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Changes in circulation patterns associated with climate change have led to an increase in
the frequency and intensity of Saharan dust events (SDEs) in the Carpathian Basin. The
annual number of dust events was 4.2 on average between 1979 and 2010, while in the
period of 2011–2018, it has increased to 10.3. This study presents a quantitative
assessment of wet deposition of dust particles to Lake Balaton (Central Europe) with
mineralogical and particle size distribution measurements. In addition to a comprehensive,
systematic SDE identification process, rainwater samples were collected in 2016, and the
particles on the filters were characterised using a range of analytical techniques. The
atmospheric transport of particulates and moisture was evaluated using HYSPLIT
Lagrangian trajectory model. XRD measurements revealed that during these events,
the major minerals were quartz, kaolinite and 10-Å phyllosilicates. In addition,
mineralogical source markers of arid dust (palygorskite and smectite) were also
identified in majority of the analysed samples. Based on the results, wet deposition
fluxes of dust particles were estimated for the region. 2016 was a typical and
representative year for the decade, with twelve identified dust episodes. The synoptic
patterns of the events fit well with the typical meteorological character of the North African
dust intrusions with enhanced atmospheric meridionality described earlier. From the
twelve episodes of 2016, seven were depositional events when wet deposition could
be observed at ground level. Dust material of five episodes was analysed in detail, while
particles of the two February wet deposition episodes were only granulometrically
characterised. General uncertainties that hinder the characterisation of mineral dust in
climate models were also observed in the granulometric and dust flux data of the sampled
material. The particle size of the deposited dust was coarser than the upper cut-off level of
grain size of the models. In addition, the discrepancies between measured and simulated
deposition values clearly demonstrated the incorrect representation of dust flux in
numerical simulations (partly due to inaccurate grain size data in the models).
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1 INTRODUCTION

The emission of mineral dust from continents is an essential
source of solid particles in the atmosphere. These particles are
entrained into the atmosphere by the process of deflation from
poorly vegetated surfaces. Fine-grained particles are generally
lifted to higher altitudes and may have longer atmospheric
residence time, up to a few weeks (Pye, 1987). The presence of
atmospheric dust influences the energy budget of the Earth via
scattering and absorbing the incoming solar radiation (Claquin
et al., 1999; Balkanski et al., 2007). Aerosol particles, via the
modification of cloud properties and reduction of surface
temperature, are also playing a role in the alteration of
synoptic system patterns (Barkan et al., 2004; 2005). Dust
particles can become coated with water-soluble secondary
species (Wurzler et al., 2000), thus altering their hygroscopic
growth and their ability to act as cloud condensation nuclei (Yu
et al., 2006). The desert dust particles serve as nutrients with
important environmental consequences for both terrestrial (Swap
et al., 1992; Muhs et al., 2007; Yu et al., 2015) and marine (Lenes
et al., 2001; Walsh and Steidinger, 2001) ecosystems. They have
the potential to affect the biogeochemical cycle through their
trace metal content (Engelstaedter et al., 2006), such as iron which
is the limiting nutrient in many oceanic ecosystems (Jickells et al.,
2005). Atmospheric dust deposition in lakes could have a
substantial impact on the sediment budget of lakes, this is
especially true for shallow lakes with relatively large surface
areas (e.g., Lake Balaton, the largest Central European lake).

The annual global emission flux of desert dust was estimated
to be in the order of the range between 1 and 3 Pg (Tegen et al.,
1996; Mahowald et al., 1999; Ginoux et al., 2001; Mahowald et al.,
2006). The Sahara is known to be the largest single source of
windblown crustal material (Ginoux et al., 2001; Pósfai and
Buseck, 2010). The mass concentration of dust in the
European atmosphere significantly increases by periodical
Saharan dust episodes.

Saharan dust episodes have become a common atmospheric
phenomenon in spring and early summer (Dulac et al., 1996).
These events are usually induced by convective systems when
high atmospheric currents of southern amplitude are likely. The
leading edge of transported dust and other mineral constituent is
generally over a kilometre in height and several kilometres in
length (Hjelmroos et al., 1994; Ross et al., 2004). Most of the
Sahara-derived dust particles deposit locally, but a significant
fraction is transported over large areas of the North Atlantic and
the Mediterranean. Aeolian dust from North Africa is regularly
observed in the Mediterranean region (Israelevich et al., 2002;
Barkan et al., 2005; Israelevich et al., 2012; Varga et al., 2014;
Rodriguez-Navarro et al., 2018). It can often be detected further
to the north, e.g., over the British Isles (Wheeler, 1986), Germany
(Klein et al., 2010), Scandinavia (Franzén et al., 1994; Barkan
et al., 2005) and Central Europe (Borbély-Kiss et al., 2004; Koltay
et al., 2006; Szoboszlai et al., 2009).

Changing nature of dust episodes indicates changing climatic
and other environmental processes. In Central Europe, an
increasing frequency of Saharan dust episodes was observed in
the last decade (Varga, 2020). In the background of this

phenomenon, the high-amplitude southerly sinking of the
high-altitude air masses is thought which causes intense North
African outflow and meridional transport (Varga, 2020). In
general, the atmospheric concentration of coarse dust particles
is generally low in Central Europe, except for episodic dust storms
related to cold fronts at the beginning of the vegetation period in
the early spring (Varga et al., 2013). Still, Central Europe can be
found in the D1b zone of the “Saharan dust-fall map” by Stuut
et al. (2009), indicating that North African dust material can be
incorporated into the soils, increasing their fine silt content.

The Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) allows air parcel to be tracked backwards in time
from the precipitation event, calculate changes in physical
properties and provide information about transport routes
involved (Stein et al., 2015; Rolph et al., 2017). The actual
mass contribution transported along the selected trajectory
strongly depends on the history of the air masses. Among the
main factors, there are the duration of the transport,
meteorological factors along the route, and the additional
aerosol sources along the transport path (Borbély-Kiss et al.,
2004). Alteration in the moisture content provides an estimate of
where the source region evaporation occurred. The model has
been successfully applied in several previous studies, including
tracking changes in atmospheric circulation (Sjostrom and
Welker 2009; Gustafsson et al., 2010; Dumitru et al., 2016;
Bottyán et al., 2017; Krklec et al., 2018; Zhang et al., 2020).
This atmospheric calculation model is a useful tool in our
observations for studying the moisture pathways. The
technique is suitable to provide detailed information about the
possible moisture source regions and determine transport path
from the Atlantic, Mediterranean, Eastern and Northern sectors
to the Central European region leading to the observed events.

Increasing frequency and intensity of Saharan dust events in
the Carpathian Basin were reported by previous studies (e.g.,
Varga et al., 2013; Varga et al., 2014; Varga, 2020). By
identification and sampling of these episodes, we also provide
a comprehensive characterisation of Central European washout
events with regard to synoptic meteorology, mineralogical phase
composition and particle size distribution. The goal of the
sampling campaign (MARS—MAss of Rain-originated Solid
phases) of this study was to quantify and characterise
(granulometry, mineralogy) the filterable solid phase of
precipitation and to give a measurement-based estimate for
the deposited dust. The focus area of this study was Lake
Balaton which enabled the estimation of the contribution of
Saharan dust events to ist sediment budget.

2 MATERIALS AND METHODS

2.1 Study Area
The Carpathian Basin (CB: 45°–48.5° N, 16°–23° E), including
Hungary with an area of 93,036 square kilometres, is
approximately equidistant from the Equator and the Arctic
Circle in the temperate zone (Figure 1). The surrounding
mountain belt of the Carpathians, Alps and Dinarides forms a
natural barrier between temperate Central Europe, the colder
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continental Eastern Europe, as well as the warm, dry Balkan
(Spinoni et al., 2014). The sampling site is located in the central
Carpathian Basin and is situated on the northern shore of Lake
Balaton with latitude 46°58′29.9″N and longitude 17°55′38.3″E
(Figure 1). Dust material samplings of two intense February 2016
wet depositional events were performed as part of a permanent
dust sampling program running in Budapest. The basin character
determines the main geographical features: weak vertical
articulation and low altitude. Due to the considerable distance
from the Atlantic Ocean (1,300–1700 km), the climate of the
Carpathian Basin is drier than that of the Western European
areas. The basin territory lies at the border of Atlantic,
Mediterranean and continental climate zones. This specific
position determines the general climate and the continuously
changing atmospheric systems have a significant impact on
regional meteorological events (Stevens et al., 2011). The
regional climate model predicts temperature-related changes
manifest in general warming conditions and seasonally large
distribution in precipitation (Krüzselyi et al., 2011). The
influence of Mediterranean climate features will be
strengthened in the Carpathian Basin (Spinoni et al., 2014; Kis
et al., 2017).

The above-mentioned significance of dust deposition into
shallow lakes has also an important role in the case of
sediment budget of Lake Balaton, the largest lake in Central
Europe, on the shores of which the Csopak sampling station is
located. Previous measurements and historical data have shown
that a significant proportion of the lake’s sediment is aeolian in
origin. Annual concentrations of settling dust were measured by
the National Air Pollution Measurement Network at several

locations around the lake until 2007, and only in Siófok after
2007 (summary studies of the Environmental Protection and
Water Management Research Institute, 2007 and the Hungarian
Meteorological Survey 2009). Based on these database no
apparent relationship could be observed between the amounts
of annual dust concentrations and precipitation; 2003 and 2009
were extremely dry years but the annual dust concentrations did
not show outstanding values (average for 2002–2017: 5.10 g/m2/
30 days; 2003: 4.51 g/m2/30 days; 2009: 3.20 g/m2/30 days). We
calculated ~33,000 tonnes per year annual average amount of
atmospheric dust based on data from the 2002–2017 period.

2.2 Identification of Dust Events
A permanent Saharan dust monitoring program is running in the
Research Centre for Astronomy and Earth Sciences, Budapest,
Hungary. Combined application of satellite-borne aerosol
products, numerical simulations, meteorological analyses and
surface observation reports allowed the compilation of a more
than 40 years long time series of dust events identified in the
Carpathian Basin (Varga, 2020). Foremost, the standardised
values of Aerosol Index of Ozone Monitoring Instrument
(OMI—Daily Level 3 Gridded Products; OMTO3d) and
Aerosol Optical Depth data of Terra and Aqua satellites
(Combined Dark Target and Deep Blue AOD at 0.55 micron
for land and ocean - MOD08_D3_v6; MYD08_D3_v6)) were
calculated to select possible Saharan dust episodes. Additionally,
Area-Averaged of Dust Column Mass Density simulations of
MERRA-2 (M2T1NXAER.5.12.4) were applied to verify the
AOD-based observations and complete the dust episode
database with cloud-obscured days. Due to local aerosol

FIGURE 1 | Geologic framework of the Carpathian–Pannonian area (modified after Csontos & Nagymarosy 1998) and map of sampling location.
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emissions, these initial episodes have to be verified by the
additional HYSPLIT backwards air mass trajectories, daily
visibility-reducing surface weather reports of the potential
source areas by Naval Research Laboratory (https://www.
nrlmry.navy.mil/aerosol/#aerosolobservations) and Barcelona
Dust Forecast Center’s dust load and deposition simulations
(Non-hydrostatic Multiscale Model NMMB/BSC-dust model).

Monthly dust deposition data of NASA’s Modern-Era
Retrospective analysis for Research and Applications, Version
2 (MERRA-2) model (Gelaro et al., 2017) were obtained from
Giovanni application for visualisation and access Earth science
remote sensing data platform (https://giovanni.gsfc.nasa.gov/
giovanni/) provided by NASA Goddard Earth Sciences Data
Information Services Center. Cumulative values of five size-
bins provide information on dry and wet deposition in the
study area, these were compared to measured solid-phase
accumulation data.

2.3 Air Mass Trajectories
For atmospheric trajectory and dispersion calculations, HYSPLIT
(HYbrid Single-Particle Lagrangian Integrated Trajectory)
modelling was used (Draxler and Rolph, 2012), a software for
predicting transport processes in the atmosphere and for
simulating deposition (Stein et al., 2015). The backward
trajectories used for estimation of air moisture source regions
were modelled on the database provided by the Global Data
Assimilation System (GDAS) with 1° spatial resolution. Backward
trajectories of air parcels related to precipitation events were
calculated for 48 h total run time back in time at three altitude
ranges: 500–1,500 m, 1,500–3,000 m and 3,000–6,000 m. The model
was run for the days when precipitation occurred, starting at that
UTC hour when the real precipitation event began on the sampling
site. To identify the source regions of water vapour, the trajectories
were classified into sectors on the basis of the route involved. Four
sectors were determined around our sampling site: 1) Northern
Europe, 2) Eastern Europe, 3) Mediterranean region and 4) Atlantic
region. A detailed description of the evaporative region calculation
can be found in Bottyán et al. (2017). Main dust transport pathways
were defined by using multiple endpoints from different heights
(500–1,500m; 1,500–3,000m; 3,000–6,000m a.g.l. [above ground
level]).

2.4 Synoptic Meteorological Background
Based on Varga (2020) synoptic meteorological patterns
associated with dust intrusion episodes were characterised by
mean geopotential height (700 hPa) and wind vectors. Meridional
and zonal flow maps were compiled for the event days using the
Daily Mean Composite application of NOAA Earth System
Research Laboratory (http://www.esrl.noaa.gov/psd/).
According to previous studies, the 700 hPa level corresponds
to a typical dust transport altitude (Alpert et al., 2004; Barkan
et al., 2005; Varga et al., 2013, 2014). Surface air temperature
anomalies (based on the 1981–2010 climatology) were also
calculated using the gridded National Centers for
Environmental Protection/National Center for Atmospheric
Research (NCEP/NCAR) Reanalysis Project dataset (Kalnay
et al., 1996) for Central Europe.

2.5 Sample Collection
In the period of 2016, overall, 74 precipitation events occurred in
the sampling location, of which 46 samples were collected.
Typically, with precipitation amounts less than 3 mm it was
not possible to obtain a sufficient quantity of filtered solid
material for subsequent analyses. Out of the rain samples, 5
were collected during incursions of dust-laden air masses
originating from the Sahara. Rain sample collection was
performed with care to ensure that no accidental
contamination occurred during sampling. Evergreen hedge
near the collector was routinely pruned to minimise catch
errors from wind currents (Poreh and Mechrez, 1984).
Samples were collected in clean polycarbonate plastic
container on a 40 cm-raised, concrete ground platform to
collect as many solid components as possible and to avoid
rain splash as mentioned in standard literature (Salles et al.,
2000; Lara et al., 2010; Chakraborty and Gupta, 2018). The
collector was deployed just before the onset of rainfall and
withdrawn immediately at the end of the event. All samples
were transported to the laboratory shortly after collection. The
membrane-filtered (mixed cellulose esters membrane/MCE;
47 mm diameter; 0.45 µm nominal pore size; types: Millipore,
Prat Dumas) water samples were stored frozen. The filtered
material was dried at 40°C, and its weight was measured and
stored in a desiccator.

2.6 Mineralogical Analyses (XRD, SEM)
The mineral particles filtered from rainwater were determined by
X-ray powder diffraction (XRD). The measurements were
performed directly on the filters which were mounted to a
silicon low background sample holder. XRD patterns were
obtained with a Siemens D5000 instrument equipped with a
graphite monochromator, using CuKα radiation (λ = 1.5406 Å),
generator operating at 40 kV voltage and at 40 mA tube current.
Detection covered the range 2–65°2ϑ with a step size of 0.05°2ϑ
and counting time of 2 s.

The morphology and composition of mineral dust were
determined by scanning electron microscopy (SEM).
Observation of silt-size solid-phase by SEM has been carried
out in high vacuum an accelerating voltage of 2 kV with an
Everhart-Thornley Detector (FEI SE detector R580). The
microstructure and morphology were tested by SEM coupled
with energy-dispersive x-ray spectroscopy (SEM/EDS). An Apreo
SEM (FEI/ThermoFischer Apreo S scanning electron
microscope) equipped with Octane Elect Plus EDS (AMETEK)
was used at 2 kV for imaging and 10 kV for determining the
chemical composition.

2.7 Grain Size of Deposited Mineral Dust
The grain size of the collected mineral dust samples was determined
by a Malvern Morphologi G3-ID automated static image analyser.
Filtered mineral dust samples were dispersed by 4 bar compressed
air onto the glass slide of the automatedmicroscopewith 60 s settling
time, however, the filters were also scanned. The used ×20 objective
lens provides a 40 pixel per μm2 resolution of the acquired images of
each individual particles, suitable for the measurement of the
particles sized between fine silt and fine sand. Two-dimensional
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imaging was amended with two additional vertical focal plane layers
above and two others under the focus, equivalent to a total of
27.5 µm focal plane range.

On average, 50,000 high-resolution grayscale images of
individual particles were processed to assemble a raw
granulometric database with various grain size and shape

parameters for every particle, completed with light
transmissivity values and Raman correlation scores. A
detailed description of the granulometric procedure can be
found in Varga et al. (2018).

In most cases, even after very intense washout episodes, it was
not possible to collect an appropriate amount (>0.1 g) of Saharan

FIGURE 2 | MERRA-2 Dust Column Mass Density data of the study area and the identified Saharan dust events.

FIGURE 3 | Synoptic meteorological background (mean geopotential height map and wind vectors at 700 hPa of the SDEs identified in the Carpathian Basin in
2016.
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dust material for other grain size characterisation methods (e.g.,
for laser diffraction sizing).

3 RESULTS

3.1 Meteorological Background of Saharan
Dust Events and Dust Transport
Twelve dust episodes were identified in 2016 by combined
application of satellite measurements, numerical simulations,
backward trajectories and surface observation reports
(Figure 2). In the case of seven episodes, no deposition could
be noticed, only synoptic meteorology, transport routes and
potential source area allocation is discussed here. Two intense
washout events occurred before the onset of the systematic
sampling at the Csopak site. Those samples were collected in
Budapest, Hungary, and the characterisation by automated image
analysis and Raman spectroscopy were performed. Five Saharan
dust depositional events were observed at the Csopak site
(Figure 3).

The majority of dust loaded air mass intrusions into the
Carpathian Basin are caused by eastward-moving low-pressure

systems developing over SW Europe and NW Africa and by
Central Mediterranean cyclones (Figure 3). These meteorological
set ups which are favorable for these events are also characterized
by prominent ridge patterns. Based on the backward trajectories,
the potential dust source areas of the discussed episodes might be
located in the vicinity of the Atlas Mountains (Hautes Plaines,
chott regions of the foreland of Saharan Atlas), from where strong
winds of the penetrating cyclones emit a huge amount of dust into
the atmosphere (Figure 4).

The two most intense February episodes (23rd and 29th of
February) were discussed in detail in previous studies (Varga
et al., 2014; Varga, 2020). However, it is worth noting that both
of these episodes were connected to the separated cut-off low of
a deepened atmospheric through developed over the Iberian
Peninsula. Daily precipitation totals for the 23 February event
were 5–6 mm, while the 29 February washout episode was
associated with 25 mm of rain. The deposited reddish-yellow
dust blanketed exposed obstacles in Central Hungary. Among
the sampled mineral material, a high volumetric proportion of
larger than 50 µm giant dust particles could be identified in
both cases. The Saharan dust events sampled in Csopak are the
followings:

FIGURE 4 | HYSPLIT backward trajectories of the SDEs identified in the Carpathian Basin in 2016.
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3.1.1 Saharan Dust Episode/SDE #1: 08 April 2016
A low-pressure system formed over northern Africa (Algeria), at
the lee side of the Atlas Mountains on 05. April 2016 (Figure 3).
According to the visibility-reducing surface weather reports of the
Naval Research Laboratory, intense dust storms were developed
in the next few days also in the central and northern regions of
Lybia. The dust-loaded airmass was clearly visible over the Gulf of
Sidra and Cyrenaica on MODIS images of NASA’s Aqua and
Terra satellites. Airmasses with elevated dust concentration
reached the Carpathian Basin at the foreside of the (north)
eastward-moving shallow cyclone.

3.1.2 Saharan Dust Episode/SDE #2: 11/12 May 2016
In early May, intense dust storms were reported from the
intramontane basins, foreland and Chott regions of the Atlas
Mountains by the surface observations and very high dust
concentrations were observed over the western and central
basins of the Mediterranean region for several days. As a
result of the strong meridional flow coupled to this situation,
on 11–12May 2016, precipitation with a large amount of Saharan
dust fell again in the territory of Central Europe. On the front of a
shallow, then increasingly deepening low-pressure atmospheric
centre formed over SW Europe and NW Africa. The steep
pressure gradient between the cyclonal system and the static
high-pressure regions over the Sahara led to the strong southerly
airflow.

3.1.3 Saharan Dust Episode/SDE #3: 29 May 2016
In late May, another dust washout episode was observed in
Hungary, the synoptic background was similar to the SDE #2;
South-westerly flow dominated the investigation area as a result
of the pressure difference of an eastward propagating cyclone and
the African high-pressure belt. The intramontane basins of Atlas
were obscured by the dust storms, while areas of Chott Melrhir
and Felrhir was also affected by the strong winds, surface reports
recorded the dust.

3.1.4 Saharan Dust Episode/SDE #4: 19 June 2016
Rainfall on 19 June 2016 contained Saharan dust, which was
well visible on car windshields and rain-exposed landmarks.
The strongest south-western flow occurred between the high-
pressure region from the northwest of the African continent to
the Balkans and the undulating frontal zone bisecting Europe,
which was later followed by an Italian-centered vortex. The
source of the dust was the southern foreland of the Atlas.

3.1.5 Saharan Dust Episode/SDE #5: 15 October 2016
An autumn dust episode was also identified in 2016, on 15
October rainfall washed out a large amount of Saharan dust in
the western part of Hungary. An extensive cyclone over Western
Europe and its SW flow determined the synoptic situation of
these days. A high-pressure blocking zone over the Central
Mediterranean led to strong meridional winds on the warm
sector of the low-pressure system carrying mineral dust from
the Tunisian dry salt lakes (Chott Melrhir and Chott Jerid) to
Central Europe.

3.2 Rain Amounts
Based on daily meteorological reports of the Hungarian
Meteorological Survey (OMSZ), 469 mm of precipitation fell in
the study area from April 2016 to March 2017. A total number of
46 rainy episodes were sampled (>3 mm) in Csopak during the
sampling period (393 mm). Events with very low precipitation
intensities were ignored in our study because of sampling and
filtration difficulties. The measured cumulative precipitation
volume was about 75% of the total annual precipitation
reported for the site. The largest number of events within a
single month was in June (11), followed by October 7) and August
(6), and none was observed in March. Monthly average
precipitation amounts during the campaign are shown in
Figure 5A. The annual distribution of precipitation showed
large variability. The highest total precipitation was collected
in June followed by August and May. Table 1 presents the
seasonal distribution of precipitation. Five individual SDEs
were detected during the sampling period, three in spring
(with total precipitation amount of 4 mm, 55 mm, 3 mm), one
in summer (9 mm) and one in autumn (5 mm).

3.3 Mineralogy (XRD, SEM)
XRD patterns measured directly on the filters are shown in
Figure 6A. Both filter types (Prat Dumas and Millipore)
produced an elevated background but of different
characteristics (Figure 6B). The signal coming from the filters
hid the presence of potential amorphous phases in all samples
and, due to peak overlaps, decreased the detectability of some
potential phases in the case of the two Prat Dumas filter-based
samples. Due to the low total amount of dust on the filters, the
patterns could be analysed by fingerprint method (e.g.,
Rodriguez-Navarro et al., 2018) using only the most intense,
characteristic peaks of the relevant rock-forming minerals or
mineral groups. Reference samples from the Atlantic (ref #1) and
Northern (ref #2) region were compared with Saharan originated
samples.

3.3.1 Mineral Phases
Table 2 contains the identified minerals and also indicates the
relative quantity categories of the given mineral in comparison to
the other samples. Quartz is the only mineral that could be traced
in all samples, even in varying quantities. In one (SDE #4) of the
three quartz-dominated samples, the preferred orientation
associated intensity distribution (unusual 1.82 Å peak)
indicates grain size much coarser than the ideal powder range.
Four characteristics, but usually broad sheet silicate peaks were
associated (Rodriguez-Navarro et al., 2018) with the following
minerals: smectite (14 Å), palygorskite (10.5 Å), illite (10 Å),
kaolinite (7.1 Å, 3.57 Å). SEM images (Figure 7) confirm the
presence of 100 nm range fibrous mineral grains, a morphology
typical for palygorskite. These fibrous texture clay mineral flakes
travelled by being attached to rounded quartz grains, mainly of
1–10 µm size (Figure 7). Very large quartz particles up to 100 µm
in size were also found. Dolomite (2.89 Å) dominates one sample
(SDE #3), appears in an additional four and absents from two
samples. Feldspars (K-feldspar: 3.23 Å; plagioclase: 3.18 Å) occur
together with quartz, but in a subordinate amount.
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3.3.2 Mineral Assemblages
Four (SDE #1–4) out of the five trajectory-computed samples
are of a similar, but not the same mineralogical fingerprint.
These four samples included palygorskite, which is widely used
to identify Saharan dust. Their mineral assemblages indicate
different Mediterranean/Saharan source areas. SDE #1 and #2,
both dolomite free show the greatest similarity in mineral

composition. These samples might have originated from the
closest regions, but the former is of depleted intensity though
the similar—high—dust load of the two filters. SDE #2 is of the
highest clay mineral content, in good agreement with the grain
size distribution data (Figure 7). SDE #3 and #4 are built up of
the same minerals, but #3 is strongly dolomite dominated,
indicating very different source geology. The coarser range

FIGURE 5 | (A) Monthly variation of examined rainfall occurrence (i.e., > 3 mm) during the study period (based on the database of the National Meteorological
Service); (B)Quantity of deposited dust material; (C) Sectors for determination of precipitation sources (after Bottyán et al., 2017) and directions of the examined Saharan
dust events at an altitude of 3,000–6,000 m; (D) Schematic map of possible Saharan source areas (source of basemap: https://maps-for-free.com/).

TABLE 1 | Comparison of seasons and annual storm size statistics for the study period, April 2016—March 2017, from all the rain events measured.

Statistic Unit spring summer autumn winter Annual

Average mm/event 15.6 9.61 8.6 12 10.2
Minimum mm/event 3 3 3 3 3
Maximum mm/event 55 25 20 20 55
SDEs mm/season 62 9 5 0 83
Total rain mm/season 78 202 129 60 469

% of annual rain % 16.63 43.07 27.51 12.79 100
Events/day #/d 0.01 0.06 0.04 0.01 0.12
Avg. daily rain mm d−1 3.12 0.46 0.57 2.40 1.00
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dominated grain-size distribution of SDE #4 (Figure 6) is due
to the relatively larger contribution of quartz particles. The
anomalous XRD intensities also support the coarse grain
character of quartz. The fifth sample (SDE #5),
characterized by the complete lack of clay minerals, should
originate from an area of very different mineralogy, even if of
Saharan source at all.

Two additional non-SDE samples were also studied by XRD to
test differences in mineral composition. The reference sample #2 (13
January 2017) has a similar fingerprint to SDE #4, thus based just on
mineralogy it might also be of Saharan origin, however, HYSPLIT
trajectories prove its N–NW source area. The reference sample #1
(05 September 2016) differs from SDE #1–4 by the lack of clay
minerals, indicating non-Saharan transport direction, and indeed,
the HYSPLIT trajectories confirm the Atlantic source region.

3.4 Precipitation Transport RouteDirections
Transport routes of all major precipitation events were
determined based on 48-h trajectory simulations in the
altitude ranges of 500–1,500 m, 1,500–3,000 m, and
3,000–6,000 m a.s.l. In the study period, the Atlantic ocean
was the predominant source region, accounting for about two
third of the total volume annual precipitation (Figure 5C). The
Mediterranean, Northern Europe and Eastern Europe source
regions were found to contribute to 16%, 8%, and 8% of
annual precipitation, respectively. In contrast, in 2012 which
was a year with an extensive drought during the summer the
main precipitation source region was the Mediterranean Sea
(Bottyán et al., 2017). These two regions are the primary
sources of precipitation in the Carpathian Basin. Synoptic
circulation patterns seldom favour moist air mass transport

FIGURE 6 | X-ray diffraction patterns of (A) the SAD samples (SDE #1–#5) and the reference samples (reference sample #1: R/Cs–27, reference sample #2: R/
Cs–43), both on filter holders and (B) the two blank filter types (* indicates Prat Dumas filter). The most significant peaks and interplanar spacing (dhkl) values used for
mineral group identification are indicated. Legend: qtz: quartz, dol: dolomite, fs: feldspar.

TABLE 2 | Main mineral phases contributing to the XRD fingerprint (Figure 4) of the samples analysed. Legend:—not detected; Relative quantity symbols (++ > + > (+))
should be read by columns, as they refer to the relative amount of the given mineral in the different samples. Dust load categories (+++ > ++ > +) are based on solid phase
load (Table 3).

Sample ID Date Sheet Silicates Quartz Dolomite Feldspars Dust Load

14 Å >10 Å 10 Å 7.1 Å 3.23 Å 3.18 Å

SDE #1 08.04.2016 + (+) + + + – – – +++
SDE #2 11–12.05.2016 ++ + ++ ++ ++ – + ++ +++
SDE #3 29.05.2016 + ((+)) + + (+) ++ – – +
SDE #4 19.06.2016 + + ++ ++ ++ + – (+) ++
SDE #5 15.10.2016 – – – – (+) + – – +

reference sample I R/Cs–27 05.09.2016 – – (+) – (+) + – – ++
reference sample II R/Cs–43 13.01.2017 (+) – + + ++ + ++ + ++

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8699029

Rostási et al. Saharan Dust in Central Europe

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


from the North in summer, but such events happened three times
during the study period. It follows that as against other locations
in Europe moisture source regions to the Carpathian Basin
exhibit marked interannual variations, so the results from any
given year should be treated with caution.

In the Mediterranean sector based on isotope study of rainwater
(1999–2001) derived from different elevations in the Hyblean
Mountains region (south-east Sicily, Italy) suggests that the main
variation in rainwater are due to seasonal effects and elevation, the
main source of moisture is Mediterranean-derived component

(Grassa et al., 2006). Long-term monitoring (1997–2016) of
rainwater stable oxygen isotope composition supplemented with
air mass history reconstruction found that the percentage of initial
moisture sources was an important factor in controlling oxygen
isotope ratio in precipitation in SW-France (Zhang et al., 2020). The
relatively fast changes in this mid-high latitude region rainfall
sources are controlled by atmospheric circulations. In the
Northwestern Mediterranean region, the heavy precipitation
systems are fed by a south-southwesterly to easterly low-level
moist flow (Duffourg and Ducrocq, 2011). The phenomenon has

FIGURE 7 | Morphology of aggregated dust particles on SEM images observed during the MARS campaign in Csopak. Fibrous platelets of palygorskite are
attached to rounded quartz grains.

TABLE 3 | Seasonal distribution of source regions based on 48-h trajectory analyses.

Altitude Ranges Distribution Northern
europe

Atlantic Region Mediterranean sea Eastern europe

N NE NW W S SE SW E

500–1,500 m spring — — 1 — 1 — 2 1
summer 5 1 4 5 3 — 2 1
autumn 2 2 3 4 1 — 1 2
winter 1 — 2 1 1 — — —

Annual 8 3 10 10 6 — 5 4
1,500–3,000 m spring — — — — 2 — 2 1

summer 4 1 4 6 — — 5 1
autumn — 4 5 2 1 1 2 —

winter 1 — 1 3 — — — —

Annual 5 5 10 11 3 1 9 2
3,000–6,000 m spring — — — 1 3 — — 1

summer 3 — 3 14 — — 1 —

autumn — 1 6 4 1 — — 3
winter 1 — 1 3 — — — —

Annual 4 1 10 22 4 — 1 4
rainfall Mm 38 318 76 37

% 8.1 67.8 16.2 7.9
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been described in several studies in Eastern Spain (Peñarrocha et al.,
2002), Southern France (Delrieu et al., 2005; Ducrocq et al., 2008)
and Northwestern Italy (Buzzi et al., 1998; Turato et al., 2004). The
key element of these convective systems is a synoptic pattern
inducing a moderate to strong southerly to easterly low-altitude
circulation transporting moist and unstable air masses from the
Mediterranean (Duffourg and Ducrocq, 2011). This relationship is
consistent with having the highest precipitation volume in the entire
sampling period (Table 3).

3.5 Measured and Modelled Dust
Deposition
Filtered mass of solid phase of precipitation samples showed large
variability ranging from 0.02 to 0.24 gm−2 per episode (Figure 5B,
Table 4). Monthly modelled deposition data of MERRA-2 showed
that the highest simulated values were February, March, April, May,
June andOctober (Figure 8). The unusually intense dust depositional
events of February were not sampled in the MARS campaign, so we
do not have any measured depositional data. During March, no
deposition of Saharan dust could be observed in the study area, while
the other peak months were the same as the SDE-months of
this study.

The precipitation ratio of Saharan wet depositional episodes
(83 mm from total 469 mm) are 17.6%. The amount of deposited
dust from five SDEs is 0.55331 g. The SDE dust deposition ratio is
22.81% to the total filtered mass of all measured precipitation
events (2.4 g). From this point of view, the efficiency of SDE
events in terms of wet deposition of dust is 37% better than
precipitation events from other directions.

3.6 Particle Size Characteristics of the
Saharan Dust Samples
An average of 50,000 individual dust particles by samples were
scanned. Due to the presence of aggregated and non-mineral (e.g.,
pollens, plant fragments), irregularly shaped particles, additional
mathematical filtering was applied. The exclusion rule was based
on low (<0.65) circularity and convexity scores. Still, a few giant
(>100 µm), irregular particles remained in the dataset, which
caused an additional coarse-grained mode on the calculated grain
size distributions. This distribution was forced into a unimodal
distribution by parametric curve fitting with two Weibull-
distributions (an iterative least-square numerical method
described in detail by Varga et al., 2019). The fine-grained
subpopulations were identified as the Saharan dust cluster,

TABLE 4 | Main characteristics of the examined SDEs.

Sample Number Date Solid Phase
[g m−2]

Collected Amount
of Rainwater
[mm event−1]

[mm event−1] MERRA-2 Monthly
Modelled Total
Deposition [G]

SDE #1 08 April 2016 0.2385 5.6 4 April: 0.24
SDE #2 11–12 May 2016 0.1710 53.6 55 May: 0.48
SDE #3 29 May 2016 0.0162 0.8 3
SDE #4 19 June 2016 0.1054 0.6 9 June: 0.19
SDE #5 15 October 2016 0.0223 1.2 5 October: 0.35

SDE average 0.1107 12.4 15.2
SDE total 0.5533 61.8 76

FIGURE 8 | Measured and modelled deposition.
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while the coarse population was dominated by aggregated
particles and irregularly shaped objects (e.g., plant fragments
from local sources). However, the exclusion of a few giant
particles of Saharan origin cannot be ruled out, either (Maring
et al., 2003; Betzer et al., 1998; Renard et al., 2018; Van der Does
et al., 2018; Varga, 2020; Varga et al., 2021).

The volume-based mean diameter of the identified Saharan
dust particles fell into the range between 20 and 80 μm, with
modal values ranging from 30 to 50 µm (Figures 9, 10). Only the

SDE #2 sample was dominated by significantly smaller particles
(modal value ~ 11 µm). The shapes of the particles were rather
similar in all individual events, with the exception of particles in
the SDE#2 sample. As a result of the large volumetric amount of
fine-grained fractions in this sample, the grain shape parameter
values were higher (partly due to the applied magnification, partly
because of the less irregular shapes of fine silt particles).
Granulometric properties of the mineral particles were
summarised in Table 5.

4 DISCUSSION

4.1 Giant Particles and Their Effect on
Deposition Values
Grain size results of automated static image analyses showed a
high volumetric proportion of coarse silt-sized fractions. Particles
larger than 50 µm in diameter could also be detectable in large
numbers. Due to the cubic relationship between particle diameter
and volume (and so mass), even a few giant dust particles have a
major impact on general granulometric properties, and thus, on
dust flux values.

Direct quantitative observations and measurements of dust
emission fluxes are rare and sporadic (Urban et al., 2018). Because
any observational data are insufficient to constrain the spatial
distribution of dust aerosol and the dynamics of its evolution, the
tropospheric dust budget is currently estimated only by models
that are constrained by available measurements and retrievals
(Zender et al., 2004). However, in order to properly assess the
impacts of airborne dust on the Earth system, climate models
should include a realistic representation of silt-size mineral dust

FIGURE 9 | Size and shape properties of selected coarse silt-sized particles (CED: circle equivalent diameter in µm; AR: aspect ratio; Circ: circularity; Conv:
convexity).

FIGURE 10 | Grain size distributions of the identified Saharan dust
particles.
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(≥5 μm) in the atmosphere (Adebiyi and Kok, 2020). On average,
the global atmosphere contains about 17 Tg of coarse dust, which
is four times more than that current climate models can simulate
(Adebiyi and Kok, 2020). Desert dust may remain to be the
predominant coarse particle type in the free troposphere even
thousands of kilometres away from the source. The transported
minerals are essentially silt and clay particles between 0.1 and
20 µm (data obtained from Goudie and Middleton, 2006: Crete:
8–30 µm (modal—Mattson and Nihlén, 1996), 4–16 µm
(median); Spain: 4–30 µm (mean—Sala et al., 1996); Germany:
2.2–16 µm (median); Italy: 16.8 µm (modal), 14.6 µm
(median—Ozer et al., 1998); South France: 4–12.7 µm
(median—Bücher and Lucas, 1984), 8–11 µm
(median—Coudé-Gaussen, 1991); France (Paris Basin): 8 µm
(Coudé-Gaussen et al., 1988); Swiss Alps: 4.5 ± 1.5 µm
(median—Wagenbach and Geis, 1989); Central Mediterranean:
2–8 µm (modal—Tomadin et al., 1984).), though in some
documented cases, much larger particles were transported over
long distances (Maring et al., 2003; Betzer et al., 1998; Renard

et al., 2018; Van der Does et al., 2018; Varga, 2020, this study).
Whereas these particles can also be removed from the atmosphere
by gravitational settling, wet deposition is thought to be more
important, but it is poorly constrained due to its complexity
(Cakmur et al., 2006). As pointed out above, current climate
models markedly underestimate the concentrations of coarse dust
in the atmosphere, and similarly their impacts on marine
ecosystems, clouds formation, and global climate (Adebiyi and
Kok, 2020).

4.2 Possible Source Areas of Mineral Dust
Reviews on the global dust sources by Prospero et al. (2002) and
Washington et al. (2003) identified different Saharan sub-regions
as major sources of desert dust. The mineralogical composition of
atmospheric dust depends on the geology of source areas and is
also affected by the mineral composition of the areas along the
transport route. Bulk compositions of northern African dust and
sources are highly heterogeneous by regions (Scheuvens et al.,
2013). Based on Scheuvens et al. (2013) the most important
mineral phases of northern African dust samples are quartz,
feldspars, carbonates, sulfates, micas, oxides, hydroxides,
different clay minerals (kaolinite, illite, smectite, palygorskite)
and chlorites. Because of the regional compositional
heterogeneity, only a few minerals are suitable to be used as
source markers for dust originating from northern Africa
(Scheuvens et al., 2013). According to Rodriguez-Navarro
et al. (2018), indicators of northern and north-western
Saharan dust are palygorskite and illite, accompanied with
high carbonate and low chlorite contents. The abundance of
smectites and kaolinite occurring in dust increases southwards in
the western Sahara. The presence of palygorskite showed Saharan
provenance and was related to events of “red rain” in several
European locations (Rodriguez-Navarro et al., 2018).

Here we provide some guidance on possible source areas based
on trajectory calculations and previous studies on dust transport
from the Sahara to the Carpathian Basin (Varga et al., 2013;
Varga, 2020). The comparative provenance analysis of the
mineral dust requires more detailed elemental, isotopic and
mineralogical compositional information.

TABLE 5 | General granulometric properties of identified Saharan mineral particles.

Sample Mean Mode Fine
Silt

Medium
Silt

Coarse
Silt

Circularity Convexity Aspect
ratio

[µm] [µm] (2–6.5 µm) (6.5–20 µm) (20–62.5 µm) (±σ) (±σ) (±σ)

[vol%] [vol%] [vol%]

SDE #1 38.2 41.7 2.5 22.5 68.8 0.87 0.97 0.79
(0.78–0.97) (0.92–1.00) (0.65–0.93)

SDE #2 12.0 11.0 33.6 45.0 12.3 0.93 0.97 0.88
(0.87–0.99) (0.92–1.00) (0.79–0.97)

SDE #3 39.0 38.1 0.5 17.3 82.0 0.88 0.97 0.80
(0.78–0.98) (0.92–1.00) (0.66–0.94)

SDE #4 61.8 50.2 0.0 1.4 98.5 0.88 0.96 0.77
(0.80–0.96) (0.91–1.00) (0.62–0.92)

SDE #5 41.8 30.6 4.3 35.0 59.8 0.88 0.98 0.78
(0.79–0.98) (0.93–1.00) (0.64–0.93)

FIGURE 11 |Meridional transect (zonal mean) air temperature anomalies
during the identified twelve dust events in 2016.
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Daily satellite AOD measurements and images, HYSPLIT air
mass trajectories, surface observations and numerical model results
were used to determine the possible source areas for the identified
Saharan dust storm events. These have been compared with the
available data from research papers on themain characteristics of the
Saharan source areas in previous publications, as well as with our
own mineralogical, granulometric results.

It was found that dust storm events can be traced back to
synoptic-scale meteorological causes over large areas, activating a
number of hot spots with different geological structures and
different mineralogical signatures. Dust was released from
several sources at the same time. Over the large affected
region, air masses were saturated with mineral dust and the
transport of dust reached the Carpathian Basin with the
dominant meridional flow.

The mineralogical results available to us are not necessarily
sufficient for an accurate source apportionment, but the
palygorskite identified in the samples clearly supports a
Saharan origin. Mineralogical data suggest that the illite/
kaolinite ratios above 1 within this area indicate the
dominance of the Northwest Saharan source areas. The other
independent sources of observational, measurement and
modelling data allow the main sources to be narrowed down
somewhat further. The mineralogy and the grain size differences
between the two quartz dominated samples (SDE #4: large quartz
grains + subordinate carbonate; SDE #2: high clay fraction, no
carbonate) may be more in connection with very local surface
features than regional differences.

Several key source areas can be identified based on satellite
observations. Saharan dust events in the Carpathian Basin were
associated with some of the most intense dust source regions such
as wadis and alluvial fans of Ahaggar Mts.; seasonal streams and
playas at the slopes of Zemmour Massif and Adrar Soutouf
Highlands; Tidikelt depression surrounded by Ahaggar,
Tassili-n-Ajjer Mountains and the plateaus of Tanezrouft;
ephemeral drainage system with seasonal marshes, mudflats
and wadis of Erg Chech; the dry and salt lakes (e.g., Chott
Melrhir and Chott Jerid) in the lowlands of Tell Atlas; and the
northern hillslopes of Tibesti across Cyrenaica to the Qattara
Depression (Varga et al., 2013). The source area of Saharan dust
are areas with humid pre-history (e.g., wadi systems, ephemeral
lakes), mostly flooded during the Pleistocene and Holocene
pluvial periods (Stuut et al., 2009; Varga et al., 2013).

The calculated transport trajectories point to particular
regions of northern Africa. Though no univocal assignment of
surface mineral parageneses can be set up for that large area
representing a wide range of soil types and bedrock, some general
trends could still be identified (Scheuvens et al., 2013). A special
feature of all the samples studied is the total lack of calcite, a
characteristic dust component for N and NW Saharan source
areas (Rodriguez-Navarro et al., 2018), and still the presence of
carbonate in the form of dolomite in some samples.

Based on the calculated air mass dispersion trajectories and daily
AOD measurements and satellite images, it can be concluded that
during SDE #1 the atmosphere was saturated with dust on the
foreside of the low-pressure formation centred over the Atlas
Mountains, from the southeastern foothills of the Anti-Atlas, the

border between Mauritania and Western Sahara, through the
Tidikelt depression to southern Tunisia, which then flowed into
northeastern direction (Figure 5D.). The dust collected contained
palygorskite, smectite, kaolinite and illite clay as well as quartz.

During SDE #2, the dust storm activity was concentrated in a
smaller area based on measurements and observations. At that time,
dust emission was significant in the southern forearc of the Saharan
Atlas, partly further south in the vicinity of the Tademait Plateau,
and in the intramontane basins of the Atlas. Calculated trajectories
also confirmed that this is the region from which the particulate
matter arrived in the Carpathian Basin. Of our samples, the sample
from this event has the highest palygorskite content. If that
observation is not an artefact caused by extreme dust
fractionation (Caquineau et al., 1998), in the case of SDE #2 the
more eastern, central and south Algerian region is backed by the
carbonate free mineralogical composition (Avila et al., 1996, 1997).

During SDE #3, the air mass propagation trajectories cross the
Hautes Plaines region, which was then characterised by high
AOD values and an intense dust storm episode confirmed by
surface observations. This area is a vast endorheic depression-
system of large chotts (salt lakes) in the high plateau between the
Tell Atlas and Saharan Atlas Mountains. SDE #3, the most
carbonate dominated sample, is in good overlap with
carbonate dominated dust source areas reported earlier
(Rodriguez-Navarro et al., 2018), but the change in the regular
calcite > dolomite relationship needs further explanation.

Satellite measurements and surface observations for SDE #4
show heavy dust emissions in southern Tunisia and in the north-
western corner of Libya in the Gulf of Gabes area. The calculated
trajectories also assume this region as the source of the collected
particulate matter. The predominance of coarse-grained quartz
confirms that the source material may have originated from a
different source area than previously mentioned. The significant
palygorskite content of the sample is consistent with previous
publications from the hypothesized region; Jamoussi et al. (2003)
and O’Hara et al. (2006) having published on the presence of
palygorskite in the area.

In the October SDE #5, the Chott Melrhir and Chott Jerid
ephemeral salt lakes were identified as possible source areas. Dust
storms were reported from this location at the time of the episode,
which was confirmed by satellite measurements. No clay minerals
were identified in the collected sample, only quartz and dolomite.
This was presumably due to insufficient sample availability.

4.3 Increased Number of Episodes and
Deposition
Based on the general Saharan dust climatology of the Carpathian
Basin, a clear increase of the number and intensity of dust
episodes could be identified in the last decade (Varga, 2020).
The annual number of dust events was 4.2 on average between
1979 and 2010, while in the period of 2011–2018, it has increased
to 10.3. In the study period of the present paper, the number of
identified dust episodes was twelve (with seven sampled
depositional episodes); 2016 can be regarded as a
representative year of changing nature of the decade. All of
the presented SDEs were started by an intense dust storm
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formation in the NW region of Sahara caused by the intrusion of
an upper-level atmospheric through and increased surface wind
speeds, partly associated with orographic blocking of Atlas
Mountains. Northwards transport towards the study area in
Central Europe was driven by warm sector winds of the same
eastwards moving low-pressure system.

Wind component analysis indicated an enhanced meridionality
of atmospheric flow patterns of intense dust depositional events
(Varga, 2020). Similar synoptic meteorological situations were
reported by Francis et al. (2018) in the case of rare Saharan dust
transport events towards Greenland. The more intense local dust
storms injected more mineral dust into the Saharan atmosphere and
the dominant meridional flow patterns of the regional circulation
system caused a more effective northward transport of dust loaded
air masses.

The more frequent spreading of high-altitude atmospheric
though systems into low-latitude areas has been connected to
high-amplitude flow patterns of jet streams. Above-average
warming of northern polar regions, known as Arctic
Amplification, and the decreased temperature difference
between high- and low-latitudes leads to more meandering
high-level flow patterns (Francis and Vavrus, 2015). According
to our observations, the zonal mean temperature anomalies were
dominated by Arctic warm periods, indicating warmer than
average northern polar situations during the dust episodes
(Figure 11).

According to the corrected model-based calculations of Varga
et al. (2014), the amount of annually deposited Saharan dust can
be set into the range between 3.2 and 5.4 g m−2. MERRA-2
simulations showed moderately lower values,
1.2–3.6 g m−2 year−1 for the period of 1979–2018. For the year
2016, total dust deposition of 2.37 g m-2 (dry deposition:
0.17 g m−2; wet deposition: 2.2 g m−2) was reported by
MERRA-2 simulations with peak months of February, May
and October. The amounts of filtered material were in the
range of 0.1–240 mg m−2 per event (Figure 8). Based on the
measured values, a cumulative wet deposition rate of 2.4 g
m−2 years−1 were calculated for dust. Most of the solid,
insoluble phases were transported by air masses from the
south (Table 3). Modelling of samples arrived from the
southern region was supplemented with backward trajectories
to predict better transport processes (Figure 3). The average dust
deposition from individual SDEs is 0.1107 g m−2 year−1 (Table 3),
yielding a total of 0.5533 g m−2 year−1 during the observed period.
According to depositional adjustment estimations, the annual
amount of deposited Saharan dust can be set into the range
between 3 and 5 g m−2 year−1 (Varga 2016). Based on forecast
maps of Dust REgional Atmospheric Model (DREAM, Barcelona
Supercomputing Centre) the dry deposition rate is ~
300 mg m−2year−1 and the wet deposition rate is ~ 700 mg/m2/
year in the Carpathian Basin (Varga et al., 2014). Thus our value
is in good agreement with the results of global models (Ginoux
et al., 2001).

Since dust deposition is overwhelmingly linked to large-
scale synoptic transport and precipitation events, it seems
reasonable to assume that regional wet deposition rate can
be estimated by using results from a single sampling location.

We estimated that the annual deposition rate of Saharan dust
to the Lake Balaton (surface area 596 km2) was in the order of ~
300 t year−1. In the sampling period of 2016–2018, the inflows
transported suspended particulates at a rate of about ~
24,000 t year−1, so direct atmospheric deposition of Saharan
dust contributed about 1% to the overall rate of sediment
formation. The presented granulometric (particle size and
shape) and mineral data can serve as a reference for the
identification of Saharan dust particles in the sedimentary
sequences (e.g., from sediment cores) of Lake Balaton to
provide insight into the past circulation patterns.

5 SUMMARY

In this paper, a systematic SDE identification procedure and wet
deposition estimation were achieved in Central Europe in 2016
with a view to evaluating the relative importance of SDEs in the
annual total deposition. The changing climatic framework is also
changing atmospheric circulation systems. The typical transport
pathways of windblown mineral dust, the amount of dust
transported and the intensity of deposition episodes are also
changing. This is also being witnessed in Central Europe, where
SDEs have been identified with increasing frequency and
intensity over the last decade. In 2016, there were particularly
significant events that foreshadow the changes that are likely to
occur in the near future. The number of identified dust episodes
was twelve (with seven sampled depositional episodes); 2016 can
be regarded as a representative year of the decade. All of the
presented SDEs were started by an intense dust storm formation
in the NW region of Sahara caused by the intrusion of an upper-
level atmospheric through and increased surface wind speeds,
partly associated with orographic blocking of Atlas Mountains.
Northwards transport towards the study area in Central Europe
was driven by warm sector winds of the same eastwards moving
low-pressure system. The more frequent spreading of high-
altitude atmospheric though systems into low-latitude areas
has been connected to high-amplitude flow patterns of jet
streams determined by climate change-driven Arctic
Amplification.

Precipitation events of possible Saharan influence were sorted
out by using backward air trajectories and synoptic meteorology.
It was found that about 15% of the annual total precipitation
volume originated from the Mediterranean source region. Based
on the synoptic meteorological background and moisture source
parameters, five SDE events were identified, two additional
depositional episodes were sampled before the rainwater
sampling campaign.

XRD analyses of these filter samples revealed that the major
mineral constituents were quartz, kaolinite and 10-Å phyllosilicates,
with evidence for the presence of the highly specific palygorskite.
Some samples contained dolomite. Further studies are needed to
clarify the lack of calcite is caused by mineralogical fractionation
during transport. The mineralogical fingerprint of the SDE samples
could clearly be differentiated from the Atlantic (Western) reference
sample however, the N–NW reference sample showed more
similarities to the SDE.
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The volume-based mean diameter of individual dust particles fell
into the range between 20 and 80 μm, with the presence of giant (silt
and sand) mineral dust particles in precipitation at the sampling site
1,500–2,500 km away from the potential source areas that were
hypothesised based on characteristic mineralogical signatures.

General uncertainties which hamper mineral dust
characterisation in climate models were also observed in our
granulometric and dust flux data of sampled material. The
particle size of the deposited dust was coarser than the upper
cut-off level of models’ grain size, while contradictions of
measured and simulated deposition values clearly proved
incorrect representation of dust fluxes of numerical simulations.
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