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The Manta-Ray Foraging Optimization has been adapted and implemented in computing
model parameters from potential field anomalies originating from two-dimensional dipping
faults. The inversion technique was originally demonstrated on magnetic anomalies from
uncorrupted–then, corrupted synthetic datasets. Thereafter, it was experimented on
profiles taken from mining fields in the United States, and Australia. The results
obtained showed that the design procedure is admirably stable and flexible, especially
when dealing with noisy data. It is also notably efficient in the quantitative resolution of
geophysical inverse problems. The consistency in results obtained from analysis of deep-
seated and shallow field examples, even when compared against background results, is
also impressive. The new technique has also exhibited notable superiorities over other
well-known and conventional techniques, especially on the grounds of convergence rate,
cost, and quality of resolved anomaly parameters. Consequently, it is recommended for
interpretation of other structures and modeling of other geophysical data like self-potential
and resistivity data.
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INTRODUCTION

In magnetics and gravity prospecting, signals of interest typically include those originating from
buried rock units, as well as those from neighboring formations. The interpretational focus, however,
is mostly on geologic structures that are of economic end-importance. Faults, ores, contacts, and
dykes are examples of such structures. Notably, attention on the interpretation of anomalies due to
faults for mineral prospecting has been appreciated among geophysicists lately. This is unrelated to
the fact that over the years–in addition to immense improvements in geophysical data interpretation
measures; faults have proven as good traps and caps over hydrocarbon pools. They have also been
known to exert a strong influence on the regional and local direction of mineralization (Li et al.,
2020).

Several techniques that ensure economically friendly and accurate acquisition and processing of
potential field data have been developed and accepted for different exploration problems. However,
for optimal interpretability and also to ensure the suitability of the acquired data for structural

Edited by:
Mourad Bezzeghoud,

Escola de Ciência e Tecnologia,
Universidade de Évora, Portugal

Reviewed by:
Serdar Ekinci,

Batman University, Turkey
Qiang Guo,

China Jiliang University, China
Kittisak Jermsittiparsert,

Dhurakij Pundit University, Thailand

*Correspondence:
Ahmed M. Eldosouky

dr_a.eldosoky@yahoo.com

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 06 February 2022
Accepted: 28 February 2022
Published: 23 March 2022

Citation:
Ben UC, Ekwok SE, Achadu O-IM,

Akpan AE, Eldosouky AM,
Abdelrahman K and Gómez-Ortiz D

(2022) A Novel Method for Estimating
Model Parameters From Geophysical
Anomalies of Structural Faults Using

the Manta-Ray Foraging Optimization.
Front. Earth Sci. 10:870299.

doi: 10.3389/feart.2022.870299

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8702991

ORIGINAL RESEARCH
published: 23 March 2022

doi: 10.3389/feart.2022.870299

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.870299&domain=pdf&date_stamp=2022-03-23
https://www.frontiersin.org/articles/10.3389/feart.2022.870299/full
https://www.frontiersin.org/articles/10.3389/feart.2022.870299/full
https://www.frontiersin.org/articles/10.3389/feart.2022.870299/full
https://www.frontiersin.org/articles/10.3389/feart.2022.870299/full
http://creativecommons.org/licenses/by/4.0/
mailto:dr_a.eldosoky@yahoo.com
https://doi.org/10.3389/feart.2022.870299
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.870299


imaging of the subsurface, the data must undergo geophysical
inversion (Abo-Ezz & Essa, 2016). Geophysical inversion is a
step-by-step modeling approach that aims to unravel the features
of buried geologic structures by establishing similarities between
them and to already well-defined models (Essa &Munschy 2019).
Over the years, various inversion techniques have been designed
for the deciphering/computation of these characteristic physical
parameters. Some of these procedures are united by adept
functional exploitation of computational approaches including
Euler deconvolution (Mota et al., 2020), Werner deconvolution
(Cerovský & Pašteka 2003), model layering (Pilkington 2006),
and parametric curves (Abdelrahman et al., 2012). Others employ
procedures consistent with fair function minimization and Depth
From Extreme Points (DEXP) (Abbas and Fedi 2013), simplex
algorithm (Pan et al., 2009), and linear least squares (Melo &
Barbosa 2018). However, experience has shown that results
obtained from these conventional inversion approaches usually
lead to the generation of large amounts of invalid solutions. The
invalid solutions are caused by many factors including noise
sensitiveness and poor window size compatibility (Li et al., 2020).
Another cause is improper filtering of noise from signals of
interest. Also, there is a characteristic over-dependence of
initializations on subjective priori geologic information which
may not be reliable or sufficiently reputable.

With recent improvements in machine intelligence, these
classical magnetic inversion methods are gradually being
substituted with more dependable, accurate, and reliable
metaheuristic techniques. Some of the intelligent techniques
employed for geophysical inversion include ant colony
optimization - ACO (Gupta et al., 2013); genetic algorithm
(Sen & Mallick 2018), particle swarm optimization- PSO (Guo
et al., 2020; Essa 2021; Essa et al., 2021); neural networks
method (Yadav et al., 2021); differential evolution-DEA
(Garabito and Cruz 2019; Ekinci Y. L. et al., 2021);
simulated annealing (Pan et al., 2009) and genetic price
algorithm (Kaftan 2017). These intelligent algorithms,
which mostly work by the functional imitation of the
normal behavior of objects from nature; have generally
upset most of the challenges posed by the classical
algorithms. The most obvious advantage of these techniques
is that they are conditioned to be zero-ordered. This implies
that any performance enhancements made in a direction
towards feasible solutions are not related to the derivatives
of the function minimized/maximized.

The performance of the above-mentioned intelligence-based
methodologies have generally been applausive. This is especially
in terms of optimized structural resolvability and improvements
in interpretation quality. Howbeit, these methodologies are still
short of analytical perfection, particularly in terms of convergence
and computational cost (Hemeida et al., 2020; Ben et al., 2021b;
Mbonu et al., 2021; Turgut 2021). Continual pursuit of this
analytical perfection necessitates continual development and
deployment of new optimizers and hence, the motivation for
this study. In this research paper, we present a new way of
parameterizing magnetic and gravity anomalies generated by
dipping fault structures based on the Manta-Ray Foraging
Optimization (MRFO) algorithm.

The MRFO algorithm—a relatively recent metaheuristic
technique, leverages the bio-inspired foraging strategies of
Manta-Rays for the resolution of optimization problems
(Hemeida et al.., 2020). The MRFO approach has previously
been tested and proven to be effective with contextual and
engineering challenges such as Covid-19 thresholding,
arrhythmia classification, energy minimization, wind turbine
control, fractional-order proportional–integral–derivative
controller design as well as magnetic levitation system (Ekinci
et al., 2021b; Ekinci et al., 2021c; Feng et al., 2021; Houssein et al.,
2021; Rezk et al., 2021). From the results of those applications,
MRFO optimization technique was reported as superior to
existing heuristic algorithms in several ways, such as better
accuracy, enhanced performance, and lower computational
cost. Resultantly, the scholars strongly recommended the
method for inversion situations. Up to the initial draft of this
manuscript, a total of two geophysical inversion studies using the
MRFO technique has been reported in published literature. Ben
et al. (2021b) employed the technique for the modeling of dipping
dykes; Ben et al. (2021c) interpreted gravity anomalies over
geometric geological structures such as spheres, cylinders,
sheets, and, horizontal faults using the MRFO strategy.
Barnhart and Lohman (2010), Amoruso et al. (2013), and,
Qureshi & Nalaye (1978) have however explained problems
associated with interpreting faults without regards to the angle
of dip–especially for fault structures in highly deformed regions,
e.g zones of folding. The novelty of this study lies in the
pioneering application of the MRFO algorithm to non-
horizontal fault problems. The parameters sought in this study
are those defining the character, location, and position of the
subsurface feature. The new method presents a couple of merits.
First, unlike deterministic schemes, iterative computations are
independent of the gradient of the objective function, technically
limiting immature convergence. Also, the wild function injected
during the cyclone foraging stage of the algorithm design allows
initial models to parameterize from anywhere within a size-
independent range (as would be seen in the examples)—
reducing reliance on subjectivity. Most importantly, the
superiority of the MRF tool actually lies with its foraging
character. With MRFO algorithm, the search agents are
allowed to switch intelligently and at any point between the
strategies of chain foraging and cyclone foraging. The chain
foraging behavior allows significant local search while the
cyclone foraging behavior concurrently assures non-
deterioration of global search during the process; a
mutualization of the two as allowed by the new technique
ensures comparatively quality solutions through a thorough
exploration of the whole domain of the geophysical problem.

The layout of the present paper is described as follows. First,
the 2-D potential field problem with respect to dipping faults is
introduced. Next, the proposed inversion methodology based on
MRFO is strategically constructed. The technique is then
experimented on synthetically constructed models corrupted
with random noise at varying levels and further, with two real
case studies. The obtained parameter values are then compared
with published results previously reported for similar anomalies
but obtained using other conventional techniques. Additionally,
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to understand uncertainties in the obtained solutions, appraisals
are conducted using Markov Chain Monte Carlo sampling
procedure. The MCMCprocedure adopted employs the
simulated-annealing without cooling scheme. Finally, the study
concludes with a brief assessment of the applicability and
effectiveness of MRFO as a tool for inversion of gravity and
magnetic field anomalies.

METHODOLOGY

Forward Modeling Problem
Assume a standard Cartesian coordinate system whose ordinate
represents the strike of a dipping fault buried at depth z, and
whose abscissa indicates the profile direction (Figure 1). The
magnetic -T and gravity G anomalies- (collectively depicted as P
later in the paper for inclusiveness and generality) (Eq. 1 and Eq.
2); of the two-dimensional fault at any point xk can be expressed
as (Essa, 2013; Abdelrahman et al., 2019):

G(xk, A, xo, z, β) � A[π + tan−1(xk − xo

zt
+ cot β)

− tan−1(xk − xo

zb
+ cot β)], (1)

T(xk, A, xo, zt, zb, β) � A[sin β(tan−1xk − xo

zt
− tan−1xk − xo

zb
)

+ cos β
2

(ln (xk − xo)2 − z2b
(xk − xo)2 − z2t

)],
(2)

where zt is depth to the top and zb is depth to the bottom of the
structure from the observation plane, β and A are respectively, the
dip angle, and amplitude coefficient that has a direct relationship
with thickness of fault, density contrast of the gravity anomaly
case and inclination of the geomagnetic field in the vertical plane
perpendicular to the strike of the fault.

These five controlling model parameters were determined in
this research, by constraining the cost function—obj (Eq. 3) using
the MRFO procedure. Acceptable values were determined by
lessening disparities between the calculated and actual data (Essa
et al., 2018; Ekinci et al., 2019).

objective function � ∑S
i�1(Pm

i − Pc
i )2

S
, (3)

where Pi
m and Pi

c are respectively the potential field anomaly
from observed data and those estimated using the proposed
methodology.

Manta-Ray Foraging Optimization
Algorithm
Manta-Rays, one of the ocean’s biggest creatures, are commonly
found in tropical environments. As manta-rays are naturally
toothless (Figure 2), their diet is normally limited to
microscopic aquatic creatures -planktons (Alturki et al., 2020).
Due to the dependence of plankton on ebbs and tides, the
occurrence of planktons in large concentrations is often erratic
and infrequent. For that reason, finding the best strategies for
assuring consistent food availability is essential for Manta-Ray
survival (Izci et al., 2020). Interestingly, Manta-Rays have
developed and honed several clever foraging tactics that are so
effective they rarely face food scarcity. The MRFO algorithm,
which provides the basis of our new methodology, is premised on
these distinct foraging strategies, specifically the chain,
somersault, and cyclone techniques (Turgut, 2021). Herewith,
vectorial positions of each foraging Manta-ray depict probable
positions of the required potential field parameter; and that of the
planktons indicate the optimum solution to the geoscientific
problem. The accompanying sections discuss these foraging
approaches as well as the numerical constructs designed for
our novel geophysical methodology.

Chain Foraging
Manta-Rays implement the chain foraging method by first,
locating prospective plankton and then, advancing toward it
via a foraging chain (technically a head-tail formation). As a
result, the neighbor would immediately take up any plankton

FIGURE 1 | A dipping fault model.

FIGURE 2 | Simplified anatomy of a Manta-Ray.
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that is missed by one agent and improve overall opportunities
for exploitation. The denser the concentration of plankton at a
specific position, the stronger that position (Ghosh et al., 2021;
Houssein et al., 2021). To achieve this strategy a premise
equating the original best position to the current optimal
solution is employed. This comparative position was
subsequently utilized to update the location of each agent
and its immediate predecessor. For our dipping fault
problem, the strategy was implemented using Eq. 4
(Houssein et al., 2021).

P(xk) �

{ P(xk)4i (t) + r.(P(xk)4best(t) − P(xk)4i (t)) + w.(P(xk)4best(t) − P(xk)4i (t))i � 1

P(xk)4i (t) + r.(P(xk)4i−1(t) − P(xk)4i (t)) + w.(P(xk)4best(t) − P(xk)4i (t))i � 2, 3, . . . ,T
,

(4)

w � 2.rand().







∣∣∣∣log(r)∣∣∣∣√

, (5)
where P(xk)(t) is search agent’s ith position (the potential field
parameters) at t, T the maximum iteration number; w the weight
coefficient (Eq. 5); rand()-a vector randomly generated between 0
and 1 while P(xk)4best(t) the optimal geophysical parameter
position vector is technically located in the healthiest plankton
cluster.

The ith individual’s position is determined by positions
P(xk)4i−1(t) of the (i-1)th search agent and P(xk)4best(t) of the
food (the target solution of our geophysical problem).

Cyclone Foraging
If a group of Manta-Rays, as detailed above, identify and create
a foraging chain to lucrative plankton in deep water, they will
glide towards them in spirals. The spirals are similar to the one
employed in the Water Optimization Algorithm
(Gharehchopogh & Gholizadeh 2019). For MRFO, however,
the approaching Manta-Ray swarm maintains their line while
whirling, such that while an individual follows the one in front,
it is still going towards the target food.

We use the following equations to numerically describe this
method in a form that is specific to our potential field problem
(Zhao et al., 2020).

P(xk)4i (t + 1) �

{ P(xk)4best(t) + rand().(P(xk)4best(t) − P(xk)4i (t)) + w . (P(xk)4best(t) − P(xk)4i (t))i � 1

P(xk)4best(t) + rand().(P(xk)4i−1(t) − P(xk)4i (t)) + w . (P(xk)4best(t) − P(xk)4i (t))i � 2, 3, . . . ,T
,
(6)

where w is asymptotically generated by Eq. 7 as weight coefficient
for cyclone foraging.

w � 2erand()
T−t+1
T sin2πrand(), (7)

However, after completing this stage successfully, the
estimations for the required fault parameters failed to
converge repeatedly and instead become unstable; fluctuating
about a central position inside the search space. Convergence was
obliged by nudging each agent to new positions that differed from
their current ones but remained within the problem domain. This
was strategized by injecting a wild random function into each
structural parameter’s bound (Houssein et al., 2021; Ghosh et al.,
2021). This local strategy allowed comprehensive global search by
MRFO and significantly increased overall exploration. The

numerical construct for this stage is expressed as shown in Eq.
8. It was generically implemented using Eq. 9 (Rezk et al., 2021).

q4rand � LB4 + rand(). (UB4 − LB4), (8)
P(xk )4i (t + 1) � { q4rand(t) + rand().q4rand(t) − P(xk )4i (t)) + µ.(q4rand(t) − P(xk )4i (t))i � 1

q4rand(t) + rand().(P(xk )4i−1(t) − P(xk )4i (t)) + µ.(q4rand(t) − P(xk )4i (t))i � 2, 3, . . . ,T
, (9)

where q4rand is the random function explained earlier.

Somersault Foraging
Here, the search domain is reconstructed such that our ideal
geophysical solution (promising planktons) is positioned as a
pivot. This is such that, before somersaulting off to other
locations, each of our investigative search agents revolves
around this pivot. By this, the new positions are not
completely random or stray too far, but rather circle about the
most promising found up to that time. With increasing iterations,
the algorithm is designed such that the somersaulting range is
intelligently lowered step-wise until the solutions are obtained.
This is achieved numerically using Eq. 10 (Elattar et al., 2020; Ben
et al., 2021b; Feng et al., 2021)

P(xk)4i (t + 1) � P(xk)(t) + S.rand1().P(xk)4i (t)
− rand2().P(xk)4i (t),

i � 1, 2, . . . ,N , (10)
where the term S—a constant known as the somersault factor,
determines the Manta-Ray’s somersaulting range. rand1() and
rand2() determined randomly between 0 and 1 were generated
using PYTHON’s NUMPY library.

Random initialization of the Manta-Ray’s population in the
search space (designed around the UB and LB) is the first step in
our proposed method. Each agent in the domain is made to
contain all the fault parameters required. The user-selection of
UB and LB for each structural problem is driven by historical
geology, geophysical, and petrophysical information. The bounds
do not necessarily affect the results but only prevent the agents
from completely iterating out into infinity. At each iteration step,
the agents update their current positions based on the agent
preceding them and their referential position. These positions of
reference are determined by t/T, whose value is skillfully
decreased from 1/T to 1 for exploratory and exploitative
searches (Houssein et al., 2021). Exploitation is done when t/T
is smaller than rand(); otherwise, exploration takes place. As a
result, theMRFO algorithm enables individuals to determine and,
if necessary, transpose between cyclone and chain behaviors.
These calculations and updates are carried out iteratively, step
by step, until the stopping criterion is met.

The estimated data was assessed after each step by comparing
it with the measured data using RMS error technique (Eq. 3).

The best positions representing the five required model
parameters are returned whenever convergence is achieved.
Figure 3 is a flowchart for the entire optimization procedure
discussed above.

Algorithm Configuration/Time Complexity
The algorithm used for this study was designed with PYTHON3
programming package and compiled on the VSCode developer
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environment. The compiling environment was installed on a
simple PC running on a core i7 processor and a Windows 10
package.

For time complexity, this factor depended-first on the
structural feature’s complexity; then on the number of
iterations allowed. Nonetheless, for all cases in this study, the
process rounded up completely in less than 50 s.

Uncertainty Analysis
Arising from the characteristic non-uniqueness, non-linearity,
and ill-posedness of geophysical inverse problems; it is

mathematically possible for various models constructed from
different sets of parameters to fit into similar observed
measurements. This situation usually raises considerable
uncertainty around ultimately estimated parameters. As a
result, uncertainty appraisal has come to be accepted as very
vital in inversion studies (Scales & Tenorio 2001).

The Bayesian approach has been reportedly employed in
parameter estimations involving considerable stochasticity. The
procedure relies on the concept of conditional probability. By
combining a priori information with the experimental data’s
likelihood, prior probability distributions for the required

FIGURE 3 | Flowchart showing MRFO process for geophysical optimization.
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parameters could be obtained (Tarantola 2005; Biswas et al., 2017;
Yusof et al., 2018). For global optimization algorithms like SA,
PSO, and, GA, correct sampling has been achieved with the
Markov-Chain Monte Carlo algorithm (Yusof et al., 2018; Ekinci
et al., 2020). For this investigation, the Metropolis-Hasting
algorithm (M–H), a generalized Markov chain Monte Carlo
(MCMC) method (Metropolis et al., 1953; Hastings, 1970) was
used for parameter sampling. The M-H method suggests various
models based on some prior distribution. The likelihood of each
proposed model is computed by resolving the forward model
problem and then, obtaining the misfit in the data. If there is a
likelihood increase, the revised model is accepted. Nonetheless,
even if there is an observed decrease in likelihood, the proposed
model can still be accepted, although with a probability
dependent on the ratio of likelihood between the proposed
and the original model. The method, based upon simulated
annealing, allowed for the assessment of uncertainty by
providing parameter confidence intervals (Ekinci et al., 2020).

PARAMETER TUNING STUDIES

Pluralities of bio-inspired global optimization algorithms have
unique control parameters that have a big impact on the
algorithm’s inversion convergence point. These control
features are critical for any algorithm’s overall performance.
Their selection, however, heavily depends on the problem-at-
hand’s nature (Kanimozhi & Jacob 2019; Gonzalez et al., 2021).
Resultantly and prior to conducting our inversion analysis, we
modify model parameters to establish the appropriate control
parameters for the Manta-Ray algorithm. The parameter tuning
study in our metaheuristic instance is primarily concerned with
determining the optimum population of experimenting agents
and the Somersault factor–S.

To properly guide the tuning studies, a synthetic magnetic
anomaly dataset was theoretically generated using Eq. 1 with A =
200 nT. Further, zb = 30 m, zt = 10 m, β = 40°, xo = 10 m, and
profile length was 160 m. A synthetic gravity anomaly dataset was
also generated with A = 50 mGal, zb = 30 m, zt = 8 m, β = 40o, xo =
0 m, and profile length of 80 m. In both synthetic magnetic and
gravity data experiments, broad search spaces (Table 1, 2) are
adopted for the model parameters. This was to enable
investigation of S’s effect on the overall solution. The
inversion of both anomalies was then carried out using
identical approaches. Thirty independent runs in 500
optimization iterations were permitted with population
number = 150. The select population number was arrived at
by multiplying the number of unknown model parameters (5)
with total independent runs allowed (30). The magnetic and
gravitational anomaly problem was thereafter investigated
statistically utilizing the mean, standard deviation, and
minimum of the RMS. Tables 3 (magnetic data) and 4
(gravity data) show the findings obtained for various S values.

According to the tables, the best statistical results (boldface)
were obtained with an S value of 2. This means that using this
value as the S for both gravity and magnetic data would make the
whole optimization process more resilient and effective. The huge

range in error values between the control producing the best and
those producing the worst is another notable/interesting
observation. This huge discrepancy could definitely have a
significant impact on the solution’s correctness in relation to
the optimal model parameter resolution. This so emphasizes the
critical need for parameter tuning studies during global
optimization applications.

SYNTHETIC EXAMPLES

To assess performance, we put the proposed methodology
through controlled series of tests using synthetic data
simulating an idealized dipping fault. The uncorrupted version
synthetic anomaly was examined first; then the clean anomaly
was purposefully contaminated with noise and reanalyzed.

Noiseless Anomaly
The MRFO technique was used to investigate the
uncontaminated magnetic and gravity field anomalies
synthetically generated for a dipping fault structure. The
synthetic magnetic anomaly constructed along a 160-m long

TABLE 1 | Search space, actual and estimated parameters uncorrupted synthetic
gravity anomaly.

Anomaly parameters Search Space Actual (Control) Estimated

A (mGal) 0–200 50.000 49.974
xo (m) −20–20 0.000 0.036
zb (m) 0–100 30.000 30.278
zt (m) 0–50 8.000 7.892
β (o) −180–180 40.000 39.991

TABLE 2 | Bounds, actual and estimated parameters for uncorrupted synthetic
magnetic anomaly.

Anomaly parameters Search bounds Actual (Control) Estimated

A (nT) 0–500 200 200.031
xo (m) −50 – 50 10 9.931
zb (m) 0–100 30 30.008
zt (m) 0–100 10 10.003
β (o) −180–180 40 39.997

TABLE 3 | Statistical results for RMS values obtained from parameter tuning of
MRFO for synthetic magnetic dataset.

S RMS (nT)

Minimum Mean Standard deviation

0.5 1.3869 1.7836 0.7548
1 0.5383 0.9471 0.2674
1.5 0.2536 0.4368 0.0734
2 0.0745 0.8352 2.4836 x 10−5

2.5 0.1338 0.1836 5.3425 × 10−3

3 0.3846 0.5358 0.2036
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profile was sampled at 1 m sampling interval. Model parameters:
A = 200 nT, zb = 30 m, zt = 10 m, β = 40°, xo = 10 m was adopted.
The synthetic gravity anomaly was produced with A = 50 mGal,
zb = 30 m, zt = 8m, β = 40°, xo = 0 m along an 80 m profile. The
gravity profile was also sampled at an interval of 1 m. The
magnetic and gravity anomalies were computed with Eqs 1, 2
respectively.

The search space was populated with 150 initial models/
vectors and a broad range of parameter boundaries. For the
magnetic case, A-values were set to be in the range of 0–500 nT,
and β from -180° to 180°, zb ranged from 0 to 100 m zt from 0 to
100 m while xo stretched between—50 and 50 m. On the other
hand, for the gravity anomaly, A was set to vary between 100 and
2000 mGal, β from −180o to 180o, zb ranged from 0 to 100 m, zt
from 0 to 50 m, and xo from—20 to 20 m. A total of 500 repetitive
iterations were allowed for each run. MFRO has comprehensive
and powerful search capabilities. Convergence was attained in less
than 100 steps; and good approximations of the five model
parameters (A, xo, zb, xt) determined to be in good agreement
with their known values were obtained (Figures 4A, 5A; Table 1,
2). Furthermore, a careful evaluation of the histogram generated
after uncertainty appraisal analysis (Figures 6, 7) reveals the
estimates within highly acceptable confidence intervals.

Noisy Anomaly
To imitate non-ideal subsurface conditions, the previously
modeled synthetic dataset was contaminated with varying
degrees of Gaussian random noise (5 percent and 10
percent). Using a customized version of the SCIPY library,
the Gaussian noise generation process was automated and then

individually added data. These various amounts of noise were
added to evaluate the suggested methodology’s efficacy in the
presence of external interferences. These interferences may be
from a host material or even signals from neighboring geologic
intercalations (Balkaya & Kaftan 2021; Essa & Abo-Ezz 2021).
Eq. 11 was used for calculating the noise percentage.

Noise percentage � Pn − P
Pn

, (11)

where P and Pn respectively represent the clean and contaminated
anomalies.

With Eq. 3 used as the cost function, and parameter bounds
identical to those used in the noiseless anomaly, cases were re-
adopted; the anomalies were reanalyzed with MRFO. The misfit
and their convergence were examined after each iteration.

The MRFO algorithm-estimated model parameters were
found to be remarkably consistent (Figures 4B,C, 5B,C;
Tables 4, 5). Figures 4D, 5D show the Sketches of the fault
models. However, based on the results, A appeared to be more
sensitive to increasing noise. This sensitivity, which is likely to
alter interpretations when dealing with exceedingly sophisticated
and deep-seated problems, may be explained by the fact that A is
a multiplier factor (Eqs 1, 2). In any case, it could be easily
handled by shortening the lower-upper bound range. Further, the
results show that the after-convergence misfit and RMS error
increase somewhat with the noise level. Nonetheless, this does not
affect the inversion process because the resulted parameters
continuously remained appealing even to a 10% noise level
(Tables 5, 6). It can therefore be inferred that the new
technique is intrinsically stable and demonstrates

FIGURE 4 | Actual and estimated anomalies (gravity) of a synthetic dipping fault structure with (A) 0% (B) 5% (C) 10% Gaussian noise using MRFO algorithm (D)
Sketch of the fault model.
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FIGURE 5 | Actual and estimated anomalies (magnetic) of a synthetic dipping fault structure with (A) 0% (B) 5% (C) 10%Gaussian noise using MRFO algorithm (D)
Sketch of the fault model.

FIGURE 6 | Produced histograms after uncertainty appraisal using MCMC algorithm (synthetic magnetic anomaly). Estimated values indicated on upper-left part of
the charts.
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commendable proficiency in handling corrupt anomaly data.
Figures 6, 7 show the MCMC appraisal histogram for all
noisy cases. Careful consideration of the generated histograms
shows all estimated parameters as well-placed within excellent
probability regions affirming the effectiveness of the algorithm’s
sampling operation.

FIELD CASES

It is generally understood that the strength and credibility of any
new geophysical procedure depend on its practical applicability in
the exploration of ores and minerals. The developed MRFO

FIGURE 7 | Produced histograms after uncertainty appraisal using MCMC algorithm (synthetic gravity anomaly). Estimated values indicated on upper-left part of
the chart.

TABLE 4 | Statistical results for RMS values obtained from parameter tuning of
MRFO for synthetic gravity dataset.

S RMS (mGal)

Minimum Average Standard deviation

0.5 0.4729 0.8468 0.0658
1 0.0374 0.0846 0.0173
1.5 0.0383 0.0519 0.0052
2 0.0063 0.0094 3.7841x 10−8

2.5 0.0327 0.0682 7.3081 × 10−5

3 0.0472 0.0773 0.0401

TABLE 5 | Search bound, actual and estimated parameters synthetic gravity
anomaly corrupted with random noise.

Model parameter Percentage of noise and observed
results

— 5% 10%

A (mGal) 53.286 55.193
xo (m) −0.276 2.922
zb (m) 31.705 29.040
zt (m) 8.797 9.439
β (o) 42.642 40.386

TABLE 6 | Search space, actual and estimated parameters for synthetic magnetic
anomaly corrupted with random noise.

Model parameter Percentage of noise added and
observed results

— 5% 10%

A (nT) 195.274 210.633
xo (m) 9.449 11.212
zb (m) 31.738 29.375
zt (m) 10.711 9.428
β (o) 42.158 44.037
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algorithm is as such, experimented against two real examples. The
examples are taken from mining fields in the United States of
America and Australia. The parameters reflecting the physical
characteristics of the subsurface anomalies are estimated using
the technique, and then subsequently compared against results
from previous investigations for similar examples (published in
the literature).

Lachlan Anomaly, Australia
In the first implementation of our newmethodology with real-life
anomalies, we seek at interpreting a total magnetic anomaly
observed over the Molong anticlinorium; a major structural
division of the Lachlan fold belt in New South Wales,
Australia. The Lachlan fold belt is a middle Paleozoic
accretionary orogen widely explored for its rich gold deposits.
Orogenically, the belt was massively affected by the Benambrian
Orogeny. The event is also believed to have resulted in the
development of the Wagga-Omeo zone during the Late
Ordovician to Early Silurian period. This was followed by the

Middle Devonian Tabberabberan Orogeny which brought an end
to the precratonic evolution; before it was being converted to a
neo-craton at the last stage of the Carboniferous Kanimblan
Orogeny. Structurally, the Silurian rocks which make up the belt
fold characteristically to a syncline with a slight dip in the
northwest direction (Wang et al., 2019). Figure 8 is an east-
west profile constructed from aeromagnetic data acquired over
the anticlinorium with a flight height of about 200 m across the
synclinal structure’s western limb. The anomaly, buried at depth,
was believed to be due to the abrupt thinning of the 1000 m thick
tuff of the Douro volcanic against a fault (Ekinci et al., 2020). For
this study, the 4 km long profile was digitized after every 125 m
interval.

The MRFO technique was employed for parameterizing the
subsurface structure, which is considered to be a dipping fault
based on past geologic information. The parameter ranges
indicated in Table 7 are used to initialize the algorithm, and
the maximum iterations allowed were pegged at 500. Finally,
the RMS approach is used to monitor the difference between

FIGURE 8 | Total magnetic anomaly of Lanchlan anomaly, Australia inverted using the MRFO procedure.
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the real and calculated data. The obtained results are displayed
in Table 7.

The inversion result shows that the target structure is fault-like
with an origin at approximately -356.021 m and an amplitude
coefficient of 130.314 nT. The fault was inclined at 59.523° and is
buried at 483.117 m to the top and 1481.308 m to the bottom of
the fault. After 150 iterations, which lasted only 120 s, the
iterations converged. This demonstrates that the MRFO
algorithm performs admirably in terms of speed, complexity,
and cost. Furthermore, the 9.632 nT misfit calculated implies that
the actual and projected data fit together perfectly.

Several workers have shown interest in the Lachlan anomaly
because of its economic potential, as evidenced by relevant
literature. Qureshi & Nalaye (1978) decomposed the anomaly
into symmetric and antisymmetric parts. Thereafter, after
independently analyzing these two parts, they reported the
buried feature as a fault dipping at an angle of 49° They also
resulted 115 m as depth to the structure’s top and 1105 m as
depth to its bottom. Ekinci et al. (2020) alternatively inverted the
anomaly using a fault model via differential evolution algorithm.
Their experimentation resulted 1149.84 and 135.81 m as
respective depths to the fault’s bottom and top and 138.27° as
dipping angle. It must be added that Ekinci et al. (2020) designed
their forward models assuming non-coplanar relationships
between the dislocated fault slabs. More too, their dipping
angle was constructed to be strongly affected by the general
strike and regional direction of magnetization. These factors
are believed to have added up to the large dipping angle
obtained from their study. However, the β-parameter from
this study shows better favorability as it is compatible with
observed dips for other structures in the region (350–800) as
documented by the Geological Survey of SouthWales (Qureshi &
Nalaye, 1978). Nonetheless, analysis of these reports (Table 7)
reveals that results from our new methodology still agree
impressively with findings from similar studies in literature.

Garber Oil Field Anomaly, Oklahoma
United States
Discovered in 1916, the Garber field which is situated on a
dominant regional feature is one of Oklahoma’s most
prominent hydrocarbon fields (Kirkland et al., 1995; Gouin,
1956). The field is characterized by minor faults which

dominate its surroundings and numerous anticlinal folds. In
addition to these features, it is structurally deformed by the
major Nemaha fault. In 1965, workers reported a fault
structure suspected to be deep-seated from a geophysical
contour map developed for the region (Ferris 1987). The
suspected fault is the interpretative focus of this field example.

Gravity data was digitized across a 20-km-long profile over the
fault structure. The sampling was carried out at 500 m intervals.
To decipher the parameters defining the buried dipping fault
structure, we followed the steps outlined in the proposed
methodology. First, we initialized the algorithm with
parameters based on the bounds shown in Table 7, as
consistent with the previous field example. The maximum
iteration number was then set to 500. The RMS error was
used to monitor the disparity between the digitized gravity
data and those calculated from MRFO-generated parameters
(Figure 9). Table 8 shows the results that were obtained.

According to results from the inversion process, the targeted
source can be inferred as a fault-like structure inclined at an angle
of 126.135°. Its origin is at a horizontal distance of 16.924 km on
the profile. The depth to the structure’s top and bottom is
calculated to be 6.083 and 14.537 km respectively. The
iterations converged after about 180 iterations, which took
about 150 s, confirming the superiority of the algorithm in
cost management and time complexity. More too, it is
observed from the obtained error of 1.857 mGal that the
measured and the computed data fit excellently (Figure 9).

Table 8 shows how the results obtained using our proposed
methodology compare to those obtained using other
methodologies and published in the literature. Using the least-
squares inversion approach, Qureshi & Nalaye (1978) reported
that the anomaly is a fault; with its top at a depth of 9.25 km and
its bottom at a depth of 15.55 km. Murty et al. (2001) generalized
an interpretation technique based on angular value
decomposition. They then investigated the Garber field
anomaly using the constructed tool. From results obtained
after their analysis, they also pinpointed the anomaly to a fault
structure. However, they reported the source structure as being
relatively thinner and also as being buried at shallower top and
bottom depths of 8.86 and 15.07 km. Using a comparative
approach, Ekinci et al. (2019) recently employed the robust
PSO and DE algorithms for the intelligent investigation of the
Garber anomaly. They also confirmed that the anomaly-causing

TABLE 7 | Recovered parameter results and comparative analysis for Lanchlan Anomaly, Australia.

Model parameters Search Space Estimated (MRFO) Qureshi
& Nalaye (1978)

Ekinci et al. (2020)

A (nT) 0–1000 130.314 — —

xo (m) −1500–1500 356.021 — —

zb (m) 1–4000 1481.308 1105 1149.84
zt (m) 1–1000 483.117 115 135.81
β (o) −180–180 59.523 49 138.27
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structure was fault-like; howbeit, the fault was calculated as
stretching from depth 5.62–10.77 km using PSO. DE resulted
5.10 and 13.76 km for the same respectively. These results
indicate that findings obtained using our new methodology are
consistent (Table 8) with existing information about this same
anomaly, present in relevant literature.

DISCUSSION OF RESULTS

In both synthetic and actual examples, MRFO-based inversion
proved to be an accurate and dependable technique for modeling
potential field anomalies detected across geo-structures such as
dipping faults (Figures 10, 11). Furthermore, the MRFO

TABLE 8 | Comparative analysis of parameter results for Garber Oil Field Anomaly, United States

Model parameters Search Space Estimated (MRFO) Qureshi &
Nalaye (1978)

Radhakrishna et al.
(2001)

Ekinci et al.
(2019)-PSO

Ekinci et al.
(2019)-DE

A (mGal) 0–500 241.968 — — — —

xo (km) 0–20 16.924 — — — —

zb (km) 1–60 14.537 15.55 15.07 10.77 13.76
zt (km) 1–30 6.083 9.25 8.86 5.62 5.10
β (o) −180–180 126.135 — — 108.41 141.13

FIGURE 9 | Total gravity anomaly of Garber anomaly, Oklahoma inverted using the MRFO procedure.
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FIGURE 10 | Change in model parameters with iteration (Gravity Anomaly).

FIGURE 11 | Change in model parameters with iteration (Magnetic Anomaly).
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algorithm’s fast convergence rate suggests that it is a better-
performing method for geophysical inversion. Surprisingly, this
speed has no effect on optimization capability because the errors
recorded at the end of the method are were still within acceptable
ranges. Notably, the algorithm appears to overcome unpopular/
recurring problems of immature convergence and local optima
that regularly limits intelligent techniques such as ACO, PSO, and
GA (Mehanee & Essa 2015; Roshan & Kumar Singh 2017; Chopard
and omassini 2018; Izci et al., 2020; Hua et al., 2021). This is
accomplished by the search agents’ capacity to intelligently switch
between chain and cyclone foraging techniques when necessary. The
chain foraging method is often responsible for improving the
algorithm’s local search; whereas the cyclone strategy is mostly
concerned with enhancing the algorithm’s global search for
solutions. By mutually combining the two–as the proposed
methodology permits, a thorough exploration of the entire
domain of the problem can be achieved. Noting these gains, as
well as the comparatively lesser computational efforts required for the
achievement of the gains, MRFO has been found to effectively
supersede all other well-known optimizers in the resolution of the
geophysical optimization problem. This is with respect to structural
anomalies due to shallow and deep-seated dipping faults.

CONCLUSION

The feasibility of adapting the MRFO technique for the
solution of geophysical inverse problems has been
investigated. The procedure was structured towards
obtaining precise estimates of five separate model
parameters describing buried dipping fault. The parameters
of interest were amplitude coefficient, origin, inclination, and
depth from the surface to the top and bottom of the structural
feature. The experimental data set consisted of synthetic
potential field data that were later polluted with 5 and 10%
random noise, as well as real profile anomalies extracted from
mining fields in Australia and the United States. The

algorithm execution rate was impressive-finding solutions
with excellent RMS well before the maximum iterations
allowed. Even so, analysis of the algorithm’s performance
and generated results reveal that the technique is
outstanding, stable, and flexible, even in the presence of
noise. The consistency of the results produced from the
analysis of the field instances, when compared to control
data generated from earlier research, further confirms that
the procedure is accurate and reliable for the resolution of
potential field problems. Resultantly, the approach is
recommended for modeling potential field data and even
alternative geophysical data such as self-potential,
resistivity, and electromagnetics.
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