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The southwestern coast of the Bohai Sea is a favorable area to study land-sea interactions
and palaeoenvironmental changes. The Bohai Sea hosts vast volumes of sediment
discharged from rivers of mainland China and has undergone large-scale sea-level
fluctuations during the Quaternary. Three transgressions have been previously
determined for the Bohai Sea since the late Pleistocene. However, the timings of the
two earlier transgressions are still unclear. Here we present chronological,
micropalaeontological, and sedimentological data for an 80-m-long sediment core
recovered from the modern Yellow River delta. The changes in grain size and
foraminiferal assemblages suggest the occurrence of three marine sedimentary units,
M-3, M-2, and M-1, that represent transgressions of the Bohai Sea. We applied optically
stimulated luminescence dating using both quartz and feldspar minerals on 15 samples
obtained from core YRD-1401 and eight radiocarbon ages using fragments of microfossils
shells and organic carbon. Our quartz optically stimulated luminescence ages for M-2 (ca.
60 ka), are consistent with K-feldspar post-infrared stimulated luminescence ages,
suggesting that M-2 on the southwestern coast of the Bohai Sea was deposited
during early MIS 3. The sea level of the Bohai Sea during early MIS 3 is estimated to
have ranged from 26.8 to 19.9 m below the present sea level. Luminescence ages and
foraminiferal assemblages indicate that M-3 was likely formed during MIS 5 and a tidal-river
environment prevailed on the southwestern coast of the Bohai Sea during MIS 6 or earlier.
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INTRODUCTION

Sea-level change has fluctuated in response to climatic oscillations
during the Quaternary period, ranging from ~10 m above to
~130 m below the present level during climatic cycles (e.g.,
Chappell et al., 1996; Lambeck and Chappell, 2001). The
coastal areas of eastern China act as a pathway to transport
terrestrial sediments to the ocean. Sea-level fluctuations caused
coastal zones to undergo strong environmental variations, as
indicated by the alternation of marine and fluvial environments
(e.g., Shi et al., 2016; Liu et al., 2018; Ronchi et al., 2018).
Consequently, coastal areas contain records of past
environments and are also vulnerable environments against a
background of continuing global warming, being extremely
sensitive to even minor sea-level changes. In addition, coastal
areas are a focus, of intense scientific and social attention because
of the high population density and economic influence of these
areas (Hinkel et al., 2014).

Studies of borehole cores drilled in marginal seas off eastern
China have reported the widespread existence of three marine
sedimentary units, namely, M-3, M-2, and M-1 (in ascending
order) during the late Pleistocene and Holocene, corresponding
to three major transgressions (Yi et al., 2012; Shang et al., 2018;
Xu et al., 2018; Li et al., 2019; Dai et al., 2021). Radiocarbon dates
have confirmed the formation of M-1 during the Holocene (e.g.,
Zhang et al., 2016; Li et al., 2019); however, the ages of M-2 and
M-3 in the coastal to shelf areas of eastern China are uncertain.
Early 14C dating results for M-2 ranged from 45 to 30 ka
(i.e., middle to late Marine Isotope Stage 3 (MIS 3, ca.
60–25 ka; Lisá et al., 2018)) (e.g., Zhao et al., 1978; Shang
et al., 2018), but these ages are near the older limit of
radiocarbon dating, and hence should be re-evaluated (Pigati
et al., 2007; Manaa et al., 2016; Miller and Andrews, 2019). In
addition, an incomplete stratigraphic record may compromise
the reliability of magnetostratigraphy (Liu et al., 2014).
Consequently, it seems doubtful that M-2 and M-3 were
deposited during the MIS 3 and MIS 5 (ca. 128–73 ka; Lisiecki
and Raymo, 2005), respectively, as inferred from sediments dated
using radiocarbon chronology and/or geomagnetic excursion
events.

Radiocarbon ages of pre-Holocene marine sediments in Hong
Kong have proven to be much younger than U-series dates of
molluscs (Yim et al., 1990), which indicates the limited ability of
radiocarbon dating to constrain the timing of M-2 and M-3.
Therefore, it is essential to conduct a comprehensive and
systematic chronological investigation to provide a better
understanding of the sedimentary evolution of coastal to shelf
areas of eastern China using a combination of radiocarbon and
optically stimulated luminescence (OSL) ages (e.g., Jacobs, 2008;
Reimann et al., 2010; Neudorf et al., 2015; Nian et al., 2021). In
contrast to 14C dating, OSL is more suitable for dating
sedimentary events back to 100 to 25 ka or older (e.g., Olley
et al., 1998; Pawley et al., 2010; Murray et al., 2021). OSL ages have
challenged the widely held view that M-2 andM-3 formed during
MIS 3 andMIS 5, respectively. OSL dating has constrainedM-2 to
MIS 5 and M-3 to MIS 7 (Chen et al., 2012; Gao et al., 2021). It
was thus anticipated that other studies would report similar age

results for M-2 using OSL. However, OSL dates of a recent study
demonstrated that M-2 in Liaodong Bay was deposited during
MIS 3 (Li et al., 2019). Hence, a consensus regarding the ages of
M-2 and M-3 is still lacking.

Precise ages of these marine sedimentary units are key to
solving the unclear transgression chronology. Luminescence
dating has been widely applied to coastal and marine
sediments and has proved successful in exploring the
evolution of Quaternary sedimentary environments (Murray
and Wintle, 2000; Jacobs, 2008; Lamothe, 2016). However, the
fast components of the quartz OSL signals have been shown to be
saturated at a relatively low dose (ca. 200 Gy), leading to age
underestimations (e.g., Buylaert et al., 2007; Murray et al., 2007;
Lai, 2010; Timar et al., 2010; Lowick and Preusser, 2011). The
infrared stimulated luminescence (IRSL) signal outperforms that
of quartz OSL in terms of saturation dose levels (Li et al., 2007; Li
et al., 2014), and can provide better constraints on older samples
(300–200 ka). Therefore, it is necessary to combine quartz OSL
with feldspar IRSL dating to constrain the timings of stratigraphic
sequences for comparison purposes.

With the advent of micropalaeontology, benthic foraminifera
has been increasingly used to identify distinct environments and
reveal the palaeoenvironmental evolution of regions (e.g., De Rijk
et al., 1999; Frontalini and Coccioni, 2008; Anbuselvan and
Senthil, 2018). Benthic foraminifera lives in marine and
transitional environments and show a clear zonation with
respect to parameters such as salinity and water depth,
indicating their response to environmental change (Romano
et al., 2018). Moreover, rivers may develop in coastal areas
and incise the underlying strata during periods of low sea
level, represented by multiple unconformities in the
sedimentary record (Fagherazzi et al., 2008). In summary, the
absence of benthic foraminiferal data and/or incompleteness of
the sedimentary record may obstruct to clear discrimination of
M-2 and M-3 sedimentary units of coastal eastern China. Given
the complexity of the stratigraphic sequence and chronological
framework for the late Quaternary, further studies of the
sedimentary record in and around the Bohai Sea are needed.

In this study, an 81.0-m-long core (YRD-1401) was recovered
from the modern Yellow River delta on the southwestern coast of
the Bohai Sea. Quartz OSL, K-feldspar post-infrared stimulated
luminescence (pIRIR), and accelerator mass spectrometry (AMS)
14C dating were combined to better constrain the timings of
transgressions in the Bohai Sea. We aim to establish a reliable
chronological framework and clarify the sedimentary evolution of
the western Bohai Sea during the last ~200 ka. The results yield
insights into transgressive events that have occurred since 200 ka,
terrestrial–marine interaction, and the sedimentary history of the
Bohai Sea.

GEOLOGICAL SETTING

The Bohai Sea is a shallow and semi-enclosed sea of eastern
China, covering an area of ~7.8 × 104 km2, and connects to the
North Yellow Sea via the Bohai Strait (Figure 1). The average
slope and water depths are 0.0078 and 18 m, respectively (Qin
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et al., 1990). The Bohai Sea consists of the Central Basin, Bohai
Bay, Liaodong Bay, Laizhou Bay, and Bohai Strait. Two troughs
are observed in the north and south at the bottom of the sea, with
water depths of 65 and 50 m respectively. The Bohai Strait
includes more than 20 islands, with a maximum width of
109 km (Liu et al., 2009). The Laotieshan Channel is the
largest channel in the Bohai Strait, measuring 41 km wide and
86 m deep (Liu et al., 2007). Seawater enters the Bohai Sea
through the northern Bohai Strait and flows out along the
southern margin of the Bohai Sea, where the tidal regime is
dominated by semi-diurnal tides (Qin et al., 1990).

The Bohai Sea has received large amounts of sediment from
the Yellow River as well as other small rivers, such as the Liao,
Luan, and Daling rivers, during its evolution (Qin et al., 2021).
These rivers deliver 1.85 × 107 tons/yr of sediment to the sea
(Milliman et al., 1987; Wang et al., 2007; Qin et al., 2021). The
Bohai basin has been subsiding continuously since the late
Oligocene (Allen et al., 1997). The rate of subsidence is
estimated to have averaged ~80 m/Ma during the
Quaternary, increasing to ~400 m/Ma during the Late
Pleistocene owing to the continued active subsidence (Liu
et al., 2009; Shi et al., 2016).

MATERIALS AND METHODS

Core YRD-1401 (37.70°N, 118.97°E; length 81.0 m) was drilled in
the modern Yellow River delta in 2014 using a rotary drilling
method (Figure 1). The mean recovery of muddy and sandy
sediments was better than 90 and 75%, respectively. The core was

split into two sections and preliminarily described in the
laboratory. The sediments in core YRD-1401 were sampled for
sedimentological, micropalaeontological, and chronological
analysis.

Grain-Size Analysis
A total of 464 samples were selected at ~10–20 cm intervals for
analyses of grain size, which was measured using a Malvern
Mastersizer 2000 laser particle size analyser (Malvern
Instruments, United Kingdom) at the Qingdao Institute of
Marine Geology, China Geological Survey, Qingdao, China.
The organic matter and biogenic carbonate fractions in the
samples were removed prior to analysis. Grain-size
parameters were determined following Folk and Ward
(1957), and the sediment types were
described with reference to the classification scheme of
Shepard (1954).

Benthic Foraminiferal Analysis
Foraminifera identifications were conducted to assess
palaeoenvironmental conditions. In this study, 326 samples
were collected from core YRD-1401 at an interval of ~20 cm.
These samples were dried at 60°C and then sized through a
63 μm sieve after decanting the organic debris. After sieving,
the samples were dried again at 60°C, and the >63 μm fraction
of benthic foraminifera was examined under a stereoscopic
microscope. The abundances and simple diversity of the
foraminifers were calculated with respect to a dry sample
size of 50 g. The benthic foraminiferal data of the core have
been published elsewhere (Qian et al., 2021).

FIGURE 1 | Elevation map showing the study area and sediment cores. Core YRD-1401 is marked by a solid red square. Other related cores referred to in this
study are shown by solid red circles.
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Radiocarbon Dating
Eight samples were selected for AMS 14C dating using suitable
materials (including benthic foraminifera, organic carbon, bivalve
mollusc shells, and gastropods). Dating was performed at the Beta
Analytics Laboratory, Miami, Florida, United States. Radiocarbon
ages were corrected for the regional marine reservoir effect (△R =
−178 ± 50 yr; Southon et al., 2002) and calibrated using Calib Rev.
7.0.4 (Stuiver and Reimer, 1986). The radiocarbon dates are
expressed as calibrated calendar years relative to 1950 CE (cal
yr BP; or using “ka” in place of “cal kyr BP”) with one standard
deviation (1σ) uncertainty. In addition, uncalibrated ages are
expressed as 14C years BP (14C yr BP). The measured AMS 14C
ages are listed in Table 1.

Luminescence Dating
Sediments collected for luminescence dating were sampled using
opaque plastic cylinders. All OSL samples were prepared under
red light in the luminescence dating laboratory of Qinghai
Institute of Salt Lakes, Chinese Academy of Sciences, Xining,
China.

The middle parts of the sampling cylinders were unexposed
and can be used to extract quartz and potassium feldspar
(K-feldspar) for determinations of equivalent dose (De). To
remove carbonates and organic material, the samples were
treated with 10% HCl and 30% H2O2, respectively. Then,
samples were wet-sieved to retrieve 38–63 and 90–125 μm
fractions. Heavy liquids with densities of 2.58, 2.62, and
2.75 g/cm3 were used to separate quartz and K-feldspar grains
in the 90–125 μm fraction. K-feldspar grains were treated with
10% HF for 10 min to remove the outer layer irradiated by alpha
particles. To remove the feldspar and/or alpha-irradiated layer
from quartz grains, the 38–63 and 90–125 μm fractions were
treated using H2SiF6 (35%) and HF (40%), respectively (Lai and
Wintle, 2006). Any fluorides created during the HF etching were
removed using 10%HCl, and the purity of the quartz extracts was
checked by IR stimulation (Duller, 2003). Quartz grains with
obvious IR signals were re-etched with H2SiF6 or HF to avoid age
underestimation (Lai and Bruckner, 2008).

Water content was measured by weighing the sample before
and after drying, assuming an uncertainty of ±5% for all of the
samples. Contents of U and Th were determined using
inductively coupled plasma–mass spectrometry (ICP–MS),
whereas K contents were determined using ICP–optical
emission spectroscopy (ICP–OES). The a-value for the

38–63 μm fraction was taken as 0.035 ± 0.003 (Lai et al.,
2008). In addition, contents of K and Rb of 12.5 ± 0.5% and
400 ± 100 ppm were assumed for K-feldspar dose rates,
respectively (Huntley and Baril, 1997).

The quartz and K-feldspar extracts were mounted on the
central part (~0.7 cm diameter) of stainless-steel discs
(~0.97 cm diameter) using silicone oil as the fixing agent. All
measurements employed a Risø TL/OSL -DA-20 reader equipped
with blue diodes (λ = 470 ± 20 nm) and IR diodes (λ = 830 nm).
Laboratory irradiation was performed using 90Sr/90Y sources
mounted within the reader, with a dose rate of 0.1222 Gy/s.
Quartz OSL was detected through a U-340 filter and feldspar
IRSL through a combination of BG-39 and coring-759 filters.

RESULTS

Luminescence Characteristics and
Reliability of the Ages
Quartz OSL dating in this study employed the SAR-SGC
method (Lai and Ou, 2013), which combines Single Aliquot
Regeneration (SAR) with Standard Growth Curve (SGC)
protocols (Murray and Wintle, 2000; Roberts and Duller,
2004; Lai, 2006). The suitability of the SAR procedure for
determinations of De was checked using preheat plateau and
dose recovery tests. The preheat plateau test was performed on
sample OSL-3. Preheat temperatures ranged from 220 to
300°C at a 20°C interval for 10 s, with a heating rate of 5°C/
s. The cut-heat temperature was kept constant at 220°C for all
measurements. Every four aliquots for each temperature were
measured and calculated as the mean values of De. A plateau
was observed for temperatures from 260 to 300°C (Figure 2).
In addition, the recycling ratios for different temperatures of
sample OSL-3 ranged from 0.95 to 1.03 (lying within the range
of 0.9–1.1) (Figure 2). According to these results, a preheat
temperature of 260°C and a cut-heat of 220°C were employed
to measure the De of the quartz fraction.

For each sample, an SGC was built using the SAR procedure
from 6 aliquots, and the De values of 12 additional aliquots were
then obtained using this SGC. The De value was calculated using
the initial 0.64 s integral of the OSL decay curve minus the last 8 s
integral. The OSL decay curves and reconstructed dose-response
curves for sample YRD-1401-OSL-3 are presented in Figure 3.
The quartz OSL signals decrease quickly during the first second of

TABLE 1 | AMS 14C dating results for core YRD-1401.

Depth (m) Materials δ 13C (‰) Conventional 14C age (14C yr BP) Calibrated age (cal yr BP) Laboratory code

Intercept Range (1σ)

14.31 Foraminifera −2.0 2340 ± 30 2006 1904–2108 563798
17.84 Foraminifera −2.1 4120 ± 30 4228 4123–4345 563799
22.62 Organic −25.6 8020 ± 40 8888 8783–9007 420267
30.63 Gastropod −3.0 >43500 — — 420268
30.75 Gastropod −8.1 >43500 — — 420269
39.87 Bivalve mollusc shell fragments −1.2 >43500 — — 420270
46.99 Bivalve mollusc shell fragments −0.5 >43500 — — 420271
47.07 Gastropod −2.1 >43500 — — 420272
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stimulation, indicating that the signal is dominated by the fast
component (Singarayer and Bailey, 2003). The values of De and
ages for each sample were calculated and are listed in Table 2.

K-feldspar pIRIR dating utilizing the pIRIR170 and pIRIR290

signals was used on pre-treated luminescence samples for age
estimations. The integrated signal for both pIRIR and IRSL50 was
calculated from the first 2 s minus the background from the last
40 s. The stimulation time for pIRIR signals used in the current
pIRIR SAR protocol was 200 s. The test dose was constant at
~30% of the total measured dose. The pIRIR170 decay curve and
reconstructed dose-response curves for sample YRD-1401-OSL-4
are presented in Figure 4. The IRSL 50°C signal decreases more
rapidly than that of pIRIR170, which suggests that the latter
bleaches more slowly.

Stratigraphic Sequences of Core YRD-1401
Vertical variations in grain size, foraminiferal abundance, simple
diversity, and relative abundance of the main foraminiferal
species are shown in Figures 5, 6. On the basis of lithofacies
characteristics and benthic foraminiferal assemblages, the
sedimentary succession in core YRD-1401 can be divided into
six stratigraphic units, DU 6 to DU 1 from bottom to top
(Figure 7).

DU 6 (81.0–51.35m)
DU 6 is characterized by multiple upward-fining cycles,
dominated by yellowish-grey to dark-grey silty sand, sandy
silt, and clayey silt, with moderate sorting and tabular cross-
bedding (Figure 8A). The grain size in this section ranges from
3.5 to 5.5 Φ (Figure 5), and medium-grained sands are locally
observed. Shell fragments, rusty-brown stains, and carbonaceous
spots show a scattered distribution in this unit. According to the
benthic foraminiferal assemblages (Figure 6), DU 6 can be
further divided into three sections.

In the lower section (81.0–68.6 m), the abundances of benthic
foraminiferal assemblages range from 1.0 × 103 to 1.0 × 104

species per 50 g, with an average value of 5.0 × 103. The simple
diversities vary between 2 and 16, with an average value of 8. The
assemblages are dominated alternately by euryhaline species (e.g.,
Ammonia. beccarii variabilis, Elphidium magellanicum, and
Cribrononion subincertum) and shallow-water marine species
(e.g., Protelphidium tuberculatum, Buccella frigidum, Elphidium
advenum, and Quinqueloculina seminula). In the middle section
(68.6–57.6 m), however, foraminifera occur sporadically, with
relatively low abundances and simple diversities (most values
being <1.2 × 103 and 10, respectively). The assemblages are
dominated by A. beccarii vars., and the relative content of
brackish water species increases (e.g., Haynesina germanica
and Pseudononionella variabilis) compared with the lower
section. The values of average abundance and simple diversity
of foraminiferal assemblages in the uppermost part of DU 6
(51.4–57.8 m) are 2.4 × 103 and 9, respectively, which are

FIGURE 2 | Results of preheating plateau tests and recycling ratios for sample YRD-1401-OSL-3. The equivalent dose (De) of each data point is the mean of four
aliquots.

FIGURE 3 | Quartz OSL characteristics of sample YRD-1401-OSL-3.
(A) growth curve; (B) decay curve.
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dominated by euryhaline species such as A. beccarii vars. and C.
subincertum.

According to lithofacies and benthic foraminiferal assemblages,
DU 6 is interpreted as tidally influenced river deposits in an estuarine
environment. The rusty-brown stains and carbonaceous spots
scattered in this unit are indicative of subaerial exposure, typical
of tidal-river environments. Sandbeds with basal erosional surfaces,
fining-upward trends, and cross-bedding are indicative of tidal-
channel deposition (Reineck and Singh, 1980).

DU 5 (51.35–37.64m)
The sediments in DU 5 are composed of grey and yellow silt
(Figure 8B) and are finer than those of DU 6. Tabular cross-
bedding and upward-fining cycles are observed, and the grain size
ranges from 5.5 to 6.5 Φ (Figure 5). The abundances of benthic
foraminifera vary from 2.8 × 103 to 1.0 × 105 species per 50 g, and
the simple diversity value is 11. These are the maximum values of
abundance and simple diversity in core YRD-1401. The

TABLE 2 | OSL dating results for core YRD-1401.

Sample no Grain
size
(μm)

Depth
(m)

U (ppm) Th (ppm) K (%) Water
(%)

Number
of

aliquots

Overdispersion De

(Gy)
Dose
rate

(Gy/ka)

Age (ka)

YRD-1401-OSL-1 38–63 19.40 1.59 ±
0.3

7.96 ±
0.5

1.79 ±
0.03

16 ± 5 18 0.07 ± 0.02 15.7 ± 0.3 2.47 ±
0.12

6.4 ± 0.3

YRD-1401-
OSL-1(f)

38–63 19.40 1.59 ±
0.3

7.96 ±
0.5

1.79 ±
0.03

16 ± 5 6 — 53.7 ± 0.4 2.65 ±
0.12

20.2 ± 0.9

YRD-1401-OSL-2 90–125 29.20 1.05 ±
0.2

4.6 ± 0.4 1.87 ±
0.03

16 ± 5 18 0.20 ± 0.01 98.4 ± 11.2 2.09 ± 0.1 47.0 ± 5.9

YRD-1401-OSL-3 38–63 33.20 1.64 ±
0.3

7.19 ±
0.5

1.91 ±
0.03

18 ± 5 18 0.14 ± 0.02 156.7 ± 0.5 2.39 ±
0.11

65.5 ± 3.1

YRD-1401-OSL-4 38–63 37.30 1.23 ±
0.2

5.46 ±
0.4

2.03 ±
0.04

16 ± 5 18 0.28 ± 0.05 147.3 ± 9.9 2.34 ±
0.11

63.0 ± 5.2

YRD-1401-
OSL-4(f)

38–63 37.30 1.23 ±
0.2

5.46 ±
0.4

2.03 ±
0.04

16 ± 5 4 — 185.0 ± 9.4 2.51 ±
0.11

73.8 ± 4.9

YRD-1401-OSL-5 38–63 40.40 1.79 ±
0.3

9.06 ±
0.5

1.55 ±
0.03

19 ± 5 18 — 232 ± 13 2.21 ± 0.1 105 ± 8

YRD-1401-OSL-6 38–63 46.40 1.85 ±
0.3

8.14 ±
0.5

2.17 ±
0.04

18 ± 5 18 — 220 ± 11 2.72 ±
0.13

81.0 ± 5.5

YRD-1401-OSL-7 38–63 53.60 1.24 ±
0.2

6.46 ±
0.4

2.14 ±
0.04

16 ± 5 17 — 294 ± 15 2.5 ± 0.12 118 ± 8

YRD-1401-OSL-8 38–63 58.60 1.45 ±
0.2

7.02 ±
0.5

1.84 ±
0.03

18 ± 5 17 — 289 ± 14 2.27 ± 0.1 127 ± 8

YRD-1401-OSL-9 38–63 62.30 0.83 ±
0.2

2.88 ±
0.3

2.34 ±
0.04

18 ± 5 18 — 348 ± 8 2.31 ±
0.12

151 ± 8

YRD-1401-
OSL-10

38–63 65.00 0.8 ± 0.2 3.54 ±
0.3

2.38 ±
0.04

18 ± 5 18 — 294 ± 19 2.39 ±
0.12

123 ± 10

YRD-1401-
OSL-10(f)

38–63 65.00 0.8 ± 0.2 3.54 ±
0.3

2.38 ±
0.04

18 ± 5 5 — 583.0 ± 26.8 2.52 ±
0.11

236.1 ±
14.9

YRD-1401-
OSL-11

38–63 67.20 1.03 ±
0.2

5.77 ±
0.4

2.21 ±
0.04

17 ± 5 17 — 359 ± 19 2.46 ±
0.12

146 ± 10

YRD-1401-
OSL-12

38–63 70.10 1.0 ± 0.2 5.18 ±
0.4

2.34 ±
0.04

16 ± 5 17 — 375 ± 23 2.53 ±
0.12

148 ± 11

YRD-1401-
OSL-14

38–63 78.80 1.54 ±
0.2

6.54 ±
0.4

2.24 ±
0.03

16 ± 5 18 — 409 ± 11 2.65 ±
0.28

154 ± 17

YRD-1401-
OSL-15

38–63 80.50 1.13 ±
0.2

5.8 ± 0.4 2.31 ±
0.04

18 ± 5 17 — 402 ± 27 2.54 ±
0.12

159 ± 13

YRD-1401-
OSL-15(f)

38–63 80.50 1.13 ±
0.2

5.8 ± 0.4 2.31 ±
0.04

18 ± 5 6 — 1000.0 ±
25.9

2.67 ±
0.11

375.1 ±
18.7

FIGURE 4 | IRSL signals of sample YRD-1401-OSL-4. (A) growth
curves; (B) decay curves.
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assemblages are dominated by shallow-water euryhaline species
(mainly in the lower interval) and shallow-water marine species
(in the upper interval), with a boundary between the two intervals
at 47.03 m (Figure 6).

DU 5 is inferred to represent deposition in a tidal-flat to a
shallow-subtidal environment, which is supported by the
lithofacies characteristics and down-core changes in benthic
foraminiferal assemblages.

DU 4 (37.64–30.71m)
DU 4 is characterized by yellow and greyish-yellow fine sand, sandy
silt, and clayey silt (Figure 8C), with some rusty-brown stains and
tidal bedding. Upward-fining depositional cycles and moderate to
poor sorting are common, with the values of mean grain size ranging

between 3.9 and 5.9 Φ. The abundances of benthic foraminiferal
assemblages in DU 4 are notably lower compared with DU 5, as are
the simple diversities (Figure 6). Benthic foraminifers (average = 32
species per 50 g) occur sporadically and are dominated by A. beccarii
vars. and P. tuberculatum.

According to the low abundance and sporadic distribution of
benthic foraminifera, the common tidal bedding, and rusty-
brown stains, DU 4 is interpreted as tidal-flat deposits of an
oxidizing and/or subaerial environment.

DU 3 (30.71–23.50m)
A dual structure, with fine and silty sand in the lower section and
silt in the upper section (Figure 8D), is observed in DU 3. Tabular
cross-bedding, strong bioturbation, and rusty-brown stains are

FIGURE 5 | Down-core variations in grain-size composition (A) and grain-size parameters (B–E) of core YRD-1401. Mz, mean grain size; σ, sorting coefficient; Sk,
skewness; KG, kurtosis. DU 1–DU 6, depositional units.

FIGURE 6 | Down-core variations in benthic foraminiferal abundance, simple diversity, and relative abundance of the main foraminiferal species in coreYRD-1401.
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common, and the sediments show poor sorting. A few
foraminifera in this unit may have been reworked and/or
transported, as inferred from their abraded and oxidized
characteristics.

Given the lithology and benthic foraminiferal characteristics,
this unit is interpreted as fluvial deposits.

DU 2 (23.50–14.22m)
DU 2 can be further divided into three subunits. The lower
subunit (23.50–22.36 m) consists of greyish-yellow to dark-grey

clayey silt, with numerous carbonaceous spots and scattered shell
fragments. In this subunit, the benthic foraminiferal assemblage is
dominated by brackish water species (H. germanica), and the
average values of abundance and simple diversity are 992 species
per 50 g and 1, respectively. The middle submit (22.36–17.64 m)
is composed predominantly of fine sand and silty sand, with some
clayey bands. Tabular cross-bedding is common, and scattered
shell fragments are observed. The benthic foraminiferal
assemblage is dominated by A. beccarii vars., P. tuberculatum,
E. advenum, and E. magellanicum. An increase in the abundance

FIGURE 7 | Lithological log of core YRD-1401, with calibrated 14C and OSL ages.
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of benthic foraminifera (averaging 5.0 × 103 species per 50 g) is
observed. The uppermost submit (17.64–14.42 m) is
characterized by silt and clayey silt, with silty lenses and
strong bioturbation (Figure 8E). A yellowish-gray fine sand
layer (~20 cm thick) is found at 14.4–14.2 m and shows
moderate sorting and tabular cross-bedding. The average
values of foraminiferal abundance and simple diversity in this
subunit are 4.3 × 103 species per 50 g and 21. The abundances of
euryhaline and shallow-water species are lower and higher,
respectively, compared with the middle submit.

DU 2 is interpreted to have been deposited from the middle to
late Holocene in a coastal to nearshore shelf environment, as
evidenced by the strong bioturbation and high abundances of
foraminifera.

DU 1 (14.22–0m)
DU 1 is composed of yellow to greyish-yellow sandy silt and silt.
Tidal bedding, molluscan shell fragments, carbonaceous spots,
and rusty-brown speckles occur locally, as well as some clayey
bands (Figure 8F).

The benthic foraminiferal assemblage of DU 1 exhibits low
abundances and low diversities. The abundance averages 581

species per 50 g, and the diversity averages 6. The assemblage is
dominated by euryhaline and shallow-water marine species, such
as A. beccarii vars., P. tuberculatum, and Q. seminula.

According to the absence of bioturbation, and the low
abundances and low simple diversities of benthic foraminifera,
DU 1 is interpreted as deposits of the modern Yellow River delta
since 1855, when the Yellow River shifted its main course and
discharged into the Bohai Sea (Alexander et al., 1991).

DISCUSSION

Chronostratigraphic Framework of the Core
YRD-1401
We established the chronostratigraphic framework of the
depositional units in core YRD-1401 using the dating results of
quartz OSL, feldspar pIRIR, and AMS 14C. As mentioned above,
radiocarbon and OSL dating have their particular advantages and
limitations. In this study, 14C is regarded as the preferred method for
young dates and yields reliable and accurate ages for Holocene
sediments. OSL performs well and outperforms 14C dating for the
old (>25 ka) sediments. Considering the saturation levels of quartz

FIGURE 8 | Photographs of representative sedimentary facies in core YRD-1401. (A) 65.67–65.94 m core depth (DU 6): yellowish-grey fine sands with moderate
sorting and tabular cross-bedding. (B) 43.55–43.73 m (DU 5): dark-grey clayey silt, with silty bands, lenses, and shell fragments. (C) 32.59–32.79 m (DU 4): greyish-
yellow silty sand interbedded with sandy silt and clayey silt, with rusty-brown stains and strong bioturbation. (D) 27.87–28.06 m (DU 3): greyish-yellow silt, with
carbonaceous spots. (E) 15.89–16.07 m (DU 2): dark-grey silt and clayey silt, with silty lenses and strong bioturbation. (F) 4.10–4.23 m (DU 1): yellow to greyish-
yellow sandy silt and silt, with carbonaceous spots and clayey bands.
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signals, ages obtained by quartz OSL dating can be regarded as
reliable for pre-Holocene sediments when theDe value is less than ca.
230 Gy (Lai, 2010). However, only minimum ages can be provided
when the quartz signals are greater than ca. 230 Gy. Therefore, for
samples that exceed the upper limit of quartz OSL dating, the results
derived from pIRIR dating may be more accurate.

For DU 6, eight samples yielded the quartz OSL ages between
159 ± 13 and 118 ± 8 ka, which lie beyond the dating limit (with
respect to the above-mentioned De threshold value) and are,
therefore, regarded as minimum ages of the sediments (Wintle
andMurray, 2006; Lai, 2010). To further constrain the timing of DU
6, the pIRIR protocol with an elevated temperature stimulation of
290°C was used. One infinite pIRIR290 age [YRD-1401-OSL-15 (f)]
of >378 ka (minimum age: 378 ± 18 ka) at 80.50m was determined
from the basal part of DU 6, for which the value of De is greater than
1000 Gy. Another pIRIR290 age [YRD-1401-OSL-10 (f)] of 236.1 ±
14.9 ka obtained at ~65.00 m corresponds to MIS 7. Therefore, we
suggest that DU 6 was formed during MIS 6 or even older.

Three AMS 14C dates for DU 5 (47.07–39.87 m) are beyond
the age limit of radiocarbon dating (>43.5 kyr BP). Two OSL
dates of 105.0 ± 8.0 and 81.0 ± 5.5 ka were obtained from this
unit, indicating that it was deposited during MIS 5.

In DU4, an AMS14C date for the upper part of DU 4 (at 30.75 m)
is beyond the limit of the radiocarbon method, and only an infinite
age of 43.5 ka can be given. In addition, the stratigraphic interval of
DU 4 was dated between 64.1 ± 5.1 and 63.0 ± 5.2 ka using quartz
OSL dating, which corresponds to early MIS 3 considering the age
error. These ages were cross-checked using the pIRIR protocol with
an elevated temperature stimulation of 170°C. The aliquots of sample
YRD-1401-OSL-4 were bleached for 56 h under sunlight (8 h per
day for 7 days) to determine the residual dose, which has an
important influence on pIRIR dating. After subtraction of the
residual dose (46.1 Gy), the resultant pIRIR170 age (YRD-1401-
OSL-4 (f)) of 73.8 ± 4.9 ka is older than the quartz OSL age
(63.0 ± 5.2 ka) at the same depth of 37.30 m. This age
inconsistency for the same sample may have been caused by a
residual signal that is unbleached or hard to bleach by pIRIR dating,
as the natural bleaching process in coastal areas is uncertain (Li et al.,
2014; Li et al., 2018; Long et al., 2019). Within age uncertainties, the
timing of deposition of DU 4 corresponds to early MIS 3.

An OSL age for YRD-1401-OSL-2 of 47.5 ± 5.9 ka was
obtained at 29.20 m, and an AMS 14C date (>43.5 kyr BP) for
the lower part of DU 3 is beyond the age limit of radiocarbon
dating, indicating that DU 3 was deposited during late MIS 3.

In DU 2, three samples were selected and dated at 2006, 4228,
and 8888 cal yr BP using AMS 14C dating. An OSL age of 6.3 ±
0.5 ka obtained at 19.4 m, together with 14C results, constrains
this unit to the Holocene. According to the progradation history
of the Yellow River delta (Xue, 1993; Saito et al., 2000) and the
lithology and stratigraphic position of DU 1, DU 1 is interpreted
as deltaic deposits of the modern Yellow River.

Analysis and Correlation of Sedimentary
Strata in the Bohai Sea
The sedimentary sequences recorded in the coastal areas of
eastern China vary with respect to sediment supply,

stratigraphic completeness, and core locations (Liu et al.,
2016). Therefore, the sedimentary evolution of the Bohai Sea
is best established by using sedimentary records of multiple cores.
Here, we use the results from core YRD-1401, together with
results from other cores examined by previous studies, to make a
regional comparison of sedimentary strata deposited since ca. 200
ka in the coastal areas of Bohai Sea.

A comparison of the stratigraphic sequence of core YRD-1401
with that of other cores, including LZK06 (Li et al., 2019), BT113
(Chen et al., 2012), YRD-1101 (Liu et al., 2016), Lz908 (Yi et al.,
2012), and YRD-1402 (Zhang et al., 2016), are shown in Figure 9.
The sedimentary sequences can be divided into four depositional
units, designated L4 to L1 in ascending order.

Sedimentary sequences in L4 were deposited prior to 130 ka.
Fluvial and tidal-river sedimentation prevailed in Liaodong Bay
(LZK06 core) and the western coast of the Bohai Sea (e.g., cores
BT113, YRD-1101, and YRD-1401). L4 in Laizhou Bay is
dominated by alternations of sediments deposited in tidal-flat
and fluvial environments (core Lz908). All of the quartz OSL ages
for this unit are beyond the upper limit of this dating method and
are presented as minimum ages of the sediments. Most of the
pIRIR ages vary between 260 and 130 ka, with IRSL signals in
some ages being saturated. Considering one infinite pIRIR290 age
of >378 ka and another pIRIR290 age of 236.1 ± 14.9 ka for core
YRD-1401 (Figure 7), it is speculated that fluvial and tidal-river
environments prevailed in the Bohai Sea during MIS 6 or earlier.

L3 corresponds to sedimentary sequences that formed
between 130 and 60 ka and show wide differences between the
compared cores. In cores BT113 and YRD-1101, this unit consists
mainly of neritic and fluvial deposits, indicating sea-level
fluctuation in the Bohai Sea during MIS 5, and these deposits
are consistent with those in the Pearl River delta (Fu et al., 2020).
In other cores, this unit is dominated by neritic and tidal-flat
deposits, with the OSL ages falling in the 100–60 ka range. The
chronology and lithology demonstrate that alternating marine
and terrestrial environments on the northern and western coasts
of the Bohai Sea and tidal-flat environments on the south coast of
the Bohai Sea occurred during early MIS 3–MIS 5.

Unit L2 is dominated by fluvial-facies sediments and is estimated
to have formed from ca. 60 to 10 ka. OSL ages constrained the fluvial
sediments to mid-MIS 3–MIS 2, including cores BT113, YRD-1101,
YRD-1402, and YRD-1401. However, some marine-influenced
sediments in cores LZK06 and Lz908 are also observed in cores
LZK06 and Lz908 and have OSL ages of ca. 40 ka.

The sedimentary sequences of L1 were deposited during the
Holocene and are characterized by neritic and tidal-flat deposits
associated with sea-level rise. Dating results of 14C and OSL
methods suggest that this unit was affected by the Holocene
transgression in the Bohai Sea (e.g., Yi et al., 2012; Liu et al., 2016).
L1 also contains Yellow River sediments deposited since AD 11 in
the modern Yellow River delta.

Sedimentary Record of MIS 3 in the
Bohai Sea
Reconstruction of sea-level change and transgression history over
the past 200 ka for the Bohai Sea is challenging because of
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discrepancies among dating results, and it is still unclear whether
the seawater covered the present coastal areas of the Bohai Sea
during MIS 3. Previous studies of stratigraphic imprints and
chronology have elucidated transgression histories in the coastal
to shelf areas of eastern China (Qin and Zhao, 1985; Xu et al.,
2011), where three marine units (i.e., M-3, M-2, and M-1) have
been identified. It is well established that M-1 was deposited
during the Holocene (e.g., Zhang et al., 2016; Li et al., 2019), as
constrained by numerous dating results. However, it remains
unclear whether the second transgression (M-2) occurred during
MIS 3 or MIS 5, despite considerable research carried out on this
problem (Li et al., 2019; Gao et al., 2021). Put another way, it is
uncertain whether theMIS 3 transgression occurred in the coastal
areas of eastern China.

Accurate and consistent chronology is the key to solving this
problem. Previous studies have determined age for M-2 of ca.
40 ka using 14C dating of shells, wood, and benthic foraminifera
(e.g., Hanebuth et al., 2006; Shang et al., 2018), corresponding to
middle to late MIS 3. However, these dating materials are
vulnerable to contamination by new carbon, which would lead
to an underestimation of radioactive ages (Pigati et al., 2007). For
example, the apparent age of one old sample (beyond the upper
limit of 14C dating) mixed with 1% new carbon will give an age of
38 ka (Aitken, 1990). 14C ages older than 35 ka should be treated
with caution, and additional dating methods are needed to verify
(Gao et al., 2019). The M-2 deposits, originally dated as MIS 3
using 14C dating (e.g., Zhao et al., 1978; Hanebuth et al., 2006; Liu
et al., 2009; Wang et al., 2014; Shang et al., 2018), have been re-
evaluated to MIS 5 or even older based on U-series and OSL
dating results (Wang et al., 2021).

After re-examination of the available geological and
geochronological data, Chen et al. (2012) and Gao et al.
(2019) concluded that there was no reliable evidence for the
deposition of marine sediments during MIS 3 in the Yangtze
River delta and the western Bohai Sea, And it was presumed that
all OSL ages for M-2 would belong to MIS 5. However, Yao et al.
(2010) identified a transgression layer with abundant benthic
foraminifera in core Lz908. In a subsequent study, radiocarbon
dates and OSL ages constrained this transgression event to MIS
5–3 (Yi et al., 2012). Moreover, a more recent study showed that
M-2 corresponds to MIS 3 and did not detect MIS 5 marine
deposits in the northern coast of the Bohai Sea (Li et al., 2019). In
core YRD-1401, tidal-flat deposits are revealed in DU 4, as
inferred from low-abundance and sporadic benthic
foraminifera, tidal bedding, and rusty-brown stains. OSL ages
of 65.5 ± 3.1 and 63.0 ± 5.2 ka were obtained from this unit in the
present study, which correspond to early MIS 3. Considering the
saturated dose of 230–150 Gy (i.e., a quartz OSL age of ca. 70 ka)
(Lai et al., 2010), it is necessary to further constrain the timing of
formation of these tidal-flat deposits using pIRIR dating. A
pIRIR170 age of 73.8 ± 4.9 ka was obtained for sample YRD-
1401-OSL-4, which is older than its quartz OSL age. Given the
complex and uncertain bleaching process of IRSL signals in
coastal areas, the residual doses of samples from such areas
may be large, and therefore the pIRIR170 age of 73.8 ± 4.9 ka
of sample YRD-1401-OSL-4 may have been slightly
overestimated. Therefore, we argue that the quartz OSL age

and pIRIR170 age of sample YRD-1401-OSL-4 are consisting
within error ranges and correspond to early MIS 3 (ca. 60 ka).

It has been suggested that marine transgressions in the Bohai Sea
are influenced by multiple factors, including sea-level change,
sediment input, and palaeotopography (Liu et al., 2009). The
Bohai Sea is separated from the Yellow Sea by the Miaodao
Islands Uplift (Figure 1), which has blocked the passage of
seawater from the Yellow Sea into the Bohai Sea since its uplift
during the late Mesozoic (Yi et al., 2016). However, as a result of
subsequent subsidence of the Miaodao Island Uplift, regional
seawater has entered the Bohai Sea since the late Pleistocene
(Liu et al., 2016). Hence, it is necessary to reconstruct the paleo
sea level and establish whether seawater could have flooded the
Miaodao Islands Uplift during early MIS 3. Palaeo sea level is
commonly represented by the elevation of associated tidal-flat
deposits. The Bohai Sea has been in a state of continuous
subsidence over the past 6Ma, at a rate of 0.12–0.50 m/ka (Guo
et al., 2007; Liu et al., 2016). Considering that the rate of subsidence
has decreased substantially during the late Pleistocene, it is
estimated that the amount of tectonic subsidence in the Bohai
Sea since early MIS 3 is ~7.2 m, using the minimum subsidence rate
(0.12 m/ka). In addition, the reconstruction of the palaeo sea level
could be affected by sediment compaction (Qin et al., 2020). In this
study, the sediments in YRD-1the 401 core are composed of silty
sand, which has a limited effect on compaction. Therefore, the
thickness of compaction is assessed at ~1 m. The tidal-flat deposits
at 37.64–30.71 m in core YRD-1401 correspond to earlyMIS 3. The
sea level during earlyMIS 3 is estimated to have ranged from 26.8 to
19.9 m below the present sea level in the Bohai Sea when the
elevation of the core (+2.64m), tectonic subsidence (7.2 m), and
post-deposition compaction (~1 m) are taken into account. An
analogous high stand of sea level has been reported in other areas,
including the Yangtze River and Red River deltas (Hanebuth et al.,
2006; Pico et al., 2016; Shang et al., 2018). According to the rate of
tectonic subsidence (0.12–0.50 m/ka), the subsidence of the
Miaodao Islands Uplift since early MIS 3 (ca. 60 ka) is between
7.2 and ~30 m. The water depth at the bottom of the southern
trough of the Miaodao Islands Uplift and the maximum depth of
the Laotieshan channel would have exceeded 20 and 50m,
respectively, which would have enabled the seawater to enter the
Bohai Sea via the Miaodao Islands Uplift during early MIS 3.

Furthermore, the southern Bohai Sea has been in a stage of
continuous subsidence since the late Quaternary, which would have
provided sedimentary accommodation space for marine
transgressions. However, the MIS 5 transgression was weak and/
or absent in the northern Bohai Sea because the depositional
elevation in the northern Bohai Sea may be higher than the sea
level (Li et al., 2019; Wang et al., 2020). Moreover, some researchers
have ascribed the unexpectedly strong transgression during MIS 3
in the marginal seas off eastern China to continuous tectonic
subsidence since MIS 5 (e.g., Yan et al., 2006; Wang et al.,
2013). However, our results show that the MIS 3 transgression
along the southwestern coast of the Bohai Sea occurred only in the
early part of this MIS and that a tidal-flat environment prevailed.
The foraminiferal assemblages and abundances (Figure 6) and
lithologic characteristics of rusty-brown stains and tidal bedding
(Figure 8) show that the marine transgression during MIS 3 was
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weaker than that during MIS 5, despite the continuing subsidence.
This contradiction between the intensity of transgression and sea-
level change is likely to have been caused by the lack of a clear and
reliable chronological framework rather than uncertainty regarding
the amount of tectonic subsidence.

Finally, the basis of the record of marine transgressions is
stratigraphic completeness (Yi et al., 2012; Liu et al., 2016).
During the late Quaternary, erosion occurred with increasing
frequency in the complex sedimentary environments of coastal
and nearshore areas. The transportation of sediments in channels
and periods of erosions are marked by unconformities in
stratigraphic records (Straub et al., 2020). In fact, the high degree
of instability of the climate and sea-level fluctuations during the Last
Glacial, produced extreme erosion events, including the
channelization of rivers into the underlying sediments. During the
Last Glacial Maximum, a large number of palaeo river channels
developed and incised the coastal to shelf areas, with a sea level of
approximately 130m below the present sea level (Liu et al., 2010).
These palaeo channels were filled and/or erased by subsequent
transgression, with deposits being only partially preserved in the
geological record (Fagherazzi et al., 2008). As a result, the study of
sedimentary environments and the associated marine transgression
during MIS 3 requires detailed analyses of successive sedimentary
facies and a reliable chronological framework.

Sedimentary Evolution of the Bohai Sea
Since 200 ka
The sedimentary characteristics and chronostratigraphic
framework of core YRD-1401, together with other cores
examined by previous studies, enable the sedimentary

evolution of the Bohai Sea to be understood from the
perspective of sea-level change, sediment supply, and
geomorphology over the last 200 ka.

The Miaodao Islands Uplift has existed since the late Mesozoic
and has played an important role in the sedimentary evolution in the
Bohai Sea (Yi et al., 2016). Several weak transgressions are recorded in
the Bohai Sea at ca. 0.83Ma and ascribed to the tectonic subsidence of
the Miaodao Islands Uplift (Liu et al., 2016). The climate was
relatively warm and wet during MIS 7, although it was
interrupted by a cold substage (MIS 7d) and did not reach the
peak of that of MIS 5 and the Holocene (Rowe et al., 2014; Columbu
et al., 2019). Subsequently, the global sea level fell by 120–130m
during MIS 6, which was characterized by a cold and dry climate
(Antonioli et al., 2004). The deposits of DU 6 suggest that in the study
area, a tidal-river environment prevailed from MIS 7 to MIS 6. The
rusty-brown stains and carbonaceous spots observed in DU 6 are
interpreted as representing subaerial exposure. The sand beds with
basal erosional surfaces and cross-bedding are indicative of tidal-
channel deposition, as indicated by the relatively low abundance and
simple diversity of foraminifera as well as by the foraminiferal
assemblages, which are dominated by low-salinity species. In
addition, high abundances of H.germanica in the benthic
foraminiferal assemblages were observed in core YRD-1401
(57.80–51.35m), which suggests that strong tidal currents
occurred during MIS 7 to MIS 6 (Hayward and Hollis, 1994).

Following MIS 6, the global sea level rose and reached its peak
during MIS 5e (Shackleton, 1987), and marine deposits were
ubiquitous in the coastal to shelf areas of eastern China. This
large-scale transgression in the South Yellow Sea is recorded by
Asterorotalia spp. and involved a cold-water mass in the central
South Yellow Sea (Wang et al., 1981; Yang et al., 1998). During

FIGURE 9 | Stratigraphic correlations between cores from the Bohai Sea, with sedimentary facies and ages.
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MIS 5, neritic deposits were common in the Bohai Sea, with OSL
ages of 100–90 ka (Liu et al., 2016). This view is further confirmed
by the deposits of DU 5. The abundance and simple diversity of
foraminifera both reach their highest values in this unit in core
YRD-1401, and the assemblages are dominated by shallow-water
marine/euryhaline species, which suggests that a strong
transgression occurred in the Bohai Sea during MIS 5.
However, sedimentary evidence from the Pearl River delta and
Yangtze River delta shows that sea level fluctuated and these areas
were not covered by seawater continuously during MIS 5 (Zhao
et al., 2008; Fu et al., 2020). These sea-level fluctuations are also
revealed on western coast of the Bohai Sea, where the sedimentary
sequences contain alternations of tidal-flat and neritic deposits
and are intercalated with fluvial and tidal-river deposits
(Figure 9). It is worth noting that the completeness of
sedimentary sequences in some cores is poor, which could be
a result of subsequent river erosion and/or scouring by
transgressive processes. In addition, some factors including
high elevation in palaeotopography and sediment discharge
during MIS 5 seem to have been unfavorable for the
development of marine deposits (Wang and Tian, 1999; Wang
et al., 2008). For example, the marine sedimentary interval of MIS
5 is not observed in Liaodong Bay (Li et al., 2019) due to its high
elevation in palaeotopography (Wang et al., 2020).

During MIS 4, the sea level fell to ~80 to ~90 m below the
present sea level, and rivers developed in coastal areas (Chappell
et al., 1996; Liu et al., 2010). With the development of rivers, fluvial
processes further eroded late Quaternary strata in coastal to shelf
areas (Fagherazzi et al., 2008). The MIS 3 transgression along the
southwestern coast of the Bohai Sea occurred in early MIS 3, when
a tidal-flat environment developed on the southwestern coast of the
Bohai Sea. During middle MIS 3 to MIS 2, the lowered sea level
exposed the coastal to shelf areas, and a terrestrial environment
prevailed (Zhou et al., 2014; Liu et al., 2016).

A peat layer underlying DU 2 at a depth of 22.62 m yielded an
age of 8888 cal yr BP in this study, indicating a prevailing coastal
marsh sedimentary environment during 9000–8000 yr BP in the
Bohai Sea (Qin et al., 1990; Saito et al., 2000). Later, coastal marshes
were quickly inundated by seawater, and the sedimentary
environment changed from terrestrial (fluvial or lacustrine) to
coastal marine (Qiao et al., 2011). During the maximum Holocene
transgression, the western coastline of the Bohai Sea lay 50–90 km
west of the present coastline (Liu et al., 2016). The ages (including
OSL ages and AMS14C ages) and foraminiferal assemblages of DU
2 suggest that a marine transgression (i.e., M-1) occurred along the
southern Bohai Sea during the Holocene.

CONCLUSION

OSL dating and lithological of core YRD-1401 from the Yellow
River delta were used to establish the late Quaternary sedimentary
evolution of the southwestern coast of the Bohai Sea. The main
conclusions of the study are as follows:

(1) A weak transgression (dominated by tidal-flat deposits) is
inferred along the southwestern coast of the Bohai Sea during
early MIS 3 and was weaker than the transgression of MIS 5.

(2) The sea level during early MIS 3 is estimated to have ranged
from 26.8 to 19.87 m below the present sea level in the Bohai
Sea, which allowed seawater to enter the Bohai Sea via the
Miaodao Islands Uplift during this period.

(3) The measured luminescence ages and foraminiferal
assemblages indicate that M-3 was likely formed during
MIS 5 and that a tidal-river environment prevailed on the
southwestern coast of the Bohai Sea during MIS 6 or earlier.
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