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It is difficult to image the details of complex structures concealed around a horizontal
hydraulic fracturing well using seismic data from the ground surface. In this paper, an
approach is proposed to solve this problem by non-linear full waveform inversion (FWI)
using perforation seismic data. The feasibility of the approach was investigated using
numerical modeling based on an experimental model built from the well-known SEG/EAGE
overthrust model, which contains complex geological structures with faults. First, seismic
modeling was performed to produce experimental synthetic data, including three sets of
perforation seismic data recorded by different acquisition systems deployed in observation
wells and on the ground surface, and another set of conventional seismic reflection data
with both sources and receivers deployed on the ground surface. Then, FWI was
performed separately on each data set using an initial velocity model which was
heavily smoothed to remove the target structures. The inversion results show that the
concealed complex structures around the well were successfully recovered by FWI using
perforation data, while the benchmark image from the FWI using conventional seismic data
was poor. Particularly, the experiments also demonstrated that FWI using perforation
seismic data can image the faults around a horizontal hydraulic fracturing well, while this is
unable to achieve using conventional ground surface seismic data. This conclusion was
also proved to be valid for noisy data deteriorated either by synthetic Gaussian or field
noises. Further experiments demonstrated that FWI using perforation data recorded from
wells outperformed that of surface data in terms of structure imaging accuracy
characterized by quantitative errors.

Keywords: complex structure, horizontal well, perforation data, full waveform inversion, imaging, numerical
modeling

INTRODUCTION

Concealed complex structures, such as natural faults and fractures, usually exist near injection wells
for hydraulic fracturing in shale gas exploitation (Maxwell et al., 2009; Vidic et al., 2013; Clarke et al.,
2014; Rutqvist et al., 2017; Ladevèze et al., 2019; Li et al., 2020; Zheng et al., 2020). If these concealed
structures are not properly detected before the injection operation, it may lead to serious
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consequences. For example, leakage of injection fluid can occur
and contaminate groundwater during the injecting process (Mair
et al., 2012; Flewelling and Sharma, 2014; Edwards et al., 2017;
Edwards and Celia, 2018). It may also cause deformation or
breakage of horizontal wells (De Pater and Baisch, 2011; Green
et al., 2012), or induce earthquakes in natural faults around the
injection area (Atkinson et al., 2016; Bao and Eaton, 2016;
Ellsworth, 2013; Schultz et al., 2015; Schultz et al., 2018). On
the contrary, if the detailed structures could be well detected and
seismic velocity of the injection area could be obtained before the
injecting process, it will provide not only important information
for the injection design but also accurate velocity parameters for
the location of microseismic activities induced by the hydraulic
fracturing operation (Witten and Shragge, 2017).

It is difficult to obtain the detailed underground structures and
accurate seismic velocity in the injection area (Li et al., 2019).
Conventional surface seismic reflection exploration can image
stratified structures in the injection area (Hennings et al., 2012),
but it is difficult to provide details of the concealed complex
structures around horizontal wells. Seismic tomography inversion
using first arrival time generated by perforation shots or
microseismic events can image the macrostructure in the area
around horizontal wells (Warpinski et al., 2005; Pei et al., 2008;
Pei et al., 2009; Zhang et al., 2009; Bardainne and Gaucher, 2010; Li
et al., 2013). However, the details of the structure are difficult to
characterize because the seismic phases behind the first break are
neglected. These phases carry much information about the detailed
features of the complex structures. Comparatively, full waveform
inversion (FWI) makes full use of waveform, which contains not
only the information of arrival time but also the dynamic effects of
themedia applied on the waves. This information of the seismic data
is of great help for the recovery of the complex structures with high
accuracy (Virieux and Operto, 2009; Sirgue et al., 2010; Operto et al.,
2015; Virieux et al., 2017).

FWI is a non-linear inversion method. It normally requires
high-quality data with a high signal-to-noise ratio (S/N) and an
initial velocity model with good approximation to the actual
velocity structure. In this regard, offshore seismic exploration has
the advantage, and most applications of FWI are implemented to
offshore seismic data (Operto et al., 2015; Sirgue et al., 2010;
Virieux et al., 2017). In contrast, the shallow surface conditions of
onshore seismic exploration are much more complex and would
result in lower S/N ratio data. It is difficult for FWI to recover the
detailed geological structures with noisy data (Zhang et al., 2016).
In addition, if the hydraulic injection site is in a densely populated
or rugged mountain area, it is difficult to use an ideal acquisition
system for surface seismic reflection exploration. This will result
in the hidden complex structures near horizontal wells being
inadequately illuminated. However, if seismic sources can be
placed below these hidden complex structures, the energy of
the source can directly pass through these structures and be
recorded by geophones on the ground surface or in observation
wells. This will greatly improve the illumination of the hidden
complex structures. For this reason, we propose to use an FWI
scheme to invert the detailed structures around the horizontal
well using perforation data as its sources are located along the
horizontal well. Receiving geophones can be deployed on the

ground surface, if conditions are permitted or deployed in
observation wells to record seismic data. When the location
and onset time of the perforation shots are generally known
(Pei et al., 2009; Tan et al., 2014), this excitation and acquisition
configuration is promising for FWI to invert the complex
structures around the horizontal well.

EXPERIMENTS

Theory
The goal of FWI is to approach the target model by iteratively
updating the initial model. In the iterative process, the difference
between the synthetic and observed data is gradually reduced to
an acceptable level. A classic misfit function of FWI can be
defined as an L2 norm:

E � 1
2
∑
Ns

∑
Nr

‖d − u‖2, (1)

where Ns and Nr are the number of sources and receivers,
respectively, d represents the observed data, and u represents
the synthetic data, which is a function of the medium parameter
m(r) at the current iterative FWI updating stage and can be
synthesized by wave equation modeling.

The minimization problem of Eq. 1 requires calculating the
gradient direction of Ewith respect to the model parameterm as a
variable during the iterative process of FWI, i.e., zE/zm. A quick
and effective way to compute the gradient is using the adjoint-
state method (Plessix, 2006):

zE

zm
� −∑

Ns

∫
T

0

λs
z2u

zt2
dt, (2)

where λs is the back-propagating residual wavefield, i.e., d-u.
Thus, the conjugate gradient method (Hestenes and Stiefel, 1952)
is used to update the model iteratively:

mk+1 � mk + αkpk, (3)
here the vector mk denotes the parameter model at the kth step
during the FWI iterative process, and α and p are the step length
and the search direction, respectively, for the updating change of
the model. We can use the inexact linear search method (Nocedal
and Wright, 2006) to obtain α. For p, we can use the method of
Dai and Yuan (1999):

pk+1 � −qΤk+1(zE

zm
)

k+1
+ βk+1pk, (4)

where z•
zm ≜ ( z•

zm(r1),
z•

zm(r2),/, z•
zm(rn))T with ri, i � 1, 2,/, n being

the spatial position vector, T is the matrix transpose, and q is a
preconditioning operator (Plessix and Mulder, 2004; Shin et al.,
2001):

qk �
⎧⎪⎨⎪⎩∫

T

0

|u(m, t)|2dt
⎫⎪⎬⎪⎭

−1

. (5)
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β in Eq. 4 is a scalar, which can be obtained by the method of
Dai and Yuan (1999):

βk �
(zEzm)Τk+1(zEzm)k+1

pΤ
k{(zEzm)k+1 − (zEzm)k}, (6)

Modeling
Geological Model
A two-dimensional velocity model (Figure 1) was extracted from
the well-known SEG/EAGE overthrust model (Aminzadeh et al.,
1994) for our experiments. The horizontal dimension of the
model is 4 km, the depth dimension is 2 km, and the P-wave
velocity ranges from 2.0 to 6.5 km/s. There exist complex fold
structures with faults in the model. There are three wells within
the model area (Figure 1), including a horizontal well laying at
the depth of 1.5 km, and two vertical observation wells on the
horizontal coordinates of 0.5 km, on the left side, and 3.5 km, on
the right side, separately. The design of the horizontal well is
referred to the statistics of Edwards and Celia (2018), the depths
of horizontal wells are normally between 1.5 and 3.0 km, the
length is 1.0–3.0 km, and the spacing of perforation shots is
20–40 m.

Acquisition Systems
To compare the inversion results of perforation and surface
seismic reflection data, four acquisition systems were designed:

1) surface excitation and surface recording (SS);
2) perforation excitation and surface recording (PS);
3) perforation excitation and one well recording (PO);
4) perforation excitation and two well recording (PT).

There are 125 conventional seismic sources on the ground
surface (the solid black circles at the top of the model in Figure 1)
for the SS acquisition system, and the same number of perforation

sources in the horizontal well (the white crosses in the horizontal
well at the depth of 1.5 km) were used for the acquisition systems
of PS, PO, and PT. All sources are distributed horizontally in the
range of 0.75–3.25 km with a space interval of 20 m.

To record two-component velocity data (Vx and Vz represent
the horizontal and vertical velocity components, respectively),
65 two-component receivers are deployed on the ground surface
spanning 0.06–3.9 km (the black dashed line in Figure 1), with a
spatial interval of 60 m. Similarly, 25 receivers are deployed in
each observation well in the depth ranging between 0.1 and
1.3 km (the black triangles in Figure 1), with a spacing
interval of 50 m.

Synthetic Data
The velocity model in Figure 1 is discretized using a spacing
interval of 20 m in both horizontal and vertical directions. The
total number of grid points is 200*100 = 20000. For forward
modeling, a free surface boundary condition is used at the top of
the model. The perfectly matched boundary condition (PML)
with a thickness of 10 grid points is adopted on the other three
sides. A pulse function with a frequency band of 0–20 Hz is used
as the source signal. The time sampling interval for forward
modeling is 0.5 ms. The total time history of the modeling is 2.5 s.
The wavefields are solved using the method of Köhn (2011). The
synthetic seismograms of the velocity components (i.e., Vx and
Vz) are recorded by the observation system of SS, PS, PO, and PT,
which will be used as the names of the data sets in the following
context. The wavefields recorded are shown in Figure 2.

RESULTS

FWI software used in this study was developed based on the open
codes published by Köhn et al. (2012). The initial velocity model
(Figure 3) used for the modeling was obtained by applying
Gaussian smoothing (σ = 20, radius = 50) to the exact velocity
model, as shown in Figure 1. After smoothing, the complex
structures in Figure 1 completely disappeared.

An inversion frequency range of 0–20 Hz is used to cover the
effective frequency band of the synthetic data. It is organized into 10
groups, namely, 0–2 Hz, 0–4 Hz, and so on up to 0–20 Hz. FWI is
first performed on the frequency ground of 0–2 Hz with the initial
model shown in Figure 3. The final inversion model of 0–2 Hz was
used as the initial model for the next inversion performed on 0–4 Hz.
The inversion is progressively performed in such amanner from low
to high frequencies until the inversion of the last frequency group
(0–20 Hz) is completed. This inversion strategy was adopted from
Virieux and Operto (2009) to reduce the instability of the non-linear
inversion accordingly.

Using the data sets of SS, PS, PO, and PT (Figure 2) separately,
the inversion results in four corresponding images of the hidden
complex structures near the horizontal well are shown in Figures
4–7. Each image shows the progressive results of 0–2, 0–8, 0–14, and
0–20 Hz. It can be seen that the inversion result of the first frequency
group (0–2 Hz) of SS (Figure 4A) is the same as the initial model,
without showing the definite structure (Figure 4A). When the
frequency reaches up to 8 Hz, the stratum where the horizontal

FIGURE 1 |Overthrust model with concealed structures. The black solid
lines are the trajectories of the vertical observation wells and horizontal wells.
The solid black circles at the top of the model represent the surface seismic
sources. The black dashed line represents the receivers. The black
triangles represent the receivers in the twowells located at x = 0.5 and 3.5 km,
respectively. The white cross symbols represent the perforations in the
horizontal well which is located at the depth of z = 1.5 km. These form an
acquisition system covering the complex fold structures with faults in the
model.
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well is located and the buried fault above the horizontal well begin to
appear (arrows in Figure 4B). With the frequency inversion
continuing up to 14 Hz, the folds and faults are well recovered
(Figure 4C). When the frequency reaches 20 Hz, the inversion
results have reached a steady state. The shape of the overburden
stratum structure of the horizontal well is removed, but the spatial

resolution of the overthrust fault near the horizontal wells is very low
(arrows in Figure 4D).

Figure 5 shows the inversion results of the PS data. From the
inversion results of the 0–2 Hz data (Figure 5A), the low-frequency
components mainly recover the large-scale structures between the
receiver array (black dashed line) and the perforations (black plus

FIGURE 2 | Synthetic seismograms. (A,B) are the Vx and Vz components, respectively, of SS. Similarly, (C,D) are of PS, (E,G) are of PO, and (F,H) are of PT. The
data of PT were recorded using the array on the vertical well on the right-hand side of the model.
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symbols). With the 8 Hz data, not only the folded strata can be
imaged but also the deep faults are well recovered (arrows in
Figure 5B). When the inversion frequency reaches 14 Hz, the

overall structure becomes significantly clearer (Figure 5C). When
the inversion reaches the last frequency group of 0–20 Hz
(Figure 5D), the results are only slightly improved from that of
14 Hz (arrows in Figure 5D), indicating that the inversion reaches a
stable stage in the frequency band above 14 Hz.

The inversion results of the PO data are shown in Figure 6.
The inversion results of 0–2 Hz data (Figure 6A) show velocity
updates in the area near the vertical observation well. When the
frequency reaches 8 Hz, the shallow folded strata and deep faults
have been successfully recovered (Figure 6B). When the
inversion frequency reaches 14 Hz, the overall structure of
the model on the observation side is clearer than that of
8 Hz. In addition, the velocity accuracy is also further
improved (Figure 6C). Similar to that of PS, only a slight
improvement is achieved when the inversion reaches the last
frequency group of 0–20 Hz (Figure 6D), indicating that the
inversion reaches a stable stage in the frequency band above
14 Hz.

FIGURE 3 | Initial velocity model obtained by applying Gaussian
smoothing to the exact model shown in Figure 1.

FIGURE 4 | Inversion results of SS data. The acquisition system is represented by the solid black circles (sources) and dashed line of blocks (receiver array) at the
top of (A). (A–D) Iterative inversion results as gray images of the frequency groups of 0–2, 0–8, 0–14, and 0–20 Hz, respectively.

FIGURE 5 | Inversion results of the PS data. (A)Dashed line of black blocks at the top represents receivers, and the black cross symbols at the depth level of 1.5 km
represent the perforations in the horizontal well. (A–D) Iterative inversion results of the frequency groups of 0–2, 0–8, 0–14, and 0–20 Hz, respectively.
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The PT data results (Figure 7) show that the inversion of
the 0–2 Hz data is updated over the whole model, as it would be
anticipated as the receivers now deployed on both sides
compared with the signal side receiving of PO. However,
the outline of the structure is yet not evident (Figure 7A).
When the inversion frequency reaches 8 Hz, the result clearly
shows the shallow folded strata and deeply buried faults
(Figure 7B). The imaging quality at this frequency band is
better than that of SS (Figure 4B), PS (Figure 5B), and PO
(Figure 6B), indicating that the inversion convergence of PT is
faster than the others. With the frequency reaching 14 Hz,
most of the structures have been recovered (Figure 7C). When
the inversion reaches the final frequency group (Figure 7D),
the spatial resolution of the whole structure is further

improved and the result is very close to the real model
(Figure 1).

ANALYSIS AND DISCUSSIONS

Error Analysis
To look into the detailed difference between the inversion
results of the four data sets, the absolute error between each
inverted velocity model (Figures 4–7) and the actual velocity
model (Figure 1) was calculated (Figure 8). It shows that SS has
a very large error (Figure 8A). The error of PS near the
horizontal well is smaller than that of SS (Figure 8B).
Although the error of PO is small in the area near the

FIGURE 6 | Inversion results of the PO data. The black triangles on the left and the black cross symbols at the depth level of 1.5 km shown in (A) represent the
receivers in the observation well and the perforations in the horizontal well, respectively. (A–D) Iterative inversion results of the frequency groups of 0–2, 0–8, 0–14, and
0–20 Hz, respectively.

FIGURE 7 | Inversion results of the PT data. Black triangles on each side and the black cross symbols at the depth level of 1.5 km in (A) represent the receivers in
the vertical observation well and the perforations in the horizontal well, respectively. (A–D) Iterative inversion results of frequency groups of 0–2, 0–8, 0–14, and 0–20 Hz,
respectively.
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observation well on the left (Figure 8C), the error of PT is the
smallest over the whole model compared to other data sets,
indicating that PT outperforms PO and PS (Figure 8D).

The velocity profiles versus depth at locations of distances 1.0,
2.0, and 3.0 km are extracted from the inverted models. Along
with the initial model, the profiles are shown against the exact
model in Figure 9, to demonstrate the difference variation versus
depth. It can be seen that the inversion results of the SS data (solid
blue line) are largely different from the exact model. Although the

inversion from the PS data (solid cyan line) is poor in the shallow
region above the depth of 0.5 km, it is in good agreement with the
actual velocity structure below 0.5 km. The inversion results of
PO (solid green line) in the area near the observation well on the
left (Figure 9A) are in good agreement with the exact model,
and the results far away from the observation well area are very
poor (Figure 9C). All inversion results for PT (solid red line) are
close to the exact curves, which mean PT delivers the best
inversion.

FIGURE 8 | Absolute error of the final inverted velocity models relative to the actual velocity model. As marked at the top left corner of each panel, (A–D) Errors of
SS, PS, PO, and PT data, respectively.

FIGURE 9 | Velocity profiles versus depth from the inversion results at distances of 1.0 km (A), 2.0 km (B), and 3.0 km (C). Velocity profiles of the initial model and
the actual model are also plotted as references.
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Anti-Noise Performance
The conclusions above are based on the experiment using noise-
free data. Considering that field seismic data usually contain a
certain degree of noise, we use noisy data to test the validity of the
conclusions.

The first experiment concerns Gaussian noise, which is generated
and added into the seismogram (Figure 2) to synthesis noisy seismic

data with S/N = 2.0 (Figure 10). The S/N used is defined as the ratio
of the root-mean-square (RMS) amplitude of noise-free data (shown
in Figure 2) to random noise for each trace. Comparing Figure 10
with Figure 2, most of the signals of SS (a and b), PS (c and d), PO (e
and g), and PT (f and h) are submerged in noise.

The noisy data, as shown in Figure 10, were then used for the
FWI inversion in the same way as the previous inversion

FIGURE 10 | Noisy data with S/N = 2.0 synthesized by adding Gaussian to the Vx and Vz seismograms of SS (Plots A and B), PS (Plots C andD), PO (Plots E and
G), and PT (Plots F andH), as shown in Figure 2. The seismograms of PTwere recorded using the array deployed on the vertical well on the right-hand side of the model.
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experiment. The results alongside their absolute errors from the
actual velocity model are shown in Figure 11. Compared with the
noise-free results (Figures 4–7), the structural characterization
accuracy of the final inversion results of the noisy data is
deteriorated for all data of SS, PS, PO, and PT (Figures
11A,C,E,G). The final inversion results of SS data only show
the outline shape of the shallow folded strata (Figure 11A). The
complex structures near the horizontal well are obscured.
Moreover, the overall velocity error of SS is large
(Figure 11B). The inversion results of PS data recover the
general shape of the nappe structures near the horizontal well
(Figure 11C), but there are very large errors in the shallow part
(Figure 11D). By using PO data, the inversion can recover the
structure near the observation well (Figure 11E) with small errors
(Figure 11F). The reconstructed structures using the PT data
(Figure 11G) are in good agreement with the exact model

(Figure 1). Compared with SS, PS, and PO, PT has the
smallest overall velocity error (Figure 11H). These results
confirm that the previous conclusions from the noise-free data
are valid for data deteriorated by Gaussian noise.

The second experiment concerns field noise. The Gaussian
noise was replaced by the field noise recorded from the Upper
Yangtze area of China. This field noise includes not only the
natural random noise but also human activities and machine
operations on site. Before adding the field noise to the synthetic
data (Figure 2), a frequency band pass filtering is processed to
keep it consistent with the data. The noise is added in such a
proportion that the resultant noisy data are of S/N = 2.0. As seen
from Figure 12, the noisy seismic records contain large amplitude
noise randomly distributed in the profiles.

Using the same inversion procedures as for the previous
experiments concerning Gaussian noise, we obtained the

FIGURE 11 | Inversion results (Blocks A, C, E and G in the column on the left-hand side) of data contaminated with Gaussian noise (S/N = 2.0) and the absolute
velocity error (Blocks B, D, F and H in the column on the right-hand side) relative to the actual velocity model. The results of SS, PS, PO, and PT data are marked in the
bottom left corner of each block.
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inversion results and their velocity errors against the actual model
(Figure 13). From the structures near the horizontal wells, the
results of Figure 13 are consistent with that of the Gaussian noise
shown in Figure 12. The inversion result of SS (Figure 13A)
cannot clearly reflect the complex structure near the horizontal
well and the error is the largest (Figure 13B). The results of PO
(Figure 13E) recover most of the overthrust structures above the

horizontal well. Its velocity error is much smaller than that of SS
(Figure 13F). The results of PS (Figures 13C,D) are similar to
those of PT (Figures 13G,H), but PT has the best agreement with
the exact velocity model. It further confirms that the previous
conclusions obtained from the noise-free data hold valid not only
for data deteriorated by Gaussian noise but also by random
field noise.

FIGURE 12 | Noisy data with S/N = 2.0 synthesized by adding field noise to the Vx and Vz seismograms of SS (Plots A and B), PS (PlotsC andD), PO(Plots E and
G), and PT (Plots F and H), as shown in Figure 2. The seismograms of PT are recorded using the array on the vertical well on the right-hand side of the model.
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Fault Imaging
To achieve the goals of a hydraulic fracturing operation, it is
desirable to image the faults around a horizontal hydraulic
fracturing well. In the previous modeling experiments, there
are complex fault structures around the horizontal hydraulic
fracturing well (arrows in Figure 14A). To demonstrate the
ability of FWI to image these faults using perforation seismic
data, a comparison of the FWI results of SS, PS, PO, and PT data
contaminated by the field noise (S/N = 2.0) is shown in Figure 14.
No sign of the faults is seen in the FWI results of SS (Figure 14B).
This means the faults cannot be imaged using conventional
ground surface seismic data. On the contrary, the faults are
successfully recovered in the FWI results of PS, PO, and PT
data (See the red arrows in Figures 14C–E, respectively). Among

the results of PS, PO, and PT, the ability of using PS data to image
faults is limited (black arrows in Figure 14C). In addition, PO
produces a sharper image of the fault structures near the receiving
array (red arrows in Figure 14D), while the image of the faults far
away from the receiving array is poor. In contrast, the PT image
showed the most accurate shapes and locations of all the faults
(red arrows of Figure 14E).

It is worth to pointing out that the strategy given in this article
mainly focuses on the inversion of macroscopic structures. It is
theoretically possible to image micro-scale fractures under ideal
conditions. However, this would require a very dense array of
observation systems capable of receiving very effective frequency
data, which would be very challenging technically and unbearable
economically.

FIGURE 13 | Inversion results (left) and absolute velocity error (right) of SS, PS, PO, and PT data with field noise (S/N = 2). (A) Result of SS. (B) Absolute error
between the inverted velocity in (A) and the exact velocity (Figure 2). Similarly, (C,D) are from PS, (E,F) from PO, and (G,H) from PT. The results of SS, PS, PO, and PT
data are marked in the lower left corner of each block and presented in order from the top to the bottom.
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CONCLUSIONS

In this article, we proposed an FWI strategy for the
inversion of concealed complex structures around a
horizontal well using perforation seismic data. Numerical

experiments were used to test the feasibility of the strategy.
Perforation seismic data recorded from the ground surface
and the observation wells were separately used in the
inversion. As a benchmark, inversion is also performed
using conventional reflection seismic data from the
ground surface. The results show that:

(1) The FWI inversion of using perforation seismic data to
image the concealed complex structures around
horizontal wells is successful. The inversion images of
perforation data showed clear details of the structures
that cannot be imaged clearly with conventional
reflection seismic data.

(2) The validity of this FWI strategy was further proved by the
anti-noise performance experiments using data heavily
contaminated with Gaussian or field noise. Inversions
using perforation data from observation wells
outperformed using data from the ground surface.

(3) The experiments also demonstrated that FWI using
perforation seismic data could image the faults around
a horizontal hydraulic fracturing well, while this was
unable to achieved using conventional ground surface
seismic data.

In summary, the modeling experiments demonstrate that
the proposed FWI strategy for imaging concealed complex
structures around a horizontal well using perforation
seismic data is feasible. Compared with using conventional
seismic data from the ground surface, this strategy has
significant advantages in imaging resolution and anti-noise
performance.
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FIGURE 14 | Comparison of fault structures from the exact velocity
model (A). Inversion results of SS (B), PS (C), PO (D), and PT (E). Red arrows
in (A) indicate the location of complex fault structures (solid red lines). (B–E)
Red arrows indicate the successfully imaged fault structures (solid red
lines), while the black arrows indicate fault structures that failed to recover
(dashed red lines).
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