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The primary tasks of decision-support modelling are to quantify and reduce the
uncertainties of decision-critical model predictions. Reduction of predictive uncertainty
requires assimilation of information. Generally, this information resides in two places: 1)
expert knowledge emerging from site characterization and 2) field measurements of
present and historical system behavior. The former is uncertain and should therefore
be expressed stochastically in a model. The range of parameter and predictive possibilities
can then be constrained through history-matching. Implementation of these Bayesian
principles places conflicting demands on the level of model structural complexity. A high
level of structural complexity can facilitate expression of expert knowledge by establishing
model details that are recognizable by site experts, and through supporting model
parameters that bear a close relationship to real-world hydraulic properties. However,
such models often run slowly and are numerically delicate; history-matching therefore
becomes difficult or impossible. In contrast, if endowed with enough parameters,
structurally simple models facilitate the achievement of a good fit between model
outputs and field measurements. However, the values with which parameters are
endowed may bear a looser relationship with real-world properties and are therefore
less receptive to information born of expert knowledge. The model design process is
therefore one of compromise. In this paper we describe a methodology that reduces the
cost of compromise by allowing expert knowledge of system properties to inform the
parameters of a structurally simple model. The methodology requires the use of a
complementary model of strategic, but not excessive, structural complexity that is
stochastic, fast-running and requires no history-matching. We demonstrate the
approach using a real-world case in which modelling is used to support management
of a stressed coastal aquifer. We empirically validate the approach using a synthetic model.

Keywords: optimisation, expert knowledge, modelling, groundwater, decision-support, complexity, data-
assimilation, uncertainty

1 INTRODUCTION

Groundwater systems are complex. Our ability to characterise this complexity is limited. It is
not possible to calculate the exact outcomes of a proposed groundwater management action, as
they depend on too many unknown system details. However, it is often possible to characterize
them probabilistically. Hence, forecasts of future system behaviour can be accompanied by
estimates of their uncertainties. This is essential to risk-based decision-making (Freeze et al.,
1990; Doherty and Moore, 2020).
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In principle, a model that represents a high level of system and
process detail (referred to as a “complex”model herein) supports
1) quantification of the uncertainties of management-critical
predictions through inclusion of all facets of system behaviour
on which those predictions depend, and 2) reduction of predictive
uncertainty by employing parameter sets that allow it to also
replicate the historical behaviour of the system. Complex models
are generally physically based; their numerical details attempt to
mimic what is known of reality. Ideally, field or laboratory
measurements of system properties can therefore directly
inform the values of their parameters and the prior probability
distributions of these parameters. The link between expert
knowledge and model parameterization is therefore direct.

A major problem with complex models, however, is that they
are generally characterized by long run times, and often react
badly to parameters sets that embody stochastic expression of
hydraulic property heterogeneity. They make poor partners for
software such as PEST and PEST++ which can implement the
Bayesian imperative of constraining model parameters so that the
model’s outputs can replicate historical system states, thereby
reducing uncertainties associated with its evaluation of future
system states.

Assimilation of historical information can be rendered more
tractable by use of a fast-running, numerically-stable, structurally
simple model. Such a model can be physically-based; however, its
design philosophy is to represent the repercussions of system
detail on model outputs, rather than explicitly representing the
detail itself. The link between parameters of a structurally simple
model and real-world hydraulic properties may therefore become
more abstract. However, if a strategically-designed, structurally
simple model is sufficiently highly parameterized, programs such
as PEST and PEST++ can easily find sets of parameters that allow
it to replicate historical system behaviour well. This has the
potential to reduce the uncertainties of some decision-critical
predictions. However, this reduction in uncertainty must be
balanced against the need to inflate prior parameter
uncertainties because of their looser links with recognizable
hydraulic properties, and for the need for any bias that is
induced through history-matching of a simplified model to be
included in the posterior uncertainties of its predictions (Doherty
and Simmons, 2013).

Predictive bias can be reduced by strategic design of a
simplified model; it can also be reduced through strategic
design of the history-matching process. See White et al.
(2014). The problem of assigning prior probability
distributions to parameters of a structurally simple model,
especially those that may be somewhat abstract because they
are used to characterise its boundary conditions, has (to the
authors’ knowledge) received little, if any, attention in the
modelling literature. A simple response to this problem is the
assignment of generous prior uncertainties to pertinent
parameters, and/or the use of noninformative priors and/or
uniform prior probability distributions. While this strategy
avoids the under-estimation of predictive uncertainty, it may
erode the decision-support potential of numerical modelling by
excluding information born of expert knowledge from the
modelling process.

This paper demonstrates a methodology that can be used to
characterise the prior probability distributions of some
parameters that are assigned to a structurally simple model, in
particular those that characterise one of its boundary conditions.
This methodology relies on the use of a complementary model of
greater structural complexity that embodies explicit (yet still
simplified) representation of geometry and processes that are
replaced by the simple model’s boundary condition. Running of
the complementary physically-based model is computationally
expensive; however relatively few runs of this model are required.

We demonstrate this approach to assessment of boundary
parameter prior stochasticity using a model that was built to
support the management of a highly stressed coastal aquifer at
Vale do Lobo, Portugal. A structurally simple, but parametrically
complex, constant-density model represents the onshore portion
of the aquifer. A Cauchy (i.e., “general head”) boundary condition
dispenses with the need for this model to simulate groundwater
process in that part of the aquifer that extends a considerable
distance offshore. Heads and flows computed by a structurally
and parametrically stochastic, variable-density model are used to
assign heads and conductances to the boundary condition of the
onshore model.

This paper is organised as follows. Section 2 describes the
hydrogeology of the Vale do Lobo area, the problems that beset it,
and a model that was built to support improved management of
the area. However, the discussion is brief as a more complete
description can be found elsewhere (Hugman et al., 2021).
Section 3 describes the methodology that was developed for
prior stochastic parameterisation of the coastal boundary
condition of the Vale do Lobo management model;
implementation details of this methodology are also provided.
Reference is made to Supplementary Material wherein the
methodology is verified using a synthetic case whose details
are inspired by Vale do Lobo hydrology. Section 4 describes
stochastic history-matching and deployment of the Vale do Lobo
management model. Discussion and conclusions follow in
Section 5.

2 VALE DO LOBO

This section describes modelling undertaken for an aquifer
system in southern Portugal which faces the threat of sea
water intrusion because of excessive groundwater extraction
for irrigation. The study area is located to the west of Faro,
capital of the Algarve province of Portugal (Figure 1).

2.1 Conceptual Model
The Vale do Lobo (VL) subsystem of the Campina de Faro aquifer
occupies an area of about 32 km2. The boundary which separates
it from the Campina de Faro subsystem to its east is a
management rather than a hydrogeological boundary; it runs
roughly perpendicular to topographic contours. To the
northwest, the VL subsystem boundary is defined by the
Carcavai fault zone. Low permeability marls outcrop along the
northern boundary; this creates a barrier between the VL system
and a highly permeable karstic aquifer further to the north.
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The VL subsystem is comprised of two aquifers. An upper,
phreatic aquifer and a lower, semi-confined aquifer formed of
calcareous sandstones and limestones. Nearby and offshore
drilling suggests that the base of the semi-confined aquifer reaches
a depth of 350m below mean sea level at the coast. A clay aquitard,
typically about 10m thick, separates the two aquifer formations. The
aquifer formations dip towards the coast at about 4°. Fresh water that
flows seaward through the deep aquifer emerges in the sea at an
unknown distance offshore. However, the offshore perseverance of
the overlying aquitard, together with all other details of offshore
freshwater flow and the geology which controls it, are unknown.

Figure 2 displays heads measured in a representative well (see
the labelled location in Figure 1). The well is open to the deep

aquifer. This is the longest record of piezometric heads available
in the VL area. It exhibits a gradual decline from the late 1970s to
the late 1990s, at which time groundwater levels appear to reach a
new equilibrium. Groundwater heads are, on average, below sea
level in the deep aquifer. The lowest levels are in the central and
north-western corner of the system. Groundwater appears to flow
towards this area of depressed heads from all system boundaries,
including from adjacent aquifers and from the coast.

The local regulatory agency estimates that total groundwater
use during 2019 was around 6.45 Mm3. Most of this water was
extracted from the deep aquifer. Diffuse recharge to the phreatic
aquifer is estimated to be about 3.46 Mm3/yr (i.e., 108 mm/yr).
The proportion of this water which reaches the deep aquifer is
unknown. The deep aquifer probably receives most of its recharge
laterally through its northern and/or eastern boundaries.

Chloride concentrations measured at observation wells within
the deep aquifer are mostly below 300 mg/L. However, these
measurements, as well as anecdotal evidence pertaining to the
quality of water extracted from production wells, suggest
increasing salinities over time at some locations. There is some
evidence that dissolution of evaporites that are disseminated
through sediments which comprise the deep aquifer may be
partly responsible for increased chloride concentrations. It
appears, therefore, that VL groundwaters have not yet suffered
a serious decline in quality because of seawater intrusion.
Nevertheless, hydraulic head data makes it clear that its
occurrence is inevitable.

2.2 The Problem
Continued extraction of water from the VL system at current rates is
unsustainable. In the long term, it will result in serious degradation of

FIGURE 1 | Location and main hydrogeological features of the Vale do Lobo aquifer system. The locations of groundwater abstraction wells, piezometers, and
contoured average measured hydraulic heads during 2020 are also depicted.

FIGURE 2 | Time-series of hydraulic heads measured in piezometer
606/647. The location of this piezometer is labelled in Figure 1.
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aquifer water quality through seawater intrusion. In the short term, it
will occasion noncompliance with an EU Water Framework
Directive (WFD) which specifies that average abstraction from a
groundwater system must be lower than 90% of average annual
recharge. Local authorities are looking at a number of ways to
complywith this directive. These include the impositions of limits on
existing water use licenses and/or implementation of managed
aquifer recharge (MAR). However, technical and legal obstacles
presently impede both of these options.

Modelling that is described herein serves to:
1) Estimate the historical components of the VL water budget,

along with their uncertainties. These include calculation of
groundwater withdrawals where records are unavailable, and
quantification of lateral inflows from neighbouring systems.
Outcomes of these analyses provide an estimate of the
minimum change in water budget required to comply with
WFD requirements.

2) Explore management strategies that maximize
groundwater use while mitigating the potential for
seawater intrusion. Outcomes of these analyses are
intended to identify maximum allocation limits for
existing groundwater users.

2.3 The Numerical Model
2.3.1 Model Structure
A numerical model was developed in order to explore
management options for the VL subsystem. The model is a
composite of a constant-density MODFLOW 6 (Langevin
et al., 2021) model and eight LUMPREM (Doherty, 2020)
models. LUMPREM stands for “lumped parameter recharge
model”; LUMPREM models are used to compute irrigation
demand, and hence groundwater withdrawal rates employed
by the MODFLOW 6 model.

History-matching is undertaken over the period October
2000–October 2020. Unfortunately, records of historical
abstraction over this period are incomplete. However, they
comprise the only direct measurement of any aspect of the VL
subsystem water balance. Other aspects of the water balance
must be inferred from the system’s response to this extraction.
A single LUMPREM model is used to calculate irrigation
demand for each groundwater user group. LUMPREM
models are calibrated against measured extraction rates
where these are available.

The groundwater flow model employs a single layer. This
represents the deeper semi-confined aquifer. Its landward
boundaries coincide with that of the VL system described
above. To its southwest, the coastline bounds the model
domain. Aquifer top and bottom elevations are interpolated
from onshore and offshore borehole logs and topographic
elevations of outcrops.

The bottom boundary of the VL groundwater model is a no-
flow boundary. A general-head boundary (GHB) is ascribed to its
top. This simulates the connection of the lower aquifer with the
overlying phreatic aquifer. Temporal and spatial variation in
GHB heads at each cell are calculated by applying a linear
function of surface elevation to measured time series of heads

in the phreatic aquifer. Constants of this function are adjustable
during history-matching.

All lateral boundaries of the VLmodel are also simulated using
GHBs. For the north-western and eastern boundaries of the VL
model, GHB heads vary with time while conductance is time-
invariant. Time-varying heads are obtained from time-series of
measured heads at representative piezometers; these are spatially
interpolated along the boundaries.

2.3.2 Model Parameters
An array of 565 pilot points, distributed throughout the model
domain, is employed to represent spatial variation of each of
hydraulic conductivity, specific storage and conductance of the
aquitard which separates the deep aquifer from the upper aquifer.

Pilot points are also placed along all model boundaries. These
are used to represent spatial variation of conductance along these
boundaries. They are also used to parameterise spatial variation of
heads along these boundaries. However, as stated above, time-
varying heads at certain locations along the north-western and
eastern model boundaries are informed from heads measured in
nearby wells. Hugman et al. (2021) for details.

As stated above, the coastal boundary of the VL model is
represented by a continuous, coast-coincident GHB. Heads and
conductances along this boundary are parameterised using pilot
points. Statistical characterisation of these heads and
conductances is discussed next.

Statistical characterisation of model parameters is required for
two reasons. It is used in formulation of a regularisation scheme
which seeks parameter uniqueness through model calibration. It
is also used in calculation of an ensemble of parameter
realisations which comprise samples of a parameter probability
distribution. Prior means and probability density functions for
hydraulic conductivity, specific storage and aquitard conductance
can be assigned on the basis of expert knowledge. Expert
knowledge can also be employed in assigning prior means and
standard deviations to pilot points which represent heads along
the north-western and eastern boundaries. Conductances along
these boundaries are not well informed by expert knowledge;
hence large prior uncertainties must be assumed. Fortunately,
they are moderately well constrained through history matching.

The assignment of prior means and variances/covariances to
coastal GHB boundary heads and conductances is a different
matter. These parameters are somewhat abstract, as they are
numerical surrogates for complex off-shore processes whose
details are poorly known. However, there are physical and
geometric constraints on these offshore processes that are set
by local geology and the mechanics of density-dependent
groundwater flow. Conceptually, these can be used to place
constraints on the values of coastal GHB boundary
parameters. It is to this subject that we now turn.

3 THE COASTAL BOUNDARY CONDITION

3.1 General
Confined and semi-confined coastal aquifers can convey fresh
groundwater 10 s or even 100 s of kilometres beyond the coast
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(Post et al., 2013; Knight et al., 2018). In confined systems, fresh
groundwater discharges where the permeable formation outcrops
on the seabed. In semi-confined systems, freshwater percolates
through the overlying low permeability formation, reaching the
sea as diffuse discharge along its bed. The offshore extent of
freshwater in the latter case is determined by the hydraulic
characteristics of the system and the stresses to which it has
been subjected.

Data on offshore and under-sea conditions is rarely available.
Stresses that determine the nature of present-day freshwater
outflow can date back thousands of years. Explicit (necessarily
stochastic) representation of these conditions in the same model
as that which is used for aquifer management may require
extension of the model grid tens of kilometres offshore; it may
also require a long “wind-up” time in which the system is
subjected to uncertain stresses. In conducting this modelling,
the effects of density differences cannot be ignored.

For exploration of VL aquifer management options, we
represent offshore conditions implicitly using a GHB.
Meanwhile, constant density, freshwater conditions are
assumed to prevail under land. This is in accordance with
current assessments of the VL subsystem. A single-layer, fast-
running model can then be used for assimilation of onshore data
and probabilistic exploration of management options.

3.2 Conditions at the Boundary
Water enters or leaves a GHB in proportion to the difference
between the head assigned to the boundary and that calculated by
the model for the cell which the boundary occupies. The constant
of proportionality is the boundary’s conductance. For a coastal
boundary condition, the head ascribed to the GHB represents a
head at some point offshore. GHB conductance represents the
resistance to flow between the model cell (i.e., the coast) and that
point. Conceptually, the coastal GHB can provide simplified
numerical representation of the hydraulic linkage between the
model and an offshore portion of the same system. However, this
simplification ignores the effects of changes in offshore storage
while assuming that the dynamics of offshore flow do not change
drastically throughout the simulated period.

Use of a GHB to represent a coastal system which is at
equilibrium resembles an approach recommended by Lu et al.
(2015). However real-world, coastal aquifer systems are rarely at
equilibrium. Semi-confined coastal aquifers in particular can take
a very long time to reach a new equilibrium because of the
relatively slow movement of the fresh-saltwater interface, and the
potentially large volume of water stored offshore (Knight et al.,
2018). Matters are further complicated when the purpose of
modelling is to assess the long-term consequences to a system
of a change in onshore pressures.

A GHB that attempts to alleviate the need to simulate offshore
conditions must be capable of representing the range of
conditions to which the onshore part of the aquifer is
subjected. In the current case these conditions are 1) those
which prevailed prior to development, 2) those which
prevailed in the last few decades when water extraction
induced a landward hydraulic gradient, and 3) those which

will prevail in the future when groundwater withdrawals are
reduced in order to promote aquifer sustainability.

Figure 3 illustrates the first two of these conditions.
Conditions in the future lie between these two extremes. The
methodology that we now describe provides a statistical
characterisation of GHB parameters that can emulate these
conditions. Its use is based on the premise that offshore
processes can be represented by time-invariant boundary
conditions over the simulation time of the VL model. We
demonstrate below that this is actually the case.

3.3 Stochasticity of GHB Parameters
Before describing the methodology through which a prior
probability distribution can be ascribed to GHB parameters,
we describe the manner in which the stochasticity of these
parameters is represented. We then describe how values of
variables which define this representation can be derived
through strategic use of a density-dependent model to
represent the range of possible offshore conditions.

Let the vector h represent heads ascribed to pilot points that
are used to parameterize the coastal model boundary of the VL
management model; let the vector c represent pilot point
conductances. Collectively, boundary parameters are therefore

FIGURE 3 | Schematic representation of (A) emergence of fresh water
through the aquitard overlying a semi-confined aquifer under pre-
development conditions, and (B) landward flow of water under conditions that
result in active seawater intrusion (adapted from Hugman et al., 2021).
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represented by the composite vector [ h
c
]. Stochastic

representation of boundary parameters requires that mean
values be provided for these parameters at the locations of all
pilot points; these mean values are represented by the vector

[ h
c
]. It also requires that a covariance matrix C([ h

c
]) be

ascribed to these parameters. This covariance matrix is used to
represent spatial correlation between parameters of the same type
at each pilot point along the boundary, as well as correlation
between parameters of different types. We assume a Gaussian
probability distribution; note, however, that this assumption is
not invoked until realisations of boundary parameters are
generated for use during stochastic history-matching.
Meanwhile prior means, together with the prior covariance
matrix, form the basis of regularized inversion through which
model calibration is achieved.

Characterization of Stochasticity using a Density-Dependent
Model.

The prior mean vector and the prior mean covariance matrix

of the [ h
c
] parameter set which characterize the coastal

boundary of the VL model are obtained through a two-step
process. The first of these steps samples a one-dimensional

counterpart of [ h
c
]. We refer to this vector as [ h

c
]; it

possesses just two elements (each of them random), namely a
single head h and a single conductance c. Once enough samples of

[ h
c
] have been obtained, its mean [ h

c
] and covariance matrix

C([ h
c
]) can be estimated. Samples of [ h

c
] are obtained by

running a two-dimensional, cross-section, variable density model
many times, using random samples of hydraulic properties and
geometry which are representative of the offshore VL aquifer
system.

In the second step, the stochastic description of [ h
c
] is

modified to provide a stochastic description of [ h
c
]. That is, a

mean [ h
c
] vector and a covariance matrix C([ h

c
]) are

determined. Once these are available, random realizations of

[ h
c
] can be generated through standard statistical sampling.

Details of the manner in which C ([ h
c
]) is obtained are

provided in Supplementary Material. Briefly, the steps are as
follows:

1) Assume a correlation length for h and c along the boundary.
This is a heuristic decision that supports representation of
spatial variability of these variables along the boundary, while
suppressing its expression on too short or too long a
spatial scale.

2) Determine the variance of h and c and the correlation between
h and c from strategic deployment of a suite of random, one-
dimensional, sectional models in the manner described below.

3) Use linear algebra (see Supplementary Material) to derive

expressions for [ h
c
] and C ([ h

c
]) based on the above

information

Details are provided in Supplementary Material.

3.4 Details of the Density-dependent Model
A stochastic, physically based model of the offshore system is

used to obtain samples of [ h
c
]. The model is coarse, but reflects

the properties, geometry and dynamics of the real-world VL
system.

Figure 4 depicts the domain of a two-dimensional, cross-
sectional, density dependent SEAWAT model (Langevin et al
2008). This model simulates conditions which are illustrated
schematically in Figure 3. Part of its domain lies beneath
land, and part of its domain lies beneath the sea. The model
simulates head-driven flow of water through a confined aquifer
and under-sea emergence of water through a semi-confining
aquitard.

An ensemble of model realizations is constructed. Each
realization of the model is endowed with random hydraulic
properties, a random landward boundary head, and
randomized aspects of its geometry sampled from uniform or
log-uniform distributions representative of those that
characterize the VL subsystem. Table 1 lists aspects of model
design which vary between realizations.

For each model realization, aquifer and aquitard properties are
homogeneous within their respective subdomains. However, they
are different between realizations. On the seaward side of the
coast, a constant-head boundary is introduced to all top-layer
cells and along the vertical model boundary; the head is
equivalent to 0 m of salt water. Cells comprising the vertical

FIGURE 4 | Schematic representation of a two-dimensional, density-
dependent, cross-sectional model (adapted from Hugman et al., 2021).

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8673796

Hugman and Doherty Blending Complex and Simple Models

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


landward model boundary are assigned a uniform freshwater
head. Depending on the model stress period, this is either positive
(i.e., above sea level) to simulate pre-development conditions, or
negative (i.e., below sea level) to simulate present-day, extractive
conditions. The value of landward heads is randomly selected
from realization to realization. The distance from the coast to the
landward model boundary also varies from realization to
realization. Collectively, the range of post-development
landward heads, and onshore distances to these heads,
encompass those which presently prevail in the VL subsystem.

For each realization, the model is first run under pre-
development conditions until equilibrium is established. It is
then run for a 50-year period in which landward head is set
in accordance with present-day conditions. Fifty years
corresponds to the time over which groundwater has been
extracted from the VL subsystem. The last 20 years of the last
period are thus representative of conditions which prevailed
during history-matching of the VL management model
described above. For each realization, time series of simulated
concentrations and heads at the coastline, together with budget
components, are recorded.

Over all realizations the location of the toe of the interface
varies from 30 km offshore to 500 m onshore. Figure 5 shows the
freshwater head at the coast plotted against time for the 100
realizations that were employed for this study. For most
realizations, a sudden change in head occurs shortly after
landward extraction of water commences. The head remains
reasonably constant thereafter.

The difference in head across the coastline between pre-
development and development conditions is used to determine
values of h and c for a single realization of the VLmodel GHB. For
any one realization of the density-dependent model, let the
freshwater head at the coastline be Ho when water flows
toward the sea (i.e., under pre-development conditions), and
Hi when water flows toward the land (i.e. under post-
development conditions). Values of Ho and Hi are easily
obtained from outputs of this model; a value for Hi is
established by averaging model-calculated coastal heads over
the development period.

Let qo and qi denote flow of water (fresh and saline) under the
coastline during pre- and post-development conditions. Note also
that qi and qo have opposite signs. We wish to describe flow across
the coastal boundary using a GHBwith head h and conductance c.
Under outflow conditions:

qo � (Ho − h )c (1)
while under inflow conditions:

qi � (Hi − h )c (2)
These two equations can be solved for the two unknowns h

and c. The solutions are:

c � qo − qi
Ho − Hi

(3)

h � qoHi − qiHo

qo − qi
(4)

By running the two-dimensional, sectional, density-dependent

model many times, many different values of [ h
c
] can be obtained

using Equations (3), (4). Values of [ h
c
] and C ([ h

c
]) can then

calculated in the manner described above and in Supplementary
Material.

TABLE 1 | Aspects of the design of the density-dependent model which vary between realizations.

Design variable Lower bound Upper bound Units Distribution type

Aquifer horizontal hydraulic conductivity 1 100 m/day Log-uniform
Aquifer thickness 20 500 m Uniform
Aquifer porosity 0.1 0.3 — —

Aquifer specific storage 1 × 10−6 1 × 10−3 m−1 Log-uniform
Aquitard vertical hydraulic conductivity 1 × 10−4 1 × 10−3 m/day Log-uniform
Depth to top of aquitard below sea level at landward edge of model domain 0 100 m Uniform
Seaward dip of all model layers 0 6 Degrees Uniform
Pre-development landward head 5 20 m Uniform
Distance from coast to landward model boundary 2.5 5.0 km Uniform
Post-development landward head −10.0 0.0 m Uniform

FIGURE 5 | Simulated freshwater heads at the coast during pre-
development and development conditions simulated by the cross-
section model.
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4 HISTORY-MATCHING AND
DEPLOYMENT OF THE VL MANAGEMENT
MODEL
Only a brief description of history-matching and deployment of the
VLmodel is provided here. Formore details, seeHugman et al. (2021).

4.1 History Matching
History-matching of the VL model was a two-step process. First,
parameters were calibrated to obtain a parameter field of minimum
error variance using PEST_HP (Doherty, 2021). During this process,
parameter uniqueness was attained using preferred-value Tikhonov
regularization supplemented with prior parameter covariance
matrices to promote parameter field smoothness. An ensemble of
200 parameter realizations was then sampled from a linear

approximation to the posterior parameter probability distribution.
These were adjusted in order for model outputs to match field
measurements using the PESTPP-IES ensemble smoother (White,
2018).

The inversion process featured a total of 2,241 adjustable
parameters. These include 211 parameters for the set of
LUMPREM models and three sets of 565 pilot point parameters
representing hydraulic conductivity, specific storage and aquitard
conductance within the VL model domain. The remaining
parameters pertain to lateral GHB’s. Of these 58 were used to
characterize head and conductance along the coastal GHB.

The history-matching observation dataset included both hard
and soft data. LUMPREM-calculated water demands were
compared to measured extraction rates recorded by
groundwater users where these are available. Simulated heads
were compared to borehole heads measured in the piezometric
monitoring network. Temporal head differences were also
compared; this encourages the history-matching process to
replicate seasonal head variations. The calibration dataset also
included constraints of minimum heads in abstraction wells and
upper limits on lateral recharge.

4.2 Model Deployment
4.2.1 Components of the Water Budget
Compliance with the European Water Directive (WFD)
requires evaluation of components of the VL subsystem
water balance. Time series of water budget components
were computed using 200 samples of the posterior
parameter probability distribution calculated by PESTPP-
IES. These include flows through the coastal model
boundary, through each of the landward model boundaries,
and from the overlying unconfined aquifer. It also includes
LUMPREM-calculated extraction rates. Figure 6. Time-
averaged components of the water balance, together with
respective uncertainty standard deviations, are listed in
Table 2.

Features of interest in Table 2 include the following:

• Inflow to the deep (exploited) aquifer from the overlying
unconfined aquifer comprises only a small component of
the overall water balance.

• There is a considerable influx of water to the system from
the seaward side of the coastal boundary.

• Inflow to the system from the north-western boundary
is large.

• Uncertainties associated with all lateral boundary inflows
are large.

FIGURE 6 | Time-series for each of the VL water balance components
simulated with the post-history-matching parameter ensemble (blue lines); net
flow through the (A) eastern, (B) north-western (C) aquitard and (D) coastal
boundaries, and (E) extracted through pumping. The black line
highlights time series calculated using the parameter set achieved through
model calibration (adapted from Hugman et al., 2021).

TABLE 2 | Water balance of VL aquifer over the history-matching period.

Inflow from Mean (Mm3/yr) Standard deviation (Mm3/yr)

Eastern boundary 0.23 0.59
North-western boundary 2.30 0.89
Aquitard 1.4 × 10−3 0.01
Coastal boundary 2.64 0.42
Pumping −5.17 0.17
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The WFD requires that groundwater extraction be less than
90% of average annual (freshwater) recharge in managed
groundwater systems such as Vale do Lobo by 2027. This
criterion is simplistic and difficult to apply to the VL
subsystem, as extraction from the system induces recharge.
Nevertheless, if Table 2 is viewed as a static ledger, it can be
established that 2.9 ± 1.07 Mm3/yr of extra recharge is required if
all non-coastal inflow is to exceed pumping. This value represents
the lower limit of additional recharge (or reduced abstraction)
that is required to meet WFD requirements. However, it probably
underestimates alterations to the current water balance that are
required to preclude the threat of saltwater intrusion.

4.3 Optimal Distribution of Extraction
VL irrigation is almost entirely dependent on groundwater
extraction. Reduction of extraction is a prerequisite for reducing
the risk of seawater intrusion. However, a strategic distribution of
extraction locations may mitigate the amount by which extraction
must be reduced in order to ensure sustainability.

The VL management model was used to calculate how much
water can be extracted from the VL subsystem under the constraint
that extraction remains sustainable. Decision variables in this
optimisation problem are extraction rates employed by the nine
major VL groundwater user groups; it is assumed that the wells from
which these groups extract water is unchanged from that which they
presently employ. As extraction rates attributed to these user groups
change, so too does the geographical distribution of groundwater
extraction from the VL subsystem.

Maximization of extraction is subject to a single constraint.
This is that there be zero net flow of water landward from the VL
coastal boundary into the model domain. We recognise that this
constraint does not preclude seawater intrusion. It only ensures
net freshwater discharge to the sea. Extraction rates which satisfy
this constraint may exceed those that preclude seawater intrusion.
Thus, outcomes of this optimisation problem provide an upper
estimate of the sustainable rate of extraction from the VL
subsystem. More detailed constraints can be imposed if this
value is large enough to warrant further investigation. Results
presented below suggest that it is not likely to be worth the effort.

4.3.1 Difficulties
History-matching ascribes high conductances to the eastern GHB
of the VL model. This indicates that the VL system cannot be
managed in isolation. Pumping of the deep aquifer to the east of
this boundary lowers groundwater levels within the VL
subsystem. (Recall the artificial nature of the VL management
boundary.)

To accommodate this issue the optimization problem is solved
with five different head distributions ascribed to the eastern GHB,
these simulating five different intensities of water extraction from
the neighbouring subsystem. The highest of these five head
distributions mimic pre-development conditions in which
extraction from the neighbouring, easterly subsystem is
minimal. The lowest of these five head distributions are
slightly above those that characterise present-day conditions.
The optimization problem is solved five times, once for each
of these boundary head distributions.

To accommodate parameter uncertainty, these optimization
problems are solved in two different ways. First the VL model is
endowed with a single parameter set, namely the parameter set
emerging from model calibration. We refer to these five solutions
as “risk neutral”, for they take no account of posterior parameter
uncertainty. Ideally the calibrated parameter field, and model
predictions that are made using this field, lie somewhere near the
centre of their respective posterior probability distributions.
These optimization problems are solved using the PESTPP-
OPT optimizer that is supplied with the PEST++ suite.

We then solve the optimization problem using the ensemble of
parameter sets that were calculated by the PESTPP-IES ensemble
smoother. In this case, definition of the optimization constraint is
varied to accommodate parameter uncertainty. Groundwater
extraction is now optimized under the constraint that inland
flow from the coastal boundary is zero or less (i.e., flow is
outward) for all 200 parameter fields that comprise samples of
the posterior parameter distribution. This simulates the operation
of a risk-averse management strategy. This optimization-under-
uncertainty problem is solved using the CMAES_HP global
optimizer (supplied with PEST_HP).

4.3.2 Results
Risk neutral and risk averse solutions to the optimization problem
are depicted in Figures 7A–C. The vertical axis of Figure 7A
expresses optimal total extraction as a fraction of current
extraction; the horizontal axis expresses conditions at the eastern
boundary using an observation well that is close to this boundary.
Figure 7B, C depict the distribution of optimized extraction between
user groups. Themajor groundwater users in the area are several golf
courses, an area of intensive agriculture and distributed small users.
They are intentionally not named in Figure 7 for privacy.

As stated above, the lowest of the five head distributions
attributed to the eastern GHB corresponds to heads that are
slightly above those that are currently being experienced.
Figure 7A demonstrates that it is not possible to obtain a feasible
solution to the constrained optimization problem under head
conditions that are any lower than this, including those which
characterise present-day conditions. It follows that if water use on
the other side of the eastern boundary continues at its current rate,
any extraction from the VL aquifer is unsustainable regardless of the
risk stance. This is because eastern groundwater extraction induces
landward flow of water through the VL subsystem. The VL
subsystem cannot be managed in isolation.

5 DISCUSSION AND CONCLUSION

5.1 The “Simple” Model Setup
It is apparent from the above description that construction,
calibration and deployment of the simple model that is described
herein requires a rather complicated workflow. The model is
“simple” in that it runs fast and is numerically stable; this is
achieved by representing processes and structure through simple
functions and boundary conditions. All of these are customized, this
requiring that software be written for their implementation and
parameterisation. Fine-tunning this setup required some trial-and-

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8673799

Hugman and Doherty Blending Complex and Simple Models

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


error; the workflow was revisedmany times as modelling proceeded.
This is not an uncommon occurrence in real-world, decision-
support modelling. The advent of new information, and lessons
that are painfully learned during model development, frequently
require that modelling plans be considerably revised. Fortunately, all
components of all of the workflows that are outlined in this paper are
scripted. Furthermore, the run time of the management model is
small. This allowed rapid experimentation and testing of different
ideas in ways that were flexible and reproducible.

All real-world modelling is difficult. Innovation is a necessity.
“Back to the drawing board” moments are common. The
advantages of reproducibility and reduced mental overhead
that are enabled by a scripted workflow and a structurally
simple model cannot be overemphasized.

5.2 Complementary Models
This paper demonstrates how abstract, non-physical parameters that
characterise the boundary conditions of a fast-running, decision-
support model can be informed by expert knowledge. This enables
derivation of the prior expected values of boundary condition
parameters, as well as characterisation of the prior uncertainties
of these parameters. This obviates the need for non-informative
priors whose use may unnecessarily inflate the posterior
uncertainties of decision-critical model predictions.

Themethodology described herein is based on the conjunctive use
of two models. One of these models is complex. Its role is to simulate
system structures and processes that are represented in an abstract
manner in a complementary, simple, fast-running model that is
designed with data assimilation and uncertainty quantification in
mind. Simulation of hydrogeological complexities by the complex
model cannot be exact, for many of the structures and processes that
it includes are only vaguely known. Its task is to represent the
ramifications of this vague knowledge for parameters that are
assigned to part of the simpler management model—one of its
boundary conditions in this case. Representation of this boundary
must be stochastic. To the extent that expert-knowledge-informed
stochasticity of the complex model can limit the stochasticity of

management model boundary parameters, the latter’s role in
supporting environmental decision-making is enhanced, for the
uncertainties of some of its predictions may thereby be reduced.

It is evident from the above that such an approach is of value in
cases where 1) prediction uncertainty is affected by abstract
parameter uncertainty and 2) this uncertainty is not reduced
through history matching. In such cases, as discussed, expert
knowledge can be an important (or only) source of information to
constrain decision-pertinent uncertainties.

Figure 8 displays a generalisation of our workflow. It can be
summarized as follows:

• A simple model is constructed in which numerically
problematic processes and structures are replaced with
approximate representations that are populated by non-
physically based parameters. Forecasts of interest simulated
by the simple model are affected by the uncertainties of
these parameters where these cannot be adequately
constrained by field observations of system states and fluxes.

• A complementary complex model is constructed which
explicitly represents some of the processes and structures
that prevail at a study site. Prior probability distributions
for parameters of the complex model are characterized
using expert knowledge derived from site characterisation.
The complex model is populated using an ensemble of
parameter fields sampled from this expert-knowledge-
informed prior probability distribution. From the outcomes
of many complex model runs, equivalent values for the more
abstract parameters of the simple model are calculated.

• Samples of abstract parameters which are thus obtained are
used to characterize the prior probability distribution of
simple model parameters.

• The simple model is then subjected to stochastic history-
matching. Posterior parameter probabilities obtained
through this process therefore reflect information gained
from both measured data and expert knowledge. These are
used to explore predictive outcomes of management interest.

FIGURE 7 | (A) Solutions to constrained extraction optimization problems and, relative extraction rates for different user groups for (B) the five solutions of the risk
neutral optimization problem and (C) the three solutions of the risk averse optimization problem (adapted from Hugman et al., 2021).
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It is safe to say that few, if any,modelling alternatives to the approach
that we have documented herein would have enabled data assimilation,
uncertainty quantification, and exploration of optimized management
strategies for the VL subsystem in ways that were achieved with the
present modelling strategy. The option of building a single, complex,
density dependent model (an option that is often taken in coastal
contexts) would have made high-end data assimilation and uncertainty
quantification almost impossible because of long run times and likely
numerical instability. These problems would have been exacerbated if
the domain of this model was made to extend for a considerable
distance under the sea in order to simulate freshwater outflow. This
could not have been accommodated in a properly stochastic fashion.
Simplifications in representing outflow conditions and testing of only

one or a small number of outflow options, may have led to
unquantifiable predictive bias.

Decision-support modelling always requires compromises. These
compromises do not result in loss of “simulation integrity”, for
integrity of simulation is an unachievable goal. If the task of decision-
support modelling is properly defined (see, for example Doherty and
Moore, 2021), the search for a compromise requires that reduction of
uncertainty accrued through assimilation of expert knowledge be
traded off against reduction of uncertainty accrued through history-
matching. If a model is structurally simple, if may be capable of
fitting a history-matching dataset very well. However, if this dataset
is not rich in prediction-specific information, the parametric and
predictive bias that may be incurred through model structural
simplicity, may outweigh the benefits of assimilation of these
data. Meanwhile, use of an abstract model design may have
precluded parameter value insights gained from expert knowledge
of real-world hydraulic properties. The optimal compromise will
always be context and prediction specific.

This study demonstrates that selection of an appropriate level of
model structural complexity does not always have to be an “either/
or” choice. This is because themodel that performs data assimilation
does not need to be the same model as that which is used to extract
information from expert knowledge. Two different models can be
used conjunctively for these two different purposes. They can “meet”
at a boundary condition of the data assimilation model. The
parameters of this boundary condition are thereby provided with
prior probability distributions that reflect process and properties that
aremissing from themodel itself, but thatmay have profound effects
on the uncertainties of management-critical predictions.

By separating the tasks of assimilating information that is resident
in measurements of system state on the one hand, and assimilating
information that is resident in expert knowledge on the other hand,
each model can be tuned to its primary task. Fast execution speed
and numerical stability are primary requirements for the former task.
An ability to represent the range of possible conditions that are
compatible with expert knowledge is a primary requirement for the
latter task. The “complex”model that was used for the latter task in
work that is documented herein, was actually not very complex; it is
a two-dimensional sectional model. However, its two-dimensional
design enhanced, rather than impeded, its ability to explore a wide
range of hydraulic and geometric possibilities for undersea
emergence of fresh water off the coast of Vale do Lobo. These
possibilities were then made available to the management model
through stochastic characterisation of its coastal boundary condition.

5.3 Final Remarks
Decision-support modelling in coastal areas is notoriously
difficult. Uncertainties are often high. The potential of
available data to reduce these uncertainties may be limited.

This may be a blessing rather than a curse. Compromises must be
made. These compromises often require that a modeller identify
sources of information that may be most effective in reducing the
uncertainties of predictions that he/she cares about. Modelling must
then be tuned to extraction of information from these sources
without inducing bias or inflating uncertainties by impeding or
distorting the flow of information from other sources to too great an
extent. However, where uncertainties are already high, the costs in

FIGURE 8 | Diagram of a workflow that uses complementary models to
extract information from both expert knowledge and measurements of
system state.
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extra uncertainty that are incurred by designing a model, and a
modelling workflow, that are optimal for one task but not necessarily
another, may not be great in comparison to these inherent,
background uncertainties that are born of information
insufficiency. This gives a modeller the freedom to test different
workflows, and then tailor them to suit his/her needs.

We have demonstrated in this paper that strategic use of
complementary models may make modelling choices less painful. A
“win/lose” choice can be transformed into a “win/win” choice.Wehave
also attempted to demonstrate that where innovation is required, the
use of automated workflows allows amodeller to free him/herself from
the yoke of having to adhere to one particular workflow. Different
options can be rapidly tested. Once a suitable option is discovered, it
can be rapidly improved. The cost of exploration becomes remarkably
low. The journey of discovery becomes remarkably rewarding.
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