself to
the dominant class.

Taking into account the results of the binary classification
(Figure 10), we can conclude that 12%–33% of the Wiśnickie
Foothills area is located in a zone of surface landslide
susceptibility. The most optimistic analysis results were
obtained for the neural network trained on the dataset
with high class imbalance (MLP 1:0.5). In most cases, the
size of the area exposed to shallow mass movements was
between 25 and 33%, while the most pessimistic predictions
were generated by Balanced Random Forest and Extra Trees
methods.

Validity of Model Parameters
Supplementary Appendix S1 presents the values of model
parameters for the logistic regression algorithm and the
significance of parameters for models based on the decision
tree method. For logistic regression, a slope inclination in the
10°–15° range, average annual precipitation of 770–775 mm, and
presence of clay soils had the greatest influence on the
classification results. In contrast, zones with slope inclinations
between 15 and 45° are the next most important factor affecting
classification.

For the Extra Trees, RandomForest, and Balanced Random
Forest models, slope inclination (classes with slopes of 0°–2.5°,
2.5°–5°, 5°–10°, and 10°–15°), annual precipitation (zones with
average annual rainfall in the 700–725, 725–750, and
750–775 mm ranges), and rectilinear slopes (zones
characterized by profile curvature values approaching 0) were
also important factors affecting the final classification.

On the other hand, in the case of AdaBoost models, the most
significant factors affecting the decision were distance from rivers
(more than 200 m away), the presence of shale and sandstone in
the bedrock, zones with average annual precipitation of 725–750
and 750–775 mm, occurrence of heavy loams, and slope
inclination (in 2.5°–5°, 5°–10° and 10°–15.0° ranges). In the
case of the RUSBoost model, the most significant variables
affecting the partitioning were zones with mean annual
precipitation of 725–750 and 750–775 mm, areas at a large
distance from rivers (more than 200 m), the presence of mixed

shale-sandstone and sandstone-shale complexes, and slope
inclination (zones 0°–2.5°, 2.5°–5°, and 10°–15°).

Overall, the main factors determining the classification of the
analyzed area’s susceptibility to landslides are the slope
inclination, rainfalls, and the presence of selected soils or rock
formations.

DISSCUSSION

Mass movements are widespread almost all over the world. Map
of Europe’s landslide susceptibility based on logistic regression
method (Van Den Eeckhaut et al., 2012) indicates that the area of
southern Poland is characterized by an moderate susceptibility to
this type of phenomena. Wojciechowski (2019) points out that
the propensity of Polish lands toward landslides is usually
underestimated in relation to other parts of Europe and the
world. Recent efforts to map all of Poland from this
perspective indicate that the Carpathian region may have
experienced as many as 100,000 landslides (Wójcik and
Wojciechowski, 2016), with at least 5 landslides per km2.
These data prove that the problem of mass movements is real.
The analyzed area in the Wiśnickie Foothills belongs to the Outer
Carpathians, located in the north-central part of the chain. The
calculations presented in this study indicate that the
environmental factors taken into account are connected to
landslide risk, as evidenced by the high outcome values. In
general, however, the relationship between landslide risk and
the factors analyzed is complex. Therefore, linear regression or
naive Bayesian classifier methods produced poorer results than
methods based on decision trees and a relatively simple neural
network. Logistic regression is a widely used method (e.g., Ng
et al., 2021; Dai and Lee 2003; Carrara et al., 2008; Van Den
Eeckhaut et al., 2012; Shou and Yang, 2015; Barella et al., 2018; Ng
et al., 2021; Barančoková et al., 2021; Alqadhi et al., 2021), but its
accuracy is usually lower than that of other methods. On the other
hand, as indicated by Feng et al. (2016), it is more generalizable
under a changing combination of factors than neural networks or
the support vector method, which may indicate that it is more
resistant to overfitting. The naive classifier method is not often
used to determine landslide risk zones; nevertheless, the results
produced by Pham et al. (2017), Barella et al. (2018), Merghadi
et al. (2020) indicate that its performance is usually poor
compared to other methods.

Reichenbach et al. (2018)’s review of studies on landslide
susceptibility maps published in the first years of the 21st
century indicates that the first decision tree-based methods
appeared in the late 2000’s. Merghadi et al. (2020)
demonstrate that, after 2014–2015, the popularity of ensemble
models based on the decision tree algorithm increased
significantly. Besides the decision tree algorithm itself (Mao
et al., 2017; Guo et al., 2021; Su et al., 2021), popular
variations of the method include Random Forest and
Adaboost (Goetz et al., 2015; Thien Bui et al., 2016;
Arabameri et al., 2017; Zhang et al., 2017; Chen et al., 2018;
Hong and Liu, 2018; Lai et al., 2018; Pourghasemi and Rahmati
2018; Merghadi et al., 2020; Alqadhi et al., 2021; Saha et al., 2021a;
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Ng et al., 2021; Pourghasemi et al., 2021), which achieve very
good prediction results in terms of accuracy and AUC values
reaching or even exceeding 90%.

In this paper, a total of eight models that utilize the decision
tree method were used, four of which employed the
undersampling technique during learning, which speeds up the
computation and also counteracts overfitting. Comparing the
results of the calculations, we can conclude that the use of
undersampling at the learning stage improved the prediction
of most of the models. The Easy Ensemble model obtained
slightly better Accuracy, Precision, Recall, and AUC values
than AdaBoost. The Balanced Bagging model obtained slightly
higher recall and AUC values than the Bagging model. The
Balanced Random Forest model yielded lower accuracy and
higher recall than the Random Forest model. Turning to the
RUSBoost model, which uses the Random Forest algorithm as its
primary classifier, produced higher accuracy and AUC values and
lower recall than the Random Forest model. Overall, of all the
methods examined here, Easy Ensemble and RUSBoost obtained
the highest accuracy value, Balanced Random Forest obtained the
highest recall, and Easy Ensemble and RUSBoost obtained the
maximum AUC value.

These results allow us to compare the accuracy of the different
approaches using composite models that rely on the decision
algorithm. For the analyzed data, the AdaBoost algorithm
obtained the highest Accuracy value, the Random Forest
algorithm obtained the highest Recall value, and the AdaBoost
algorithm achieved the highest AUC. The results presented by
Thien Bui et al. (2016) showed that using the Bagging model
produce better accuracy and AUC values than using
reinforcement learning techniques (AdaBoost), although Hong
and Liu (2018) found the inverse of this relationship. On the other
hand, Ng et al. (2021) used Random Forests to obtain slightly
better computational results compared to the AdaBoost model.

Despite its relatively simple design, compared to other types of
neural networks (Saha et al., 2021b; He et al., 2021; Jones et al.,
2021; Pham et al., 2021), the Multi-layer Perceptron algorithm is
commonly used to develop landslide susceptibility maps and
often performs well (Zare et al., 2018;Wang L-J et al., 2016; Wang
Q. et al., 2016; Pham et al., 2017; Adnan et al., 2020; Ng et al.,
2021; Polat, 2021, among others). Compared to methods that use
decision trees, during learning, this model does not have the
ability to adjust factor weights and adjusts to the class with more
(negative) cases. For this reason, at the preprocessing stage, we
applied the undersampling method using the Random under
sampler algorithm. The results showed that as the size of the 0
class increases, the value of the Accuracy metric also increases,
while that of the Recall metric decreases, and the effect on AUC
and G-Mean can be considered negligible. After juxtaposing the
high Accuracy and Recall values, we concluded that the optimal
variant of the model was the one that took into account the
balancing of both classes at the training stage (MLP 1:1). The
results obtained with the MLP algorithm were the most favorable
of all the models used. In turn, the results in Ng et al. (2021), also
performed using the Scikit-Learn library, showed that the method
is clearly less effective than the random forest algorithms,
AdaBoost, or the support vector method.

There are several passive factors that are primarily responsible
for the intensification of landslides in Poland: slopes with
gradients of 9–30° (Wojciechowski 2019), the presence of
tectonic dislocation zones, and flysch rocks. On the other
hand, exposure and land cover bear little weight in
determining the intensity of mass movements, as does the
presence of buildings. Overall, Wojciechowski (2019) estimates
that 15% of Poland is threatened by mass movements. A
susceptibility analysis of part of the Carpathian range (near
Dukla) conducted by Bronowski et al. (2016) using the
Entropy Index method demonstrates that the slope and
lithology of the terrain are the most important determinants
of landslide occurrence. These authors also note that almost 50%
of the area they analyze is characterized by very high and high
landslide risk. These results are generally more pessimistic than
those obtained in the present study, which may stem from the
specificity of the site and the calculation method. Długosz (2011)
also presents a set of landslide susceptibility analyses in the
Carpathians, using the Weight of Evidence method for 4 areas.
The results show that the contribution of individual factors in
landslide susceptibility maps vary considerably. This analysis
signaled that exposure, slope, land use, and site lithology all
have a significant impact on landslide susceptibility. Bucała
(2009) applied the Landslide Index method to the catchment
area of Jaszcze and Jamne streams (Gorce), finding that slope
inclination and land use (deforestation zones) determine surface
mass movements caused by intense rainfall. Mrozek’s (2013)
study of landslide susceptibility using theWeight of Evidence and
Empirical Likehood Ratio methods for the environs of the town of
Szymbark near Gorlice (in the Low Beskids) showed that the
distance from tectonic dislocation zones, northern and eastern
exposure of slopes, as well as their inclination (7°–18°) are
important contributors to landslide susceptibility in the study
area. The author (Mrozek 2013) also points out that including
land use in the analysis of landslide potential is problematic
because the rate at which humans transform the land is too high
for the modern land use to correspond with the land use
conditions that existed in the period when landslides were
formed.

Researchers rely on different types of data to study the
susceptibility of an area to landslides using machine learning
techniques. In most cases, they opt for a numerical model of the
terrain, which makes it possible to determine, among others, the
slope, exposure, altitude, and curvature of an area, as well as data
on soils present, their use, distance from roads and rivers, size of
drainage basin, lithological structure, distance from tectonic
faults, and precipitation. In general, the scope and preparation
of parameters considered in the development of landslide
susceptibility maps are not systematized, which causes the role
of individual factors to change depending on the data included in
the calculations.

Feng et al. (2016) showed that for artificial neural networks,
depending on the adopted input dataset, the AUC parameter
ranges from 70% to 87%. A separate factor sensitivity analysis
conducted using Random Forest models and decision trees
integrated with the logistic regression algorithm revealed that
the influence of individual factors on the computational results

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 87219218

Zydroń et al. Landslide Susceptibility Maps for the Western Carpahians

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


can vary depending on the computational method used (Alqadhi
et al., 2021). Goetz et al. (2015) come to similar conclusions.
Thien Bui et al. (2016) note that the greatest information gain
during decision tree partitioning occurs with information on
distance from roads, slope, and exposure, while the lowest gain
occurs in the case of distance from tectonic faults, terrain
lithology, and precipitation. On the other hand, Meghadi et al.
(2020) indicate that the decision tree distribution is most strongly
determined by precipitation, altitude, soil type, slope, and land
use, and least by slope exposure, distance from a road network,
and distance from a drainage system. Wang L et al. (2021) use the
maximum entropy method to posit that distance from roads,
precipitation, and land use have significant effects on landslide
occurrence, while distance from rivers, tectonic faults, and
elevation all have a minor effect. Pham et al. (2021) turned to
artificial neural networks to argue that distance from rivers,
terrain curvature, elevation, and slope are important factors,
but distance from rivers and Normalized Difference
Vegetation Index (NDVI) do not affect the calculation results.
Conversely, Yuvaraj and Dolui (2021) posit that precipitation,
slope, and lithology are important in vulnerability calculations. It
is interesting that the authors find that the highest intensity of
landslides occurs in the subclass characterized by the lowest
precipitation. Ng et al. (2021) reinforce this finding on the
significant influence of precipitation on the results of the
analysis but show that the single most important factor is
slope inclination, whereas the geological structure of the
terrain has the least influence. Shou and Yang. (2015) and
Goetz et al. (2015) reaffirm the very significant effect of slope
on the result of the classification.

Combining the results obtained in this study with those that
emerge from the literature, we can conclude that environmental
factors have a complex impact on the occurrence of landslides.
Methods based on the decision tree algorithm often have the
advantage of making it possible to determine the importance of
individual factors on the prediction results. In this study, we
showed that the important factors that influence the results of
the calculation include slope of the terrain, variation in
precipitation, and the presence of site-specific soils or rock
formations. In general, the relationships uncovered here are
consistent with existing views that slope stability is the end
result of the interaction of passive factors (slope, soil type,
geological structure) with active factors (precipitation, climate
and meteorological conditions, land cover, anthropogenic
factors). The role of individual factors in initiating mass
movements in different regions may vary, which means that
computational algorithms developed for one area may not be
effective for others. In such situations, deterministic methods
based on modeling physical processes in the soil environment
are advantageous. The disadvantage of these methods, in turn, is
that it is necessary to obtain detailed data on the geological
structure of the area and the geotechnical properties of soils and
rocks. Statistical methods, especially machine learningmethods, are
a cheaper and faster tool for hazard assessment and at the same
time make it possible to identify a model landslide area on the basis
of practically any environmental information about the area.

CONCLUSION

In this paper, we calculate the susceptibility of the Wiśnickie
Foothills area, which is located in the northern part of the Polish
Carpathians, to surface-level mass movements. We used several
environmental factors (slope inclination and aspect, terrain
curvature, groundwater table depth, distribution of precipitation,
distance from rivers, soil complexes, permeability of slope cover,
major geological complexes) in the analysis to determine their
relationship with the presence of landslides using various
machine learning techniques using logistic regression, the naive
Bayes classifier, composite methods based on decision tree
techniques, and a simple neural network (Multi-layer
Perceptron). For most of the calculations, we trained the models
using imbalanced datasets; we adjusted the importance of each class
using weights or the undersampling technique to balance the classes.

The results of the calculations indicate that 25%–33% of the
Wiśnickie Foothills is in a zone threatened by shallow mass
movements. These data show that the issue of mass movements
in theWiśnickie Foothills is important in the context of ensuring the
safety of its inhabitants and the provision of services that maintain
the technical infrastructure in the area.

The results of the analyses indicate that the influence of the
factors examined in this study on the landslide susceptibility of
a given site is complex and multifaceted. Logistic regression
and the naive Bayes classifier produced the least precise results.
Models based on the decision tree method, were the choice of
classifier depended on the metric used, generated much
stronger results. In this case, given that the size of the
classes is strongly imbalanced, it is reasonable to use the
recall, dominance metric, while the use of the AUC metric
should be preceded by an analysis of other metrics. Taking
these factors into account, AdaBoost, Easy Ensemble, and
RUSBoost are all useful algorithms. On the other hand,
considering probability of landslide occurrence Balanced
Bagging seems to be the most reasonable choice to classify
the landslide susceptibility of the area among the models based
of decision tree classifier. RUSBoost, Easy Ensemble and
Balanced Bagging are hybrid algorithms, where in the first
stage of learning, the dataset is subjected to random reduction
of the set describing the majority class. The advantage of using
this technique is that it reduces computation time, and
repeatedly learning the model on bootstrap samples reduces
model overlearning. When all metrics were taken into account,
it can be stated that the best results were provided by the Multi-
layer Perceptron model, which was learned on a balanced
dataset.

The obtained results indicate that decision tree based algorithms
and neural networks are very useful for classifying areas that are
prone to mass movements. The advantage of machine learning
algorithms is that they allow us to evaluate the probability of a
landslide occurring in a given area while taking into account
practically any number and form of parameters describing the
area itself. The dynamic development of computer science
increases access to data that pinpoints changes in environmental
and meteorological conditions, which creates the prospect of new
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future applications of machine learning techniques for geohazard
early warning systems.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization, TZ and PD; Methodology, TZ; Software, PD and
TZ; Validation, TZ; Formal analysis, TZ and AG; Investigation, PD
and TZ; Data curation, TZ and PD; Writing—original draft
preparation, TZ and PD; Writing—review and editing, TZ, AG,
and PD; Supervision, TZ; Project administration, AG; Funding
acquisition, AG and PD.

FUNDING

Funded by a grant from the Ministry of Education
and Science to the University of Agriculture in Krakow
for 2021.

ACKNOWLEDGMENTS

We are grateful to the Polish Geological Institute - National
Research Institute (PIG-PIB) for providing data on the locations
and characteristics of landslides.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2022.872192/
full#supplementary-material

REFERENCES

Adnan, M. S. G., Rahman, M. S., Ahmed, N., Ahmed, B., Rabbi, M. F., and Rahman,
R. M. (2020). Improving Spatial Agreement in Machine Learning-Based
Landslide Susceptibility Mapping. Remote Sens. 12, 3347. doi:10.3390/
rs12203347

Albon, C. (2018). Machine Learning with Python Cookbook: Practical Solutions
from Preprocessing to Deep Learning. O’Reilly 366.

Aleotti, P., and Chowdhury, R. (1996). Landslide Hazard Assessment: Summary
Review and New Perspectives. Bull. Eng. Geol. Eng. 58, 21–44. doi:10.1007/
s100640050066

Alqadhi, S., Mallick, J., Talukdar, S., Bindajam, A. A., Van Homg, N., and Saha, T.
K. (2021). Selecting Optimal Conditioning Parameters for Landslide
Susceptibility: an Experimental Research on Aqabat Al-Sulbat,Saudi Arabia.
Environ. Sci. Pollut. Res. doi:10.1007/s11356-021-15886-z

Arabameri, A., Pourghasemi, H. R., and Yamani, M. (2017). Applying Different
Scenarios for Landslide Spatial Modeling Using Computational Intelligence
Methods. Environ. Earth Sci. 76, 832. doi:10.1007/s12665-017-7177-5

Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L. (2011). Physically-Based and
Distributed Approach to Analyze Rainfall-Triggered landslides at Watershed
Scale. Geomorphology 133 (3-4), 121–131. doi:10.1016/j.geomorph.2011.03.019

Barančoková, M., Šošovička, M., Barančok, P., Jr., and Barančok, P. (2021).
Predictive Modelling of Landslide Susceptibility in the Western Carpathian
Flysch Zone. Land 10, 1370. doi:10.3390/land10121370

Barella, C. F., Sobreira, F. G., and Zêzere, J. L. (2018). A Comparative Analysis
of Statistical Landslide Susceptibility Mapping in the Southeast Region of
Minas Gerais State, Brazil. Bull. Eng. Geol. Environ. doi:10.1007/s10064-
018-1341-3

Branco, P., Torgo, L., and Ribeiro, R. (2015). A Survey of Predictive Modelling
under Imbalanced Distributions. arXiv:1505.01658

Bronowski, B., Chybiorz, R., and Jura, D. (2016). Landslide Susceptibility Map Ping
in the Beskid Niski Mts., Western Carpathians (Dukla Commune, Poland).
Geol. Quaterly 60 (3), 586–596. doi:10.7306/gq.1275

Bruce, P., Bruce, A., and Gedeck, P. (2020). Practical Statistics for Data Scientists:
50+ Essential Concepts Using R and Python. 2nd Edition. O’Reilly.

Bryant, C. (2018). Researchpy. Available at: https://github.com/researchpy/
researchpy.

Bucała, A. (2009). Rola Opadów Nawalnych W Kształtowaniu Stoków I Koryt W
Gorcach Na Przykładzie Zlewni Potoków Jaszcze I Jamne. Pr. Geogr. 81 (3),
399–418.

Bukowski, K. (1996). Złoże Soli W Bochni. W Materiałach Z Warsztatu Analiza
Basenu Trzeciorzędowego Przedkarpacia. Arch. Kraków: OK PIG.

Burtan, J. (1977). Szczegółowa Mapa Geologiczna Polski W Skali 1:50 000, Arkusz
Mszana Dolna. Wydawnictwa Geologiczne. Warszawa.

Burtan, J. (1954). Szczegółowa Mapa Geologiczna Polski W Skali 1:50 000, Arkusz
Wieliczka. Państw. Inst. Geol. Warszawa.

Canli, E., Mergili, M., Thiebes, B., and Glade, T. (2018). Probabilistic Landslide
Ensemble Prediction Systems: Lessons to Be Learned from Hydrology. Nat.
Hazards Earth Syst. Sci. 18, 2183–2202. doi:10.5194/nhess-18-2183-2018

Carrara, A., Crosta, G., and Frattini, P. (2008). Comparing Models of Debris-Flow
Susceptibility in the Alpine Environment. Geomorphology 94, 353–378. doi:10.
5194/nhess-18-2183-201810.1016/j.geomorph.2006.10.033

Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., et al. (2018).
Landslide Susceptibility Modelling Using GIS-Based Machine Learning
Techniques for Chongren County, Jiangxi Province, China. Sci. Total
Environ. 626, 1121–1135. doi:10.1016/j.scitotenv.2018.01.124

Cieszkowski, M., Burtan, J., Ślączka, A., and Zuchiewicz, W. (1994). Szczegółowa
Mapa Geologiczna Polski W Skali 1:50000, Arkusz Męcina (1018). Państwowy
Instytut Geologiczny Warszawa (Opracowanie Archiwalne).

Ciurleo, M., Cascini, L., and Calvello, M. (2017). A Comparison of Statistical and
Deterministic Methods for Shallow Landslide Susceptibility Zoning in Clayey
Soils. Eng. Geol. 223, 71–81. doi:10.1016/j.enggeo.2017.04.023

Dai, F. C., and Lee, C. F. (2003). A Spatiotemporal Probabilistic Modelling of
Storm-Induced Shallow Landsliding Using Aerial Photographs and Logistic
Regression. Earth Surf. Process. Landforms 28, 527–545. doi:10.1002/esp.456

Długosz, M. (2011). Landslide Susceptibility Assessment in the Different Regions
of the Polish Carpathians. Stud. Geomorphol. Carpatho-Balcanica XLV, 45–46.

Feng, H., Yu, J., Zheng, J., Tang, X., and Peng, C. (2016). Evaluation of Different
Models in Rainfall-Triggered Landslide Susceptibility Mapping: A Case Study
in Chunan, Southeast China. Environ. Earth Sci. 75, 1399. doi:10.1007/s12665-
016-6211-3

Firek, A. (1977). Niektóre Właściwości I Kryteria Oceny Stosunków Wodnych
Gleb Pyłowych Pogórza Karapckiego. Rocz. Glebozn. 34.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2012). A
Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-,
and Hybrid-Based Approaches. IEEE Trans. Syst. Man. Cybern. C 42 (4),
463–484. doi:10.1109/tsmcc.2011.2161285

Gariano, S. L., and Guzzetti, F. (2016). Landslides in a Changing Climate. Earth-
Science Rev. 162, 227–252. doi:10.1016/j.earscirev.2016.08.011

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras and
TensorFlow. Concepts, Tools and Techniques to Build Intelligent Systems.
Beijing: O’Reilly.794

Goetz, J. N., Brenning, A., Petschko, H., and Leopold, P. (2015). Evaluating Machine
Learning and Statistical Prediction Techniques for Landslide Susceptibility
Modeling. Comput. Geosciences 81, 1–11. doi:10.1016/j.cageo.2015.04.007

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 87219220

Zydroń et al. Landslide Susceptibility Maps for the Western Carpahians

https://www.frontiersin.org/articles/10.3389/feart.2022.872192/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.872192/full#supplementary-material
https://doi.org/10.3390/rs12203347
https://doi.org/10.3390/rs12203347
https://doi.org/10.1007/s100640050066
https://doi.org/10.1007/s100640050066
https://doi.org/10.1007/s11356-021-15886-z
https://doi.org/10.1007/s12665-017-7177-5
https://doi.org/10.1016/j.geomorph.2011.03.019
https://doi.org/10.3390/land10121370
https://doi.org/10.1007/s10064-018-1341-3
https://doi.org/10.1007/s10064-018-1341-3
https://doi.org/10.7306/gq.1275
https://github.com/researchpy/researchpy
https://github.com/researchpy/researchpy
https://doi.org/10.5194/nhess-18-2183-2018
https://doi.org/10.5194/nhess-18-2183-201810.1016/j.geomorph.2006.10.033
https://doi.org/10.5194/nhess-18-2183-201810.1016/j.geomorph.2006.10.033
https://doi.org/10.1016/j.scitotenv.2018.01.124
https://doi.org/10.1016/j.enggeo.2017.04.023
https://doi.org/10.1002/esp.456
https://doi.org/10.1007/s12665-016-6211-3
https://doi.org/10.1007/s12665-016-6211-3
https://doi.org/10.1109/tsmcc.2011.2161285
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1016/j.cageo.2015.04.007
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Guo, Z., Shi, Y., Huang, F., Fan, X., and Huang, J. (2021). Landslide Susceptibility
Zonation Method Based on C5.0 Decision Tree and K-Means Cluster
Algorithms to Improve the Efficiency of Risk Management. Geosci. Front.
12, 101249. doi:10.1016/j.gsf.2021.101249

Guzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang,
K-T. (2012). Landslide Inventory Maps: New Tools for an Old Problem. Earth-
Scince Rev. 112, 42–66.

Haibo He, H., and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE
Trans. Knowl. Data Eng. 21 (9), 1263–1284. doi:10.11919/j.issn.1002-0829.
21805210.1109/tkde.2008.239

He, Y., Zhao, Z. a., Yang, W., Yan, H., Wang, W., Yao, S., et al. (2021). A Unified
Network of Information Considering Superimposed Landslide Factors
Sequence and Pixel Spatial Neighbourhood for Landslide Susceptibility
Mapping. Int. J. Appl. Earth Observation Geoinformation 104, 102508.
doi:10.1016/j.jag.2021.102508

Hess, M. (1965). Piętra Klimatyczne W Polskich Karpatach Zachodnich. Zeszyty
Naukowe UJ. Pr. Geogr. 11

Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., et al. (2018).
Landslide Susceptibility Mapping Using J48 Decision Tree with AdaBoost,
Bagging and Rotation Forest Ensembles in the Guangchang Area (China).
CATENA 163, 399–413. doi:10.1016/j.catena.2018.01.005

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9,
90–95. doi:10.1109/mcse.2007.55

Jones, S., Kasthurba, A. K., Bhagyanathan, A., and Binoy, B. V. (2021). Landslide
Susceptibility Investigation for Idukki District of Kerala Using Regression
Analysis and Machine Learning. Arab. J. Geosci. 14, 838. doi:10.1007/
s12517-021-07156-6

Kim, D., Im, S., Woo, C., and Woo, C. (2013). Modeling the Contribution of Trees
to Shallow Landslide Development in a Steep, Forested Watershed. Ecol. Eng.
61, 658–668. doi:10.1016/j.ecoleng.2013.05.003

Kleczkowski, A. S. (1992). “Źródła I Wahania Zwierciadła Wód Podziemnych,” in
Dorzecze Górnej Wisły, Część I, Eds: Dynowska I., Maciejewski M., PWN,
Warszawa-Kraków.

Klimaszewski, M. (1972). Geomorfologia Polski. T. 1. PWN, Warszawa.
Kondracki, J. (2009). Geografia Regionalna Polski. PWN, Warszawa.
Lai, C., Chen, X., Wang, Z., Xu, C-Y., and Yang, B. (2018). Rainfall-induced

Landslide Susceptibility Assessment Using Random Forest Weight at Basin
Scale. Hydrology Res. 48 (4), 1–16. doi:10.2166/nh.2017.044

Lemaitre, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn A Python
Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning.
J. Mach. Learn. Res. 18 (17), 1–5.

Li, F., and He, H. (2018). Assessing the Accuracy of Diagnostic Tests. Shanghai
Arch. Psychiatry 30 (3), 207–212. doi:10.11919/j.issn.1002-0829.218052

Lombardo, L., and Mai, P. M. (2018). Presenting Logistic Regression-Based
Landslide Susceptibility Results. Eng. Geol. 244, 14–24. doi:10.1016/j.enggeo.
2018.07.019

Mao, Y., Zhang, M., Sun, P., and Wang, G. (2017). Landslide Susceptibility
Assessment Using Uncertain Decision Tree Model in Loess Areas. Environ.
Earth Sci. 76, 752. doi:10.1007/s12665-017-7095-6

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., et al.
(2020). Machine Learning Methods for Landslide Susceptibility Studies: A
Comparative Overview of Algorithm Performance. Earth-Science Rev. 207,
103225. doi:10.1016/j.earscirev.2020.103225

Montgomery, D. R., and Dietrich, W. E. (1994). A Physically Based Model for the
Topographic Control on Shallow Landsliding. Water Resour. Res. 30 (4),
1153–1171. doi:10.1029/93wr02979

Montrasio, L., Valentino, R., and Losi, G. L. (2011). Towards a Real-Time Susceptibility
Assessment of Rainfall-Induced Shallow Landslides on a Regional Scale. Nat.
Hazards Earth Syst. Sci. 11, 1927–1947. doi:10.5194/nhess-11-1927-2011

Morrissey, M. M., Wieczorek, G. F., and Morgan, B. A. (2001). A Comparative
Analysis of HazardModels for Predicting Debris Flows inMadison County.Va.
U.S. Geol. Surv. - Open-File Rep. 01-0067.

Mrozek, T. (2013). Zagrożenie I Ryzyko Osuwiskowe W Rejonie Szymbarku
(Beskid Niski). Państwowy Instytut Geologiczny – Państwowy Instytut
Badawczy, T. 199, Warszawa.

Ng, C. W. W., Yang, B., Liu, Z. Q., Kwan, J. S. H., and Chen, L. (2021).
Spatiotemporal Modeling of Rainfall-Induced Landslides Using Machine
Learning. Landslides. doi:10.1007/s10346-021-01662-0

Obrębska-Starklowa, B. (1988). Klimat. in: Województwo Tarnowskie –

Monografia. Ed: J. Warszyński, PAN, Kraków.
Obrębska-Starklowa, B. (1977). Typologia I Regionalizacja Fenologiczno-

Klimatyczna Na Przykładzie Dorzecza Górnej Wisły, [dissertation] Rozp.
Habil. UJ, Kraków, 11.

Oszczypko, N., Ślączka, A., and Żytko, K. (2008). Regionalizacja Tektoniczna
Polski - Karpaty Zewnętrzne I Zapadlisko Przedkarpackie. Przegląd Geol. 56,
927–935.

Pack, R. T., Tarboton, D. G., and Goodwin, C. N. (1999). “GIS-based Landslide
Susceptibility Mapping with SINMAP,” in Proceedings of the 34th symposium
on Engineering Geology and Geotechnical Engineering, Logan. Editor J. A. Bay
(Utah).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (85),
2825–2830.

Pham, B. T., Tien Bui, D., Pourghasemi, H. R., and Indra, P. (2017). Landslide
Susceptibility Assessment in the Uttarakhand Area (India) Using GIS: a
Comparison Study of Prediction Capability of Naïve Bayes, Multilayer
Perceptron Neural Networks, and Functional Trees Methods. Theor. Appl.
Climatol. 122.

Pham, B. T., Van Dao, D., Acharya, T. D., Van Phong, T., Costache, R., Van Le, H.,
et al. (2021). Performance Assessment of Artificial Neural Network Using Chi-
Square and Backward Elimination Feature Selection Methods for Landslide
Susceptibility Analysis. Environ. Earth Sci. 80, 686. doi:10.1007/s12665-021-
09998-5

Poborski, J., and Skoczylas-Ciszewska, K. (1963). OMiocenie W Strefie Nasunięcia
Karpackiego W Okolicy Wieliczki I Bochni (Miocene in the Zone of the
Carpathian Overthrust in the Area of Wieliczka and Bochnia). Rocz. Pol.
Tow. Geol. 33 (3).

Polat, A. (2021). An Innovative, Fast Method for Landslide Susceptibility Mapping
Using GIS-Based LSAT Toolbox. Environ. Earth Sci. 6. doi:10.1007/s12665-
021-09511-y

Połtowicz, S. (1991). Miocen Strefy Karpackiej Miedzy Wieliczką a Dębicą. Kwart.
AGH Geol. 17, 19–57.R

Połtowicz, S. (1974). Syntetyczne Opracowanie Geologiczno-Złożowe Utworów
Miocenu Między Cieszynem a Krakowem. ZOG. Geonafta.

Poprawa, D., and Rączkowski, W. (2003). Osuwiska Karpat (Carpathian landslides
(southern Poland)). Przegląd Geol. 51 (8), 685–692.

Pourghasemi, H. R., and Rahmati, O. (2018). Prediction of the Landslide
Susceptibility: Which Algorithm, Which Precision? Catena 162, 177–192.
doi:10.1016/j.catena.2017.11.022

Pourghasemi, H. R., Sadhasivam, N., Amiri, M., Eskandari, S., and Santosh, M.
(2021). Landslide Susceptibility Assessment and Mapping Using State-Of-Art
Machine Learning Techniques. Nat. Hazards. doi:10.1007/s11069-021-04732-7

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). A
Review of Statistically-Based Landslide Susceptibility Models. Earth-Science
Rev. 180, 60–91. doi:10.1016/j.earscirev.2018.03.001

Saha, S., Roy, J., Pradhan, B., and Hembram, T. K. (2021a). Hybrid Ensemble
Machine Learning Approaches for Landslide Susceptibility Mapping Using
Different Sampling Ratios at East Sikkim Himalayan, India. Adv. Space Res. 68
(7), 2819–2840. doi:10.1016/j.asr.2021.05.018

Saha, S., Sarkar, R., Roy, J., Hembram, T. K., Acharya, S., Thapa, G., et al.
(2021b). Measuring Landslide Vulnerability Status of Chukha, Bhutan
Using Deep Learning Algorithms. Sci. Rep. 11, 16374. doi:10.1038/
s41598-021-95978-5

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A. (2010).
RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans.
Syst. Man. Cybern. A 40 (1), 185–197. doi:10.1109/tsmca.2009.2029559

Sheng Chen, S., Haibo He, H., and Garcia, E. A. (2010). RAMOBoost: Ranked
Minority Oversampling in Boosting. IEEE Trans. Neural Netw. 21 (10),
1624–1642. doi:10.1109/tnn.2010.2066988

Shou, K.-J., and Yang, C.-M. (2015). Predictive Analysis of Landslide Susceptibility
under Climate Change Conditions - A Study on the Chingshui RiverWatershed
of Taiwan. Eng. Geol. 192, 46–62. doi:10.1016/j.enggeo.2015.03.012

Siuta, J., and Rejman, M. (1963). Przyczynek Do Poznania Genezy I Składu
Chemicznego Gleb Ornych Pogórza Dynowskiego. Pamiętnik Puławski 9.

Skiba, S. 1992: Gleby Zlewni Starej Rzeki. Zeszyty Naukowe UJ, Prace
Geograficzne, 88.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 87219221

Zydroń et al. Landslide Susceptibility Maps for the Western Carpahians

https://doi.org/10.1016/j.gsf.2021.101249
https://doi.org/10.11919/j.issn.1002-0829.21805210.1109/tkde.2008.239
https://doi.org/10.11919/j.issn.1002-0829.21805210.1109/tkde.2008.239
https://doi.org/10.1016/j.jag.2021.102508
https://doi.org/10.1016/j.catena.2018.01.005
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1007/s12517-021-07156-6
https://doi.org/10.1007/s12517-021-07156-6
https://doi.org/10.1016/j.ecoleng.2013.05.003
https://doi.org/10.2166/nh.2017.044
https://doi.org/10.11919/j.issn.1002-0829.218052
https://doi.org/10.1016/j.enggeo.2018.07.019
https://doi.org/10.1016/j.enggeo.2018.07.019
https://doi.org/10.1007/s12665-017-7095-6
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1029/93wr02979
https://doi.org/10.5194/nhess-11-1927-2011
https://doi.org/10.1007/s10346-021-01662-0
https://doi.org/10.1007/s12665-021-09998-5
https://doi.org/10.1007/s12665-021-09998-5
https://doi.org/10.1007/s12665-021-09511-y
https://doi.org/10.1007/s12665-021-09511-y
https://doi.org/10.1016/j.catena.2017.11.022
https://doi.org/10.1007/s11069-021-04732-7
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.asr.2021.05.018
https://doi.org/10.1038/s41598-021-95978-5
https://doi.org/10.1038/s41598-021-95978-5
https://doi.org/10.1109/tsmca.2009.2029559
https://doi.org/10.1109/tnn.2010.2066988
https://doi.org/10.1016/j.enggeo.2015.03.012
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Skiba, S., and Drewnik, M. (1995). OdpornośćGleb Pyłowych PogórzaWielickiego
Na Degradację Chemiczną. Zesz. Nauk. UJ, Pr. Geogr. 100.

Skiba, S., Drewnik, M., and Klimek, M. (1995). “Gleby Pyłowe Progu Pogórza
Karpackiego Między Rabą I Uszwicą,” in Dynamika I Antropogeniczne
Przeobrażenia Środowiska Przyrodniczego Progu Karpat Pomiędzy Rabą a
Uszwicą. Editor L. Kaszowski (Instytut Geografii UJ, Kraków).

Skoczylas-Ciszewska, K. (1954). SzczegółowaMapa Geologiczna PolskiW Skali 1:50
000, Arkusz Brzesko. Państw. Inst. Geol., Warszawa.

Skoczylas-Ciszewska, K., and Burtan, J. (1954). Szczegółowa Mapa Geologiczna
Polski W Skali 1:50 000, Arkusz Bochnia. Państw. Inst. Geol., Warszawa.

Starkel, L. (1972). Karpaty Zewnętrzne, Geomorfologia Polski. Vol. 1, PWN,
Warszawa.

Su, Q., Tao, W., Mei, S., Zhang, X., Li, K., Su, X., et al. (2021). Landslide
Susceptibility Zoning Using C5.0 Decision Tree, Random Forest, Support
Vector Machine and Comparison of Their Performance in a Coal Mine
Area. Front. Earth Sci. 9. doi:10.3389/feart.2021.781472

Sun, Y., Wong, A. K. C., and Kamel, M. S. (2009). Classification of Imbalanced
Data: A Review. Int. J. Pattern Recognit. Artif. Intell. 23 (4), 687–719. doi:10.
1142/s0218001409007326

Święchowicz, J. (2012). Rainfall Thresholds for Erosion Processes in Agricultural
Catchments (Rainfall Thresholds for Erosion Processes in Agricultural
Catchments). IGiGP UJ.Kraków

Thien Bui, D., Ho, T-C., Pradhan, B., Pham, B-T., Nhu, V-H., and Ravhaug, I. (2016).
GIS-based Modeling of Rainfall-Induced Landslides Using Data Mining-Based
Functional Trees Classifier with AdaBoost, Bagging and MultiBoost Ensemble
Frameworks. Environ. Earth Sci. 75, 1101. doi:10.1007/s12665-016-5919-4

Uziak, S. (1962). Zagadnienia Typologii Niektórych Gleb Pyłowych Pogórza
Karpackiego, Ann. UMCS, Sec. B, 18.

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet,Montanarella, J.-P. L.,
Montanarella, L., and Nadim, F. (2012). Statistical Modelling of Europe-
wide Landslide Susceptibility Using Limited Landslide Inventory Data.
Landslides 9, 357–369. doi:10.1007/s10346-011-0299-z

Wang, D., Hao, M., Chen, S., Meng, Z., Jiang, D., and Ding, F. (2021). Assessment
of Landslide Susceptibility and Risk Factors in China. Nat. Hazards. doi:10.
1007/s11069-021-04812-8

Wang, L.-J., Guo, M., Sawada, K., Lin, J., and Zhang, J. (2016a). A Comparative
Study of Landslide Susceptibility Maps Using Logistic Regression, Frequency
Ratio, Decision Tree, Weights of Evidence and Artificial Neural Network.
Geosci. J. 20 (1), 117–136. doi:10.1007/s12303-015-0026-1

Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H. (2021). Review of Classification
Methods on Unbalanced Data Sets. IEEE Access 9, 64606–64628. doi:10.1109/
ACCESS.2021.3074243

Wang, Q., Li, W., Xing, M., Wu, Y., Pei, Y., Yang, D., et al. (2016b). Landslide
Susceptibility Mapping at Gongliu County, China Using Artificial Neural
Network and Weight of Evidence Models. Geosci. J. 20 (5), 705–718. doi:10.
1007/s12303-016-0003-3

Waskom, M. (2021). Seaborn: Statistical Data Visualization. Joss 6 (6), 3021. doi:10.
21105/joss.03021

Wojciechowski, T. (2019). Podatność Osuwiskowa Polski (Landslide susceptibility
of Poland). Przegląd Geol. 67, 320–325. doi:10.7306/2019.25

Wójcik, A., and Wojciechowski, T. (2016). Osuwiska Jako Jeden Z Ważniejszych
Elementów Zagrożeń Geologicznych W Polsce (Landslides as One of the Most
Important Elements ofGeologicalHazards inPoland).PrzeglądGeol. 64 (9), 701–709.

Xu-Ying Liu, X-Y., Jianxin Wu, J., and Zhi-Hua Zhou, Z-H. (2009). Exploratory
Undersampling for Class-Imbalance Learning. IEEE Trans. Syst. Man. Cybern.
B 39 (2), 539–550. doi:10.1109/tsmcb.2008.2007853

Yuvaraj, R. M., and Dolui, B. (2021). Statistical and Machine Intelligence Based
Model for Landslide Susceptibility Map Ping of Nilgiri District in India.
Environ. Challenges 5, 100211. doi:10.1016/j.emvc.2021.200211

Zabuski, L., Thiel, K., and Bober, L. (1999). Osuwiska We Fliszu Karpat Polskich.
Geologia-Modelowanie-Obliczanie Stateczności. Gdańsk, Poland:
Wydawnictwo IBW PAN.

Zare, M., Pourghasemi, H. R., Vafakhah, M., and Pradhan, B. (2018). Landslide
Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural
Network Model: a Comparison between Multilayer Perceptron (MLP) and
Radial Basic Function (RBF) Algorithms. Arabian J. Geosciences 6, 2873–2888.
doi:10.1007/s12517-012-0610-x

Zasoński, S. (1981). Główne Kierunki Glebotwórcze Na Utworach Pyłowych
Pogórza Wielickiego. Część I. Ogólna Charakterystyka Gleb I Niektóre
Właściwości Chemiczne. Rocz. Glebozn. 32 (2), 115–143.

Zhang, K., Wu, X., Niu, R., Yang, K., and Zhao, L. (2017). The Assessment of
Landslide Susceptibility Mapping Using Random Forest and Decision Tree
Methods in the Three Gorges Reservoir Area, China. Environ. Earth Sci. 76, 405.
doi:10.1007/s12665-017-6731-5

Zizzioli, D., Meisina, C., Valentino, R., and Montrasio, L. (2013). Comparison
between Different Approaches to Modeling Shallow Landslide Susceptibility:
Case History in Oltrepo Pavese, Northern Italy.Nat. Hazards Earth Syst. Sci. 13,
559–573. doi:10.5194/nhess-13-559-2013

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zydroń, Demczuk and Gruchot. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 87219222

Zydroń et al. Landslide Susceptibility Maps for the Western Carpahians

https://doi.org/10.3389/feart.2021.781472
https://doi.org/10.1142/s0218001409007326
https://doi.org/10.1142/s0218001409007326
https://doi.org/10.1007/s12665-016-5919-4
https://doi.org/10.1007/s10346-011-0299-z
https://doi.org/10.1007/s11069-021-04812-8
https://doi.org/10.1007/s11069-021-04812-8
https://doi.org/10.1007/s12303-015-0026-1
https://doi.org/10.1109/ACCESS.2021.3074243
https://doi.org/10.1109/ACCESS.2021.3074243
https://doi.org/10.1007/s12303-016-0003-3
https://doi.org/10.1007/s12303-016-0003-3
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.7306/2019.25
https://doi.org/10.1109/tsmcb.2008.2007853
https://doi.org/10.1016/j.emvc.2021.200211
https://doi.org/10.1007/s12517-012-0610-x
https://doi.org/10.1007/s12665-017-6731-5
https://doi.org/10.5194/nhess-13-559-2013
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Assessment of Landslide Susceptibility of the Wiśnickie Foothills Mts. (The Flysch Carpathians, Poland) Using Selected Mach ...
	Introduction
	Characteristics of the Study Area
	Geographical and Geological Characteristics
	Preparation of Data for Analysis

	Methodology
	Data Preprocessing
	Computational Algorithms
	Validation of Results

	Results
	Correlation of the Input Data
	Model Parameters
	Accuracy of Models
	Validity of Model Parameters

	Disscussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


