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Tight sandstone reservoirs have complex pore throat structures and poor and large
differences in petrophysical properties. In this study, taking the Chang 3Member of Weibei
Oilfield, Ordos Basin, China as an example, the microscopic mechanism of the differences
in petrophysical properties of tight sandstone reservoirs was systematically studied by thin
section observation, scanning electron microscope, whole-rock X-ray diffraction, and
high-pressure mercury intrusion experiments. The research results show that the reservoir
types of the Chang 3 Member are mainly feldspar lithic sandstone and lithic feldspar
sandstone; the pore types include intergranular, intragranular dissolution pores, and a
small amount of residual intergranular pores. Taking the permeability of 0.3 × 10−3 and 0.5
× 10−3 μm2 as the boundary, we divided the samples involved in high-pressure mercury
intrusion into three categories according to the permeability from high to low: Type I, Type
II, and Type III. Their proportions were 31.4, 20.0, and 48.6%, respectively. The study
found that the smaller the sorting coefficient, the poorer the petrophysical properties of the
samples; the pore throat distribution of different samples gradually changed to a uniform
double peak–dominated type. The permeability of tight sandstone reservoirs is contributed
by a small part of pore throats with a large radius, while the reservoir space is mainly
contributed by a large number of pores connected with small throats. The porosity is
negatively and positively correlated with the median pressure and mercury injection
tortuosity, respectively. In addition, the pore throat radius corresponding to the
maximum permeability contribution rate, maximum pore throat radius, and sorting
coefficient are all positively correlated with the permeability. In general, the areas with
larger pore throat radius, lower pore throat tortuosity, and larger pore throat sorting
coefficient can be regarded as favorable areas for Chang 3 tight sandstone reservoirs.
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1 INTRODUCTION

Conventional oil resources are decreasing day by day, and tight
sandstone oil has become an important part of China’s oil resources.
Tight oil resources in major basins in China range from 8 to 10
billion tons. At present, China has built a highly industrialized tight
oil–producing area in the Ordos Basin, and the producing layer is
located in the Upper Triassic Yanchang Formation. Tight sandstone
reservoirs are characterized by tight lithology, poor petrophysical
properties, and strong microscopic heterogeneity (Yin et al., 2018;
Yin andDing, 2019; Dong et al., 2020; Hong et al., 2020; Santosh and
Feng., 2020; Chen et al., 2021; Xue et al., 2021). Pore throats with
different radii are obviously affected by complex capillary action and
gravity, which lead to huge differences in seepage laws within
different pore throat radii (Yin and Wu, 2020; Yoshida and
Santosh., 2020; Zhang et al., 2020; Ding et al., 2021). Reservoir
petrophysical properties are the final response of the microscopic
pore throat structures (Yin et al., 2020a; Mohammed et al., 2021; Qie
et al., 2021).

In recent years, the research methods of reservoir micro-
heterogeneity have been continuously improved. For example,
its development has gradually transitioned from conventional
methods such as microscope observation and mercury intrusion
to advanced methods such as nuclear magnetic resonance, high-
pressure mercury intrusion, three-dimensional CT scanning, and
laser focusing microscopy (Yin et al., 2020b; Hower and Groppo.,
2021; Mirzaei-Paiaman and Ghanbarian., 2021; Wang and
Wang., 2021). These methods directly or indirectly reflect the
microscopic heterogeneity of the reservoir. The previous methods
usually use the water displacement experiment to analyze the
seepage characteristics of tight sandstone reservoirs, but there are
few studies on the microscopic mechanism of the difference in
petrophysical properties of tight sandstone reservoirs (Sun and
Tang., 2006; Askarinezhad, 2010; Li et al., 2020; Mahmud et al.,
2020; Lan et al., 2021). There is no doubt that the petrophysical
properties of tight sandstone reservoirs are the key factors
affecting oil content, oil saturation, production rate, and
ultimate recovery factor of the reservoir (Barsotti et al., 2016;
Fan et al., 2019; Yang et al., 2021). Therefore, an in-depth micro-
mechanism study of the differences in petrophysical properties of
tight sandstone reservoirs is necessary, which is of great
significance to improve the accuracy of high-quality reservoir
prediction (Zhang et al., 2019; Zuo et al., 2019).

In this study, taking the Chang 3 Member of Weibei Oilfield,
Ordos Basin, China as an example, themicroscopicmechanismof the
difference in petrophysical properties of tight sandstone reservoirs
was systematically studied by thin section observation, scanning
electron microscope, whole-rock X-ray diffraction, and high-
pressure mercury intrusion experiments. This study can provide a
reliable basis for sweet spot prediction of tight sandstone reservoirs.

2 GEOLOGICAL BACKGROUND

The Ordos Basin in China has a total area of 370,000 km2. The
Upper Triassic Yanchang Formation has a monoclinic structure
that is low in the northwest and high in the southeast. In addition,

the slope of the Yanchang Formation is 8–20 m/km, and the
formation dip is 1–2°. Affected by the tectonic activities of the
Weibei Uplift Belt, some small-scale faults with small fault throws
developed in this area (Nabawy et al., 2009; Li et al., 2016; Wang
A. et al., 2018; Wang et al., 2020).

The study area, Weibei Oilfield, is located at the intersection
part of the Weibei Uplift and Yishan Slope in the Ordos Basin,
with an area of about 2028.9 km2. The oil resources of the
Yanchang Formation in the study area are 1.46 × 108t.
According to the regionally developed stratigraphic correlation
markers such as tuff, shale, and coal lines, the Upper Triassic
Yanchang Formation is divided into Chang 10–Chang 1
Members from bottom to top (Gier et al., 2008; Gao et al.,
2011; Dai et al., 2016; Cui et al., 2019). The Chang 10 to 7
Members (hereinafter referred to as C10–C7 in figures) were
deposited in a lake transgression stage during which the
lacustrine basin is formed and developed. During the
deposition of the Chang 7 Member, the lacustrine basin was at
its peak, and dark mudstone and interbedded oil shales of shallow
and semi-deep lacustrine facies were developed. The deposition of
Chang 6 to Chang 1 Members occurred during the delta
construction in the lacustrine basin, followed by lake shrunk,
and disappeared (Jia et al., 2012; Kwak et al., 2017). Among them,
the Chang 3 Member (C3) is the main oil-bearing formation with
an average burial depth of 550 m (Figure 1). The Chang 3
Member of Weibei Oilfield belongs to the front facies of
braided river delta and develops underwater distributary
channel, interdistributary bay, and mouth bar microfacies.
Underwater distributary channel sand bodies are the main
reservoirs (Li et al., 2019; Hong et al., 2020). The sand bodies
are distributed in a north–south direction (Figure 2).

3 DATA AND METHODS

In this study, we completed thin section observation, scanning
electron microscope test, particle size analysis, high-pressure
mercury injection, whole-rock X-ray diffraction (XRD)
analysis, and XRD clay mineral measurement of core samples
from Chang 3 Member reservoirs in Weibei Oilfield.

A total of 234 cast thin sections were observed, and the mineral
composition, pore type, particle sorting, and surface porosity
parameters of the thin sections were determined using a Zeiss
metallographic microscope (Axio Imager A2m) under the
conditions of an indoor temperature of 25°C and a relative
humidity of 50%. The detection basis is SY/T 5368-2000
“Rock Thin Section Identification”. In addition, a total of 42
samples were observed by using an FEI QUANTA 250
environmental scanning electron microscope. The detection is
based on GB/T 18295-2001 “Scanning Electron Microscope
Analysis Method for Sandstone Samples of Oil and Gas
Reservoirs”.

The particle size distribution of 38 reservoir rock samples was
tested by using an SFY-B2000 sonic vibration sieve particle size
analyzer. Furthermore, reservoir rock grain size, percentage of
different grain sizes, sorting coefficients, and kurtosis were
obtained.
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An AutoPore IV 9505 automatic mercury porosimeter was used
to complete the high-pressure mercury porosimetry of 35 tight
sandstone sample gates at a temperature of 18°C and a relative

humidity of 30%. The detection basis is SY/T 5346-2005
“Determination of Rock Capillary Pressure Curve”. Furthermore,
the porosity–permeability, mercury intrusion curves, and

FIGURE 1 | Location of the Weibei Oilfield (A) and stratigraphic column of the Yanchang Formation in the Ordos Basin (B) (modified from Wang et al., 2022).

FIGURE 2 | Planar distribution of sedimentary facies in the Chang 3 Member of Weibei Oilfield.
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characteristic parameters of pore throat structures of the samples
were obtained.

Whole-rock X-ray diffraction (XRD) analysis and XRD clay
mineral measurement were performed on 29 rock samples using a
D/max-2600 X-ray diffractometer, and the contents of different
types of minerals and clay minerals were obtained. The detection
basis is SY/T 5163-2010 “X-ray Diffraction Analysis Method of
Clay Minerals and Common Non-clay Minerals in Sedimentary
Rocks”.

4 RESULTS

4.1 Lithologies and Pore Types
The oil-bearing reservoirs in the Chang 3 Member are gray and
gray–brown fine sandstones, with particle sizes mainly ranging
from 0.06 to 0.25 mm. In addition, the clastic particles are mostly
subangular to sub-round with moderate sorting and roundness.
The lithologies of the reservoir are mainly feldspar lithic
sandstone and lithic feldspar sandstone (Figure 3). Among the
mineral components, the content of quartz is the largest (55.54%),
followed by feldspar (24.09%) and debris (19.31%) (Figures
4A,B). According to the observation of microscopic thin
sections, the composition of the Chang 3 Member comprises
magmatic, metamorphic, and sedimentary rock debris. In the
detrital composition, Q/F is 2.30 and Q/(F+R) is 1.29, indicating
that the Chang 3 reservoir has high compositional maturity. In
addition, the interstitials are dominated by carbonate cement and
muddy matrix, with an average content of 8.28 and 3.80%,
respectively; the content of clay minerals is low (average
content of 3.8%) and dominated by kaolinite and illite
(Figures 4C,D).

According to the observation results of the cast thin
sections, the average face ratio of the Chang 3 Member is
7.61%, and its surface area is relatively low (the average value is
0.32 μm−1). Statistics show that the shape factor of the target

layer is relatively low (average 0.46), indicating that the pores
are regular in shape. Moreover, the average coordination
number of pore throats is 0.48 and the sorting coefficient is
9.78, indicating that the number of throats connected to pores
is large and the pore heterogeneity is strong (Table 1). In
addition, the proportions of three types of pores, namely,
intergranular, intragranular dissolution pores, and residual
intergranular pores, are 76.15, 18.15 and 5.7%, respectively.
This shows that the pore types of the tight sandstone in the
target layer are mainly intergranular and intragranular
dissolution pores, and the proportion of residual
intergranular pores is the lowest (Figures 4C,D).

4.2 Petrophysical Characteristics and Pore
Structure Parameters
The petrophysical properties and pore structure parameters of
the samples obtained based on the high-pressure mercury
intrusion experiment are shown in Table 2. The porosity of
the samples ranges from 2.20 to 14.97%, with an average value
of 10.17%; the permeability ranges from 0.09 × 10−3 to 1.58 ×
10−3 μm2, with an average value of 0.44 × 10−3μm2. Referring
to the classification criteria for ultra-low permeability
reservoirs proposed by Yang and Fu (2012), we divided the
samples into three categories with permeability (K) of 0.3 ×
10−3 and 0.5 × 10−3 μm2 as the boundaries: (Type I) K ≥ 0.5 ×
10−3 μm2, (Type II) 0.5 × 10−3μm2>K ≥ 0.3 × 10−3 μm2, and
(Type III) K < 0.3 × 10−3 μm2.

According to statistics, the proportions of Types I, II, and III
samples in the Chang 3 Members are 31.4, 20.0, and 48.6%,
respectively (Figure 5). From Type I to Type III reservoirs, with
the decrease of the petrophysical properties of the samples, the
average value of the maximum pore throat radius, median pore
throat radius, and mercury withdrawal efficiency gradually
decreased; and the average value of displacement pressure,
median pressure, and residual mercury saturation gradually
increased. Among them, the mercury withdrawal efficiency
corresponds to the recovery factor in oilfield development, and
the residual mercury saturation is the mercury saturation that
remains in the rock sample when the injection pressure drops to a
minimum value (Fan et al., 2020). It shows that the smaller the
pore throat radius of the sample the greater the capillary
resistance and the worse the petrophysical properties. Such
reservoirs will show low recovery and high residual oil content
in the actual development process.

From the correlation between permeability and porosity
(Figure 6), it can be seen that there is a certain positive
correlation between porosity and permeability, but the
correlation is poor and the correlation coefficient R2 is only
0.33. Some samples with less porosity can also obtain larger
permeability, indicating that the porosity–permeability
relationship of tight sandstone is significantly different from
that of conventional sandstone. The research on the
differences in petrophysical properties of this type of tight
reservoirs should start from the perspective of microscopic
pore throat structures (Nelson, 2009; Ryazanov, et al., 2014; Li
et al., 2020).

FIGURE 3 | Lithologic triangular diagram of sandstone in the Chang 3
Member in Weibei Oilfield.
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5 DISCUSSION

5.1 Influence of Pore Throat Structures on
Petrophysical Properties
The capillary pressure curve is the relationship between capillary
pressure and mercury saturation, and a certain capillary pressure

corresponds to a certain pore throat radius. From the perspective
of pore structure, the capillary pressure curve can reflect the
distribution of the pore and throats of the rock (Wang, 2008; Qiao
et al., 2020). The shape of the capillary pressure curve is mainly
controlled by the sorting of the pore throats and size of the
throats. Sortability refers to the degree of dispersion of throat size

FIGURE 4 | Photomicrographs and scanning electron microscopy (SEM) images of the Chang 3 sandstone. Images on the left of (A) and (B) were test results under
plane-polarized light, and imageson the right of (A) and (B)were test results under cross-polarized light. (A)WellWB2, 544.60 m, ×50; (B)WellWB2, 547.71 m, ×50; (C)Well
WB11, 395.84 m, intergranular pores with chlorite film on the surface of the particles. In addition, the pores are filled with book-like authigenic kaolinite; (D) Well WB15,
226.17 m; intragranular dissolution pores; and the pores are filled with kaolinite and illite. Q: quartz; R: rock debris; F: feldspar; C: chlorite; K: kaolinite; I: illite.

TABLE 1 | Types and characteristic parameters of pores analyzed for samples in the Chang 3 Member.

Horizon Average
face ratio

Average
surface

area (μm−1)

Average
shape
factor

Average
coordination

number

Sorting
coefficient

Average
pore
throat
ratio

Pore composition (%)

Residual
intergranular

pore

Intergranular
dissolution

pore

Intragranular
dissolution

pore

C3 7.61 0.32 0.46 0.48 9.78 9.50 5.70 76.15 18.15
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(Wang L. et al., 2018; Zhou et al., 2021). The more concentrated
the distribution of throat size, the better the sorting, the longer the
flat section in the middle of the capillary pressure curve, and the
closer it is to parallel with the abscissa (Yang and Fu., 2012).

Moreover, the distribution interval and distribution shape
of pore throat radius represent the proportion of the
corresponding pore throat radius and strength of seepage
capacity, respectively, and the pore structures represented
by different peak shapes are also different (Yang et al.,
2017). A single peak indicates that the pore type is
relatively single, such as intergranular dissolution pores,
intragranular dissolution pores, residual intergranular pores,
or microcracks. The double peaks indicate that there are two

main pore types combined, which together control the storage
and permeability of the rock (Wang et al., 2017; Zhong, 2017;
Wang R. et al., 2018). Due to the differences in the dominant
pore type, the reservoir and percolation capacities of single
peak–type or double peak–type reservoirs are also different.

The pore throat distribution of the Chang 3 Member reservoir is
in the form of single peak and double peak, and double peak is
dominant, with double peak samples accounting for 74% (Figure 7).
A single peak–type pore throat distribution represents a single
pore–type reservoir. The pore types of the single peak samples
are mainly intergranular or intragranular dissolution, and the pore
throat sorting is better and the average sorting coefficient is low
(0.86). When the pore throat distribution is bimodal, it means that

TABLE 2 | Petrophysical properties and pore structure parameters of the Chang 3 tight sandstone samples.

Type Pore throat
radius

distribution

Well
name

No H(m) ϕ (%) k (10 −3µm2) Mercury intrusion parameters

Pd

(MPa)
Pm

(MPa)
Smax (%) We (%) Sr (%) rmax

(μm)
rm

(μm)

I SP WB11 WB11-15 397.45 13.14 1.58 0.35 4.47 82.20 41.36 48.20 2.17 0.17
I SP WB2 WB2-2 543.81 14.97 0.58 1.06 7.84 100.00 36.47 63.53 0.70 0.09
I SP WB2 WB2-39 550.88 13.79 1.16 0.64 4.57 100.00 37.15 63.80 1.15 0.16
I DP WB6 WB6-5 299.67 11.90 0.68 0.88 9.45 89.40 25.62 66.50 0.86 0.08
I DP WB9 WB9-19 509.18 2.20 0.63 1.11 41.06 60.00 18.67 48.80 0.67 0.02
I DP WB2 WB2-13 545.45 12.91 0.52 1.06 7.84 100.00 37.15 61.79 0.69 0.09
I DP WB7 WB7-2 409.23 14.56 0.91 0.35 4.37 90.80 37.15 69.40 2.12 0.17
I DP WB2 WB2-8 544.75 13.08 0.55 1.06 8.76 100.00 37.15 62.85 0.70 0.08
I DP WB2 WB2-23 547.15 14.27 0.94 0.62 6.41 100.00 37.15 61.06 1.18 0.12
I DP WB2 WB2-27 547.71 13.88 0.82 0.62 6.34 100.00 37.15 61.82 1.18 0.12
I DP WB2 WB2-47 553.68 11.89 0.94 0.48 4.70 100.00 37.15 65.13 1.53 0.16
Average 12.42 0.84 0.75 9.62 92.95 34.74 61.17 1.18 0.11

II SP WB11 WB11-4 394.91 8.93 0.38 0.75 8.45 88.20 33.33 58.80 1.00 0.09
II SP WB7 WB7-15 411.53 11.73 0.45 0.50 3.78 92.50 21.95 72.20 1.50 0.20
II SP WB2 WB2-43 551.75 5.78 0.33 5.04 26.22 100.00 37.15 52.18 0.15 0.03
II SP WB15 WB15-17 233.80 11.58 0.36 0.79 2.96 90.00 26.67 66.00 0.95 0.25
II DP WB6 WB6-52 306.43 10.66 0.49 0.70 7.63 92.80 18.97 75.20 1.07 0.10
II DP WB9 WB9-11 506.60 13.41 0.32 1.58 7.79 88.30 28.77 62.90 0.47 0.10
II DP WB2 WB2-17 546.12 3.89 0.34 6.42 31.93 100.00 37.15 56.73 0.12 0.02
II DP WB2 WB2-33 549.07 12.42 0.43 1.06 7.18 100.00 37.15 62.09 0.70 0.10
Average 9.80 0.39 2.10 11.99 93.98 30.14 63.26 0.74 0.11

III SP WB15 WB15-34 236.69 8.36 0.17 1.27 5.02 88.00 29.55 62.00 0.59 0.15
III DP WB15 WB15-4 225.99 7.90 0.12 2.01 10.44 86.00 32.56 58.00 0.37 0.07
III DP WB15 WB15-46 238.37 7.10 0.13 2.35 12.33 83.00 30.12 58.00 0.32 0.06
III DP WB15 WB15-55 246.74 8.71 0.17 1.30 6.02 89.00 21.35 70.00 0.58 0.12
III DP WB6 WB6-18 301.60 10.90 0.29 0.88 12.08 91.20 23.25 70.00 0.85 0.06
III DP WB6 WB6-31 303.69 12.56 0.25 1.30 10.71 93.50 23.74 71.30 0.58 0.07
III DP WB6 WB6-61 307.41 9.46 0.18 1.98 19.42 86.60 25.17 64.80 0.38 0.04
III DP WB6 WB6-44 305.46 8.42 0.22 1.70 9.45 91.20 19.08 73.80 0.44 0.08
III DP WB9 WB9-27 511.55 10.31 0.24 3.02 24.15 86.70 39.56 52.40 0.25 0.03
III DP WB9 WB9-5 504.62 10.21 0.23 2.78 11.24 89.50 33.85 59.20 0.27 0.07
III DP WB11 WB11-28 399.68 7.33 0.12 3.14 15.20 87.70 28.05 63.10 0.24 0.05
III DP WB11 WB11-37 401.41 7.51 0.13 2.92 15.11 85.20 26.29 62.80 0.26 0.05
III DP WB7 WB7-27 414.36 8.67 0.14 3.37 14.74 91.30 15.44 77.20 0.22 0.05
III DP WB7 WB7-35 416.88 10.07 0.14 3.31 16.47 92.80 17.46 76.60 0.23 0.05
III DP WB7 WB7-46 419.51 7.41 0.29 4.65 24.27 90.00 29.89 63.10 0.16 0.03
III DP WB13 WB13-2 309.25 6.30 0.09 4.81 19.99 90.00 24.22 68.20 0.16 0.04
Average 8.83 0.18 2.55 14.16 88.86 26.22 65.66 0.37 0.06

Notes: SP, single peak; DP, double peak; ϕ, porosity; k, permeability; Pd, displacement pressure; Pm, median pressure; Smax, maximum mercury saturation; We, mercury withdrawal
efficiency; Sr, residual mercury saturation; rmax, maximum pore throat radius; rm, median pore throat radius.
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the Chang 3 reservoir mainly develops pore throat spaces with two
pore diameter ranges. This type of reservoir mainly develops
intergranular and intragranular dissolution pores, which are
poorly sorted and have a high average sorting coefficient (1.44).
In addition, the average petrophysical properties of the double peak

samples are worse than those of the single peak samples, indicating
that tight reservoirs with a single pore type have better petrophysical
properties.

Comparing the typical capillary pressure curves of the
abovementioned three types of samples (Figure 8), it can be
found that the capillary curves of the samples of Types I, II, and
III are getting more and more smoother, indicating that
the sorting of pore throats is gradually getting better. The
sorting coefficients corresponding to these three types of
reservoirs also decreased gradually from 0.3427 to 0.1018.
That is, the smaller the pore throat sorting coefficient (the
better the sorting), the worse the petrophysical properties of
the samples. In addition, with the gradual improvement
of the sorting properties of the samples, the pore throat
radius distribution of the samples gradually changed to a
single double peak shape. The double peak samples contain
two pore types: intergranular and intragranular dissolution
pores.

In addition, the lower limit of the pore throat radius of these
three types of samples is about 0.0013 μm. However, only when
the pore throat radius is greater than 0.004 μm, a certain
amount of mercury exists in the pore throat. Mercury in
Type I samples mainly exists in the pore throats controlled
by the radius of 0.004–3.25 μm, and the permeability is the
highest. Mercury in Type II samples mainly exists in the pore
throats controlled by the radius of 0.004–1.3 μm, and the
permeability is moderate. Mercury in Type III samples
mainly exists in the pore throats controlled by the radius of
0.004–0.21 μm, and the permeability is the lowest. Samples
with larger large pore throats have the best percolation
performance.

Comparing the relationship among mercury injection
amount, permeability contribution, and pore throat radius, it
is found that as the pore throat radius decreases, the pore throat
radius corresponding to the peak of permeability contribution is
always larger than the pore throat radius corresponding to the

FIGURE 5 | Division of reservoir types in the Chang 3 Member.

FIGURE 6 | Relationship between porosity and permeability of the tight
sandstone samples in the Chang 3 Member.

FIGURE 7 | Average of porosity, permeability, and sorting coefficient of single and double peak of the Chang 3 Member in the study area.
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peak mercury injection amount. Moreover, the pore throat radius
covered by the peak mercury injection amount is larger. This
shows that the reservoir permeability is contributed by a small
part of pore throats with large radius, while the reservoir space is
mainly contributed by a large number of pores connected with
small throats.

5.2 Correlation Between Characteristic
Parameters of Pore Structure and
Petrophysical Properties
In this study, the high-pressure mercury intrusion experiments
were used to obtain not only the petrophysical properties

and pore throat structure parameters of the reservoir but
also parameters such as structure coefficient and geometric
factor (Table 3). Among them, the microscopic homogeneity
coefficient represents the concentration degree of pore throats,
and the pore structure coefficient represents the detour degree
of fluid seepage in the pores. The larger the pore structure
coefficient, the stronger the degree of bending and tortuousness
of the pores (Zhong, 2017; Ren et al., 2019; Liu et al., 2020).
Mercury injection and withdrawal tortuosity reflect the
tortuosity of the pore throat morphology experienced by the
nonwetting phase (mercury) when it enters and exits the cores,
respectively (Song and Kovscek., 2016; Zhu et al., 2018; Shi
et al., 2019). From the range of these characteristic parameters

FIGURE 8 | Comparison of capillary pressure curves and mercury intrusion parameters of different types of samples in the Chang 3 Member. Notes: SP, single
peak; DP, double peak.
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and the relationship between the mercury injection amount/
permeability contribution value and pore throat distribution
(Figures 7, 8), it can be found that due to the severe

densification of the Chang 3 reservoir, the pore structure
parameters are not much different, so the reservoir has good
sorting. Because the pore throat radius tends to be small as a

TABLE 3 | Characteristic parameters of pore structures of the Chang 3 reservoirs.

Pore throat structure
characteristic parameters

Chang 3 member

Minimum Average Maximum

Porosity (%) 2.20 10.18 14.97
Permeability (10−3μm2) 0.09 0.44 1.58
Pore throat radius corresponding to the maximum permeability contribution rate (μm) 0.10 0.45 1.60
Pore throat radius corresponding to the maximum mercury injection (μm) 0.04 0.18 0.25
Mercury injection tortuosity 0.30 1.20 2.93
Mercury withdrawal tortuosity 0.88 3.38 5.89
Relative sorting coefficient 0.77 1.01 1.41
Geometric factor 0.28 0.46 0.67
Maximum pore throat radius (μm) 0.12 0.71 2.17
Average pore throat radius (μm) 0.03 0.10 0.31
Median pore throat radius (μm) 0.02 0.09 0.25
Sorting coefficient 0.02 0.09 0.34
Displacement pressure (MPa) 0.35 1.88 6.42
Microscopic homogeneity coefficient 0.07 0.14 0.19
Pore structure coefficient 0.44 6.09 38.90

FIGURE 9 | Relationship between petrophysical properties and characteristic parameters of the pore structure of tight sandstone reservoirs in the Chang 3
Member.
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whole, the number of effective throats in the reservoir is
relatively small. The permeability of tight sandstone
reservoirs is mainly contributed by a small fraction of larger
pore throats. Ultimately, it is difficult for mercury to enter into
the core and even more difficult to exit the core (the tortuosity
of mercury withdrawal is greater than that of mercury
injection).

From the correlation between the characteristic parameters
of the pore structure of the Chang 3 Member and the
petrophysical properties, it is found that the characteristic
parameters of the pore structure that have a good correlation
with the petrophysical properties include median pressure,
mercury injection tortuosity, pore throat radius
corresponding to the maximum permeability contribution
rate, maximum pore throat radius, and sorting coefficient.
Among them, the porosity is negatively and positively
correlated with the median pressure and mercury injection
tortuosity, respectively (Figure 9). This is because when the
pore throat space is small, the capillary resistance is large, and
the median pressure is also large. Mercury injection tortuosity
reflects the degree of tortuosity of the pore throat morphology
experienced by the nonwetting phase (mercury) when entering
the core. When the tortuosity of mercury injection is large to a
certain extent, the connectivity of pore throats will be impaired,
but the increase of pore space will not be affected. The pore
throat radius, maximum pore throat radius, and sorting
coefficient corresponding to the maximum permeability
contribution rate are positively correlated with the
permeability (Figure 9). This is because the larger pore
throat radius corresponding to the maximum permeability
contribution rate and larger maximum pore throat radius are
beneficial to the fluid flow in the pore throat space. The larger
the sorting coefficient, the higher the probability of pore throats
with larger radius and the higher the rock permeability.

6 CONCLUSION

1) In this study, taking the Chang 3 Member of Weibei Oilfield,
Ordos Basin, China as an example, the microscopic
mechanism of the difference in petrophysical properties of
tight sandstone reservoirs was systematically studied by thin
section observation, scanning electron microscope, whole-
rock X-ray diffraction, and high-pressure mercury intrusion
experiments.

2) The reservoir types of the Chang 3 Member are mainly
feldspar lithic sandstone and lithic feldspar sandstone; the
pore types include intergranular, intragranular dissolution
pores, and a small amount of residual intergranular pores.
Taking the permeability of 0.3 × 10−3 and 0.5 × 10−3 μm2 as
the boundary, we divided the samples involved in high-
pressure mercury intrusion into three categories according

to the permeability from high to low: Type I, Type II, and Type
III. Their proportions were 31.4, 20.0, and 48.6%, respectively.
Analysis of the three types of samples of high-pressure
mercury injection data found that the smaller the sorting
coefficient (sorting coefficient, the better, pore throat radius
were similar to each other, the greater pore throat radius of
low probability), sample properties, mercury injection dense
sandstone core to overcome larger capillary force (expulsion
pressure), and mercury withdrawal when residual mercury
saturation is larger.

3) The study found that the smaller the sorting coefficient, the
poorer the petrophysical properties of the samples and the
pore throat distribution of different samples gradually
changed to a uniform double peak–dominated type.

4) The permeability of tight sandstone reservoirs is contributed
by a small part of pore throats with large radius, while the
reservoir space is mainly contributed by a large number of
pores connected with small throats. The porosity is negatively
and positively correlated with the median pressure and
mercury injection tortuosity, respectively. In addition, the
pore throat radius corresponding to the maximum
permeability contribution rate, maximum pore throat
radius, and sorting coefficient are all positively correlated
with the permeability. In general, the areas with larger pore
throat radius, lower pore throat tortuosity, and larger pore
throat sorting coefficient can be regarded as favorable areas for
Chang 3 tight sandstone reservoirs.
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