
Estimating the Total Organic Carbon in
Complex Lithology From Well Logs
Based on Convolutional Neural
Networks
Yun He1, Zhanyang Zhang1*, Xixin Wang2*, Zhenyu Zhao3 and Wei Qiao4

1Sinopec North China Petroleum Bureau, Sinopec, Zhengzhou, China, 2School of Geoscience, Yangtze University, Wuhan,
China, 3Research Institute of Petroleum Exploration and Development, CNPC, Beijing, China, 4College of Geosciences, China
University of Petroleum-Beijing, Beijing, China

The total organic carbon content is an important indicator for evaluating source rocks. The
lithology of the Majiagou Formation in the Tao 112 well area in the eastern Ordos Basin is
complex and changeable. The source rock TOC is usually only 0.3%, and the logging
response to the TOC is not obvious. The traditional method of TOC logging calculations
using a linear relationship is not ideal. Convolutional neural networks can be used to help
with these calculations, but they can only address non-linear problems. The major
advantage of CNNs is that they can obtain optimal results through receptive fields and
weight sharing with a limited number of samples. As such, this paper develops a novel non-
linear TOC logging calculation model based on CNNs. The TOC content of the carbonate
source rocks in the study area is calculated by logging calculations using both the multiple
regression method and the CNN method. The experimental results show that the CNN
method has higher accuracy in the calculation of TOC content in complex rock areas, and it
can retain detailed TOC changes and reflect the changes of TOC more truly.

Keywords: TOC logging calculation, convolutional neural networks, carbonate source rocks, complex lithology, well
logging

1 INTRODUCTION

Total organic carbon (TOC) content refers to the percentage of organic carbon in a rock sample per
unit mass (Curiale, 2017). It is the most widely used organic matter abundance index, especially
concerning evaluating source rocks. According to the hydrocarbon generation/expulsion
characteristics, TOC content, and carbonate reservoir characteristics of the Majiagou Formation
carbonate source rocks in the study area, the lower limit of organic carbon content for the Ordos
Basin carbonate source rocks is 0.25%, which is about 50% less than that of mudstones. Some
scholars believe that the Upper Paleozoic source rocks in the study area are widely distributed along
the plane and have a strong hydrocarbon generation capacity. However, the hydrocarbon generation
capacity of Majiagou Formation source rocks is generally low. In addition, for large-scale gas
reservoirs in the vicinity of the Majiagou Formation, the horizontal contribution of the gas source is
still not clear, so it is necessary to use a variety of methods to accurately identify effective
source rocks.

TOC content can be obtained through core laboratory analysis. However, due to the limitations
concerning sample quantity and testing costs, it is generally difficult to obtain whole and continuous
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TOC laboratory measurements, and systematic research cannot
be carried out. Logging data can reflect the TOC variation in the
source rock. Calculating TOC content through logging data
cannot only reduce analysis costs, but it can also ensure that
the TOC content is obtained with a continuous longitudinal
variation.

According to Schmoker et al., there is a linear relationship
between TOC content and density log(Schmoker, 1979) and
gamma log (Schmoker, 1981), and TOC content can be
calculated by examining the density and gamma logs.
However, the effectiveness of this method is greatly impacted
when the local layer density or gamma logging is affected by
factors other than organic matter content, such as lithology.
Source rocks have low density, low acoustic time difference,
and high electrical resistance, so Meyer et al. believed that
they can be identified using well-logging data (Meyer and
Nederlof, 1984) and by calculating the TOC content
(Mendelzon and Toksoz, 1985). Through field data analysis,
Fertl concluded that there is a correlation between TOC
content and single or multiple logging curves (Fertl and
Chilingar, 1988). Passey believed that the differential response
of porosity logs (generally acoustic time difference curves) and
resistivity curves to source rocks can be used to characterize the
abundance of organic matter (Passey et al., 1990), which is known
as the commonly used Δ Log R method. The Δ Log R method has
strong applicability, but it can only manually determine the
logging baseline, which is problematic as baselines can vary
greatly from well to well and in different formations and
sedimentary environments (Yu et al., 2017; Wang et al., 2022),
so it is not ideal for complex lithologic areas (Zhang et al., 2017).
Although many of the above scholars used logging data to
calculate TOC content with different methods, they all believe
that there is a linear relationship between logging data and TOC
content. However, at present, an increasing number of scholars
believe that the relationship between TOC content and logging
parameters is a complicated non-linear relationship (Meng et al.,
2015; Zhao et al., 2015; Emelyanova et al., 2016; Yuan et al., 2019),
and, as such, traditional linear methods cannot accurately
calculate TOC content.

Neural networks are widely used in various fields due to their
ability to solve non-linear problems (Kim and Valdés, 2003; Yang
et al., 2003; Li et al., 2019). Some scholars have introduced them
to TOC calculations (Huang and Williamson, 1996;
Khoshnoodkia et al., 2011; Mahmoud et al., 2017; Elkatatny,
2019), with the back propagation (BP) neural network being the
most widely used. However, the BP neural network requires a lot
of data for training, and it often overestimates the amount of TOC
in the core, whichmeans it is difficult to train a BP neural network
with high precision. In comparison, convolutional neural
networks (CNNs) require a smaller sample size for training
through the receptive field and weight sharing, and they can
therefore obtain a relatively ideal neural network with restricted
sample sizes.

At present, CNNs are widely used in a variety of fields, such as
image recognition (He et al., 2016), behavior detection (Karpathy
et al., 2014), face recognition (Taigman et al., 2014), and speech
recognition (Abdel-Hamid et al., 2014). CNNs have transformed

from the traditional computer vision field into being general tools
of feature extraction and pattern recognition. In the field of
geology, CNNs are mainly used in remote sensing and seismic
interpretation (Xu et al., 2008; Wang et al., 2009); some
researchers have used them in TOC logging calculations.

Taking the TOC content of Majiagou Formation marine
carbonate source rocks in the eastern Ordos Basin as the
research subject, TOC logging calculation models are
established by multiple linear regression and CNN methods.
In doing so, we compare the advantages and disadvantages of
the traditional linear method and the proposed non-linear
method, and we analyze the application effect of CNNs in the
context of complex lithology.

2 MATERIALS AND METHODS

2.1 Geological Setting
The research area is the Tao 112 well area in the east of the Ordos
Basin, and the target horizon is the Majiagou Formation. The
Ordos Basin is located in the western part of the North China
Plate. It is a multi-cycle composite superimposed basin with a
rough area of 37 km2 × 104 km2 and the second-largest
sedimentary basin in China (Chen, 2010). The overall tectonic
framework of the Ordos Basin is a westward-dipping monocline,
which can be further divided into six tectonic units: YiShan slope,
YiMeng uplift, Weibei uplift, Jinxi flexural fold belt, Tianhuan

FIGURE 1 | Basin structure map and case well located in the study area.
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depression, and western margin thrust belt (Figure 1). The study
area is located on the Yishan slope. The Majiagou Formation is a
set of carbonate rocks and evaporite deposits (Zhou et al., 2020)
with complex and changeable lithology; it is rich in potassium salt
and natural-gas resources (Zheng, 2011; Xie et al., 2013).

The Majiagou period experienced three major transgression
and regression cycles, so the Majiagou Formation can be divided
into six lithological sections from bottom to top, of which the
Majiagou Member five can be further divided into 10 subsections
(Figure 2). The Ma1, Ma3, and Ma5 members are in the
regression cycle, which is a limited sea-evaporation shelf
environment. Here, dolomites, salt rocks, gypsum rocks, and
other evaporites are widely developed. In comparison, the Ma56,
Ma58, and Ma510 sub-members are in a shorter period of
regression. The regressive semi-cycle around the gypsum and
salt lagoon is conducive to the formation of high-quality marine
source rocks in a highly reducing environment (Wu et al., 2017).

TheMa2, Ma4, andMa6members are located in the transgressive
cycle and are in the epicontinental-marine shelf environment,
where micritic limestone and dolomite are widely developed. Due
to the late denudation, the Ma6 member is only distributed in the
southern part of the basin (Yan et al., 2009).

2.2 Method Principles
2.2.1 Fundamentals of Convolutional Neural Networks
ACNN combines neural networks with deep learning, and neural
network models include a convolutional layer. CNNs are
composed of numerous neurons. A number of mutually
independent neurons form a two-dimensional plane, and a
number of two-dimensional planes form a neural-network
layer. The multi-layer neural network constitutes the CNN.
Compared with BP neural networks, CNNs contain at least
one convolutional layer, which is used to extract features. In
the convolutional layer, neurons are locally connected and
weights are shared, which greatly reduces the computational
cost and improves the training efficiency of the neural
network. A typical CNN consists of five parts: the input layer,
the convolutional layer, the pooling layer, fully connection layer,
and the output layer (Figure 3). Among these, the convolutional
and pooling layers are unique network structures of CNNs.

1) Convolution layer: This layer removes redundant information
through convolutional computation and extracts input data
features. The convolutional layer is composed of multiple two-
dimensional feature planes, which are connected through the
convolutional kernels (Figure 4). The convolution kernel
slides from left to right and from top to bottom to carry
out the convolution operation step by step; the result is
mapped to the convolution layer. The convolution
operation can be expressed as

zij � ∑w

i�1∑h

j�1Aij × Bij (1)

where Aij denotes the value at the position of row i and column j
of the receptive field, Bij denotes the value at the position of row i
and column j of the convolution kernel, and zij denotes the output
of the convolution kernel at the position of row i and column j. To
solve non-linear problems, activation functions, such as the
rectified linear activation function f(x) � max(0, x), are
usually introduced after the convolution operation to correct
the linear unit and improve the generalization ability of the neural
network.

Figure 4 shows the principle of convolutional operation,
where the shaded area in the left-most image is the receptive
field, and the shaded area in the right-most image is the result of
the convolution calculation.

2) Pooling layer: This layer is usually located after the
convolution layer; it is used to reduce the model size and
improve the calculation speed. Compared with the original
feature map, the pooled feature map has a lower dimension
and resolution, by which we can avoid the phenomenon of
overfitting. There are two common pooling methods: average
pooling and maximum pooling (Figure 5). Average pooling

FIGURE 2 | Majiagou Formation lithologic histogram.
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takes the average value of the original image region as the
pooled value of the region, whereas maximum pooling takes
the maximum value of the original image region as the pooled
value of the region. Maximum pooling is usually used in

CNNs. Average and maximum pooling can be, respectively,
expressed as

sij � 1
c2
⎛⎝∑c

i�1∑c

j�1zij
⎞⎠ (2)

sij � max c
i�1,j�1 (zij) (3)

where sij denotes the value at the position of row i and column j of
the feature image after pooling, c denotes the moving step size of
pooling, and zij denotes the value at the position of row i and
column j of the original feature image.

The purpose of convolution and pooling in CNNs is to
compress and purify the original information, remove
redundant information, and improve the generalization ability
of the model while improving the training speed.

2.2.2 Convolutional Neural Network Model and
Parameter Selection
Logging data are affected by many factors, such as formation
lithology, borehole environment, and operation mode, and
contain both TOC- related and unrelated information. CNN
convolution and pooling operation can purify TOC-related

FIGURE 3 | Schematic of CNN structure.

FIGURE 4 | Schematic diagram of the convolutional neural network framework.

FIGURE 5 | Two pooling methods in Convolutional neural network.
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information in logging data while improving the accuracy of TOC
calculations.

Logging and TOC data are one-dimensional, so a one-
dimensional convolution kernel is used instead of a two-
dimensional one. This means that the number of available
input parameters of the neural network is reduced, and the
pooling layer has little effect on reducing the feature
resolution. The designed CNN has five layers (Figure 6). The
first layer is the input layer, the second and third layers are the
convolutional layers, the fourth layer is the fully connected layer,

and the fifth layer is the output layer. According to the correlation
analysis, the input layer selects the TOC correlation logging as the
input data. In the first layer of convolution, three 2 × 1
convolution kernels (the shadow in Figure 6) are set, and
three 2 × 1 feature images can be obtained after convolution.
The second level of convolution sets six 3 × 2 × 1 convolution
kernels (shadow in Figure 6) and six 1 × 1 feature images can be
obtained after convolution. After passing through the full
connection layer, the fitting output is carried out. CNN
training is divided into two stages: forward propagation and
backward propagation. For forward propagation, input data
are propagated from the input layer, through the hidden
layers, and finally to the output layer, whereas, for backward
propagation, the differences between the output and actual values
are calculated and the network structure and parameters are
adjusted according to the minimum error method until errors are
within an allowable range. The optimal model was determined
according to the coefficient of determination (R2) and root mean
square error (RMSE) between the output and actual TOC values.

2.2.3 Scheme Design
The Majiagou Formation source rocks in the Ordos Basin are
mainly thin dark dolomitic mudstone and argillaceous dolomite,
which have strong heterogeneity in the spatial distribution. Well
Tao 112 is a whole-section core with abundant logging data,
including information related to natural gamma ray, acoustic
time difference, neutron porosity, compensated density, and
resistivity. Therefore, in this study, core and logging data of
Well Tao 112 in the eastern area of the basin were selected as the

FIGURE 6 | Structure diagram of convolutional neural network.

FIGURE 7 | CNN-based complex lithology TOC logging calculation process.
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basic data. After core positioning and logging standardization,
145 groups of TOC measured data and corresponding logging
data were obtained.

The original data were standardized and the TOC content and
corresponding logging data were selected for correlation analysis.

According to the correlation analysis results, TOC-sensitive
logging curves were determined as the input parameters of the
CNN model. The measured TOC content and the corresponding
TOC-sensitive logging curves were used to build a sample database.
The constructed samples were inputted into the CNN for training,

FIGURE 8 | Correlation between TOC content and (A) natural gamma ray, (B) acoustic time difference, (C) organic matter density, (D) neutron porosity, (E)
formation resistivity, and (F) uranium, 145 samples in each figures.
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and CNN parameters were adjusted according to the training effect
until the TOC calculation model with the best effect was obtained.
Finally, the well logging data were input into the CNN calculation
model to obtain the TOC content (Figure 7).

The proposed CNN-based TOC logging calculation model
takes TOC-sensitive logging curves as input data and outputs
TOC content. The sample was randomly divided into two parts,

85% of which were used as training data and 15% as verification
data. Overall, 145 datasets were measured for TOC content, 123
of which were used to train the neural network, and the remaining
22 sets were used for verification. To compare the proposed
CNN-based TOC logging calculation model with the
conventional method, the same data were used to create a
control experiment using the multiple regression method.

FIGURE 9 | The relationship between measured and calculated TOC content. (A) measured- predicted TOC of training samples with multiple linear regression
methods (B)measured- predicted TOC of verification samples with multiple linear regression methods (C)measured- predicted TOC of training samples with CNN (D)
measured- predicted TOC of verification samples with CNN. TOCmea denotes the measured TOC content, and TOCmp and TOCCNN denote the calculated TOC content
using the multiple regression model and the CNN-based model, respectively.

TABLE 1 | TOC interpretation results.

Sample type Sample size Multiple regression
model R2

Multiple regression
model RMSE

(%)

CNN model
R2

CNN model
RMSE (%)

Training samples 123 0.55 7.83 0.83 4.80
Verification samples 22 0.23 9.18 0.86 3.60
All samples 145 0.50 8.05 0.84 4.64
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3 RESULTS AND DISCUSSION

3.1 Sensitivity Analysis of Well Logs
The abundance of organic matter in the study area is low, most
measured TOC is less than 0.3%, and the response of organic matter is
not obvious. The lithology is complex and changeable. Dolomite,

limestone, mudstone, salt rock, gypsum rock, and transitional
lithology among them are common. The thickness of the lithological
layer is thin, and the lithology changes rapidly, thereby making the
correlation between logging and TOC content more complex.

Correlation analysis was conducted on the 145 TOC samples
and logging data (Figure 8) to determine the logging parameters

FIGURE 10 | TOC results of different models for well Tao 112.
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most sensitive to changes in the TOC content. Natural gamma is
closely related to the radioisotope content in the formation,
whereas organic matter absorbs uranium (Dong, 2017; Qin
et al., 2018), resulting in high-gamma anomalies in the
organic-rich formation. Actual data show that TOC content
has a positive correlation with natural gamma (Figure 8A),
and there is also a certain positive correlation with uranium
(Figure 8F).

The kerogen acoustic time difference is greater than the rock-
skeleton acoustic time difference, so the formation acoustic time
difference increases when the formation is rich in organic matter.
Actual data show that the acoustic time difference increases with
an increase in TOC content, which suggests a positive correlation
between them (Figure 8B).

Generally, the density of organic matter is less than the
density of rock skeleton, so the formation density will decrease
when organic matter is enriched. The actual data show that the
formation density tends to decrease with an increase in TOC
content (Figure 8C), but the change is not obvious and may be
caused by the low organic matter abundance in the study area.

The neutron porosity is a response to the concentration of
hydrogen atoms, and organic matter is rich in hydrogen atoms,
so the neutron porosity increases with an increase in TOC
content, which suggests a positive correlation between them
(Figure 8D).

Generally, the conductivity of kerogen and oil and gas is poor,
so formation resistivity increases when organic matter is
enriched. Due to the low TOC content of source rocks in the
study area, the resistivity is minimally affected by TOC content,
and the correlation between them is not obvious (Figure 8E).

According to the above analysis results, TOC content has a
strong correlation with natural gamma ray, acoustic time
difference, and neutron porosity, but little correlation with
density, resistivity, and uranium. Therefore, an accurate
prediction model can be established using multiple linear
regression. In this experiment, three logging parameters,
i.e., natural gamma ray, acoustic time difference, and neutron
porosity, were the input parameters of the model. If the linear
relationship in this region is not ideal, and because the carbonate
source rock itself is very low in organic carbon, machine learning
can be used to generate predictions.

3.2 Calculation Results and Comparison
As previously mentioned, 145 samples were obtained with
measured TOC calculation model and the remaining 22
values. Of these, 123 samples were used to establish were used
to verify the calculation effect of the model. R2 and RMSE were
used to evaluate the calculation effect. The closer R2 is to 1 and
RMSE is to 0, the better the calculation effect. According to the
measured TOC data and the standardized data of natural gamma-
ray, acoustic time difference, and neutron porosity, the multiple
regression equation of TOC calculations in this region was
obtained using SPSS software. The formula obtained by fitting
can be expressed as

w(TOC) � 0.335 × ΔqAPI − 0.061 × Δt + 0.094 × φn + 0.098

where ΔqAPI denotes the natural gamma value, Δt denotes the
acoustic time difference, and φn denotes the neutron
porosity.

On the one hand, concerning the multiple regression
method, the R2 between the measured and predicted TOC
values for the training samples is 0.55, and the RMSE is 7.83%
(Figure 9A); for the verification samples, the R2 and RSME are
0.23% and 9.18%, respectively (Figure 9B). The interpretation
accuracy was 80.583%. It can be seen that the TOC calculation
effect of the multiple regression model under the complex
lithologic environment is average, and its generalizability is
poor. On the other hand, concerning the CNN-based model,
the R2 between the measured and predicted TOC values of the
training samples is 0.83, and the RMSE is 4.80% (Figure 9C);
for verification samples, the R2 and RSME are 0.86% and
3.60%, respectively (Figure 9D). The interpretation accuracy
was 91.589%. Indeed, the CNN-based model is not only highly
accurate but also has good generalizability.

By comparing the calculation results of the multiple regression
model and the CNN model (Table 1), from which it is evident
that the R2 and RMSE of the CNN model are closer to 1 and 0,
respectively, indicating that the model is more accurate than the
multiple regression model. Moreover, at the level of mathematical
indicators, the TOC calculation effect of the CNNmodel is better
than the multiple regression model. By observing the actual TOC
calculation effect (Figure 10), the CNNmodel is more accurate in
the context of rapid lithology changes as the multiple regression
model can only reflect the overall trend of TOC changes and
cannot describe detailed changes. Indeed, when TOC logging
calculation is carried out in areas with complex and variable
lithology, the TOC calculation effect using CNN will be much
better than the traditional multiple regression method, and the
predicted TOC distribution will be closer to the actual geological
conditions, which is of great significance for future exploration
and development.

4 CONCLUSION

A CNN was introduced to TOC logging calculations. The TOC
content of Majiagou Formation low-abundance carbonate source
rocks in the Tao 112 well area of the eastern Ordos Basin was
calculated by multiple regression and CNNs. The research results
and related conclusions are outlined below.

(1) In the area with low source rock abundance, the logging
response to TOC content was not obvious due to the low
TOC content itself. The complexity and variability of
lithology further weakened the influence of TOC
changes on logging, leading to a generally low
correlation between logging and measured TOC content.
Therefore, it was difficult to obtain ideal results using
multiple regression to calculate TOC content with a
linear relationship. The calculation results only reflected
the general trend of TOC changes in the vertical direction.
In other words, they could not explain detailed TOC
changes.
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(2) The CNN model can retain the details of TOC changes when
calculating TOC in areas with frequent lithologic
alternations, and can reflect the changes of TOC more
realistically. And its unique weight sharing, local
perception and other characteristics make its prediction
accuracy higher and adaptability stronger, which can
provide a more realistic basis for future exploration and
development.
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