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The Ediacaran–Cambrian period witnessed episodic extinctions, oxygenation

of seawaters, Cambrian explosions, and tectonic events. However, compared

with the various high-resolution geochemical records of the early–middle

Ediacaran and Cambrian, the available geochemical record of the latest

Ediacaran (551–542 Ma) is scarce (especially the strontium isotope and

elements), which leads to the ambiguous interpretation of the

paleoenvironment of the latest Ediacaran. Therefore, we conducted

measurements of strontium isotopes and elemental content of a continuous

series of carbonate samples from the Dengying Formation of Well PT1, located

in the Sichuan Basin, southeastern Tibetan Plateau, in order to constrain the

paleoenvironment of the latest Ediacaran. Strict sample screening was used to

ensure that the isotopes and elements were not affected by diagenesis. Our

analyses show that the environment and geochemical records of the seawater

were controlled by tectonic activities, especially the Gondwana assembly. The

global strontium isotope correlation indicates that the Sichuan Basin was a

restricted basin (high 87Sr/86Sr values, ~0.7090), which can be attributed to the

existence of a submarine high. Under the background of oxic environment,

there were two episodes of anoxic expansion. During the initial stage, the stable

terrigenous detrital input and oxic environment provided the prerequisite for

the emergence of aerobic organisms in the restricted platform. Then, the

decreasing sea level and intense tectonic activities improved the terrigenous

detrital input with higher 87Sr/86Sr values (~0.7095), which stimulated the

emergence of aerobic organisms, further resulting in the first episode of

anoxic environment. Lastly, a global transgressive resulted in a high sea level,

and thus, the Sichuan Basin changed to an open platform. The exchange with
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extensive oceans led to the increased paleoproductivity, which consumed

oxygen and nutrients, further resulting in the second episode of anoxic

environment. Thus, the restriction degree, eustatic variations, and the

terrigenous detrital input affected the biological evolution and redox

conditions.

KEYWORDS

strontium isotope, elements, paleoenvironment, Ediacaran Dengying Formation,
Sichuan Basin

Introduction

The earth has witnessed dramatic diversification of species,

episodic oxygenation of the atmosphere–ocean system,

extinctions, continental rearrangement, and break-up of the

supercontinent Rodinia during the Ediacaran–Cambrian (Fike

et al., 2006; Schiffbauer et al., 2014; Schiffbauer, 2016; Krause

et al., 2018; Zhang et al., 2018; Li et al., 2020). These geological

and biological events have been recorded by geochemical

signatures (Veizer et al., 1999; Anbar et al., 2007; Hardisty

et al., 2017; Zhang et al., 2018; Chang et al., 2019), especially

the stable carbon isotope (δ13C) and strontium isotopes (87Sr/
86Sr) (Zhu et al., 2006; Zhu et al., 2007b; Derry, 2010). There are

several prominent carbon isotope excursions during the

Ediacaran–early Cambrian (Zhu et al., 2006; Zhu et al.,

2007b). By contrast, there is no significant variation in the

δ13C record during the end Ediacaran (551–542 Ma) (Zhu

et al., 2007b).

During the latest Ediacaran (551–542 Ma), the δ13C values

remain stable without apparent excursions, and thus, the

sedimentary environment of the coeval seawater has been

ignored by previous studies (Zhao et al., 2009; Wei et al.,

2019). Actually, although the δ13C curve of the latest

Ediacaran indicates that there may be no predominant

geological and biological events (Zhu et al., 2007b), this

interval is the connection between the Neoproterozoic

Oxygenation Event (NOE) and episodic Cambrian explosions

(Chen et al., 2015; Zhang et al., 2018), which indicates the

importance of this interval. Previous studies have shown that

the characteristics of the seawater during the latest Ediacaran are

still ambiguous (Zhang et al., 2018). Although the Ediacaran may

represent the transition period when the redox condition

changed from anoxic to oxic state (Sperling et al., 2015;

Wood et al., 2015), the degree of oxidation and its

contribution to biological diversification are uncertain (Fike

et al., 2006; McFadden et al., 2008; Zhang et al., 2018).

Additionally, some studies have shown that the Ediacaran

seawater was the “aragonite seawater” with Mg/Ca values over

2 (Hardie, 1996, Hardie, 2003), while others proposed that the

characteristics of the Ediacaran seawater may provide the

precipitation condition for dolomite, indicating an

“aragonite–dolomite seawater” (Hood et al., 2011; van

Smeerdijk Hood and Wallace, 2012). Therefore, the

sedimentary paleoenvironment of the latest Ediacaran

(551–542 Ma) needs to be further restricted.

Geochemical records of chemical sedimentary rocks,

especially carbonates, have been widely used in reconstructing

the sedimentary paleoenvironment of the coeval seawater

(Brasier et al., 1994; Maloof et al., 2010; Schiffbauer et al.,

2017; Dodd et al., 2021). Although some burgeoning proxies,

such as clumped-isotope (Goldberg et al., 2021), iodine (Hardisty

et al., 2014), and nitrogen isotope (Chang et al., 2019), can

provide more paleoenvironment information of the

atmosphere–ocean system, there are still uncertainties and

multiple solutions in the application of these proxies (Anbar

et al., 2007; Hardisty et al., 2020). In this case, elements, stable

carbon isotopes (δ13C), and radiogenic strontium (87Sr/86Sr) are

still the most basic and reliable proxies for exploring the

paleoenvironment (Derry et al., 1994; Veizer et al., 1999; Zhu

et al., 2007b; Schiffbauer et al., 2017). There are many high-

resolution δ13C records in the latest Ediacaran globally, while the

high-resolution records of elements and 87Sr/86Sr are absent

(Halverson et al., 2007; Sawaki et al., 2010b; Zhang et al.,

2020; Guacaneme et al., 2021). The time of Sr residence in the

seawater (~2.4 Ma) (Jones and Jenkyns, 2001) is much higher

than that of the mixing of seawater (105 years) (Jacobsen and

Kaufman, 1999), leading to the global homogeneity of strontium

isotope composition (Paula-Santos et al., 2015). Thus, the

difference of 87Sr/86Sr values among several regions can help

analyzing the relative contribution of the global and local

paleoenvironment to geochemical records (Guacaneme et al.,

2021). However, as 87Sr/86Sr values of carbonates are susceptible

to the diagenesis, altered samples should be excluded (Marshall,

1992; Derry et al., 1994). Elements and their ratios not only can

reflect the paleoenvironmental fluctuations (Riquier et al., 2006;

Tribovillard et al., 2006; Algeo and Rowe, 2012; Algeo and Liu,

2020) but also can be used for determining the diagenesis

(Kaufman et al., 1991; Derry, 2010). Therefore, records of
87Sr/86Sr and elements are suitable for further restricting the

sedimentary environment during the latest Ediacaran

(~551–542 Ma).

The Ediacaran strata is widely distributed in the Sichuan

Basin, southeastern Tibetan Plateau, which is a suitable target for

exploring the Ediacaran paleoenvironment (Yang et al., 2017;

Hou et al., 2021; Wang et al., 2021). Therefore, we sampled Well

PT1 in the Sichuan Basin in order to restrict the
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paleoenvironment represented by the Ediacaran Dengying

Formation. Our specific objectives were: 1) to provide the first

set of high-resolution records of 87Sr/86Sr and elements for the

latest Ediacaran (~551–542 Ma) and 2) to determine the

paleoenvironmental significance of these geochemical proxies.

Geological setting

The Sichuan Basin, located in the southeastern margin of the

plateau, is controlled by the fracturing of the peripheral block and

tectonic movement of the basement (Li et al., 2019b; Liu et al.,

2021) (Figure 1A). During the Neoproterozoic period, the

Sichuan Basin belonged to the Yangtze platform (Meyer et al.,

2014; Cui et al., 2016), which developed over a rifted continental

margin that initiated along the southeastern side of the Yangtze

block at ~800 Ma (Condon et al., 2005; Zhang et al., 2005; Li et al.,

2019b; Liu et al., 2021). In the study area, the Neoproterozoic

succession can be divided into three intervals: preglacial

siliciclastic rocks, two Cryogenian glacial diamictite intervals,

and postglacial Ediacaran marine carbonates and shales (Zhu

et al., 2007a; Jiang et al., 2007). Furthermore, the Ediacaran

marine carbonates and shales can be divided into the

Duoshantuo Formation and Dengying Formation, respectively.

The age of boundary between the Duoshantuo Formation and

Dengying Formation (Zhu et al., 2007a; Jiang et al., 2007) and the

Dengying Formation and its overlying Cambrian formations is

551.1 ± 0.7 Ma and ~542 Ma, respectively (Zhang et al., 1998;

Jenkins et al., 2002; Condon et al., 2005; Zhang et al., 2005). The

Sichuan Basin evolved to an epicontinental clastic tidal flat, to a

confined platform, and then to an open platform with a gentle

slope from west to east (Meyer et al., 2014; Zhang et al., 2018).

According to the paleogeographic map, although the Sichuan

Basin was a carbonate platform, the sedimentary environment

was variable, including lagoonal facies, restricted platform, and

tidal flat (Figure 1B) (Li et al., 2013b).

After the pre-Ediacaran geosyncline of the Jinning Movement

and the Chengjiang Movement, the Yangtze quasi-platform began

to consolidate, indicating that the block had entered the stage of

platform development (Li et al., 2019b; Liu et al., 2021). The

Sichuan Basin received extensive and relatively thick carbonates

deposition represented by the Dengying Formation (Gao et al.,

2016; Liu et al., 2021), and subsequently, the Tongwan Movement

caused extensive uplift in the Sichuan Basin represented by the late

Dengying Formation (Liu et al., 2021). Based on the lithology, the

Dengying Formation is generally subdivided into four members:

the first, second, third, and fourth member of the Dengying

Formation (Deng–1, Deng–2, Deng–3, and

Deng–4 Formations) from the bottom to the top (Zheng et al.,

2021). The top of the Deng–2 Formation was subjected to a short

period of weathering and denudation due to the first episode of the

Tongwan Movement, leading to an unconformable contact

between the Deng–2 and Deng–3 formations. Additionally, the

second episode of the Tongwan Movement caused the overall

uplift of the upper Yangtze platform, which resulted in the

denudation of the Deng–4 Formation, further leading to an

unconformable contact between the Deng–4 Formation and

Cambrian strata (Qian et al., 2011; Hou et al., 2021).

Specifically, the lithology of the Deng–1 Formation is mainly

dolomite without fungus and algae, that of the

FIGURE 1
(A) Paleogeographicmap of the Yangtze Block showing the location of the Sichuan Basin andWell PT1 [modified after Zhang et al. (2018), Meyer
et al. (2014); Cui et al. (2016)]. (B) Paleogeographic evolution of the Sichuan Basin during the latest Ediacaran (551–542 Ma) (modified after Li et al.
(2013), and the profile position is shown in Figure 1A).
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Deng–2 Formation is algae-rich dolomite with snowflake-shaped

structures and microorganisms with no snowflake-shaped

structures, that of the Deng–3 Formation is mainly mudstone

and classics, and that of the Deng–4 Formation is mainly algal

dolomite and grey–black dolomitic mudstone (Qian et al., 2011;

Hou et al., 2021).

Samples, experiments, and data
presentation

Samples

A total of 118 carbonate samples of the Ediacaran Dengying

Formation were selected from Well PT1 for strontium isotopic

(46 samples) and elemental analyses (100 samples). Additionally,

according to the lithology and paleontological characteristics of

Well PT1, the carbonate samples belong to the Deng–2 Formation.

Because the overlying layer of the Deng–2 Formation of Well

PT1 is the Cambrian Yanjiahe Formation, it can be concluded that

the Deng–3 and Deng–4 formations have been eroded.

Experiments

About 100 mg (to 0.1 mg precision) of carbonate rock materials

were weighted into Savillex 7.5 ml Teflon-PFA vials and then were

dissolved on a hotplate at 80°C using 2.0 ml of 0.2 MHCl for 4 h. The

sample solution was cooled at room temperature for 1 h before

centrifugation for 8 min at 5,000 rpm. Then, the sample solution was

loaded onto the preconditioned resin columnwith 2ml of AG50W×

12 (200–400 mesh) for the separation of Sr from the sample matrix.

After rinsing four times with 0.5 ml of 2.5 M HCl, the column was

washedwith 7 ml of 5 MHCl. Afterward, the Sr fractionwas stripped

with 3.5 ml of 5 MHCl, and the Sr fractionwas evaporated to dryness

and was ready for the TIMS analysis. The Sr isotopic measurements

were performed on a Thermo Fisher Triton Plus multicollector

thermal ionization mass spectrometer at the Institute of Geology

and Geophysics, Chinese Academy of Sciences (IGGCAS). The mass

fractionation of Sr was corrected using an exponential law with 88Sr/
86Sr = 8.375209. The international standard sample NBS–987 was

used to evaluate instrument stability during the period of data

collection. During this time, the measured average value of

NBS987 was 87Sr/86Sr = 0.710,245 ± 0.000015, which is in good

agreement with the reported values (Li et al., 2016; Li et al., 2019a).

All samples were crushed into fine powders greater than

200 mesh size for elemental experiments. The major and trace

element concentrations were analyzed with a PANalytical MagiX

PRO wavelength-dispersive X-ray fluorescence (XRF)

spectrometer and Inductively Coupled Plasma Mass

Spectrometer (ICP-MS), respectively, at the Northwest Branch

of China Petroleum Exploration and Development Research

Institute.

Results

Strontium isotopes

The 87Sr/86Sr values of the 48 measured samples range from

0.708881 to 0.710167, with a mean value of 0.709242 (Figure 2A,

3A). Vertically, the 87Sr/86Sr curve fluctuates frequently. There is

a slow downward trend of the 87Sr/86Sr curve at the depth of

6,234–5,966 m, and the 87Sr/86Sr value decreases from

0.709300 to 0.708900. Then, the 87Sr/86Sr value increases

rapidly, and remains stable at ~0.709400 (5,956–5,796 m).

Finally, the 87Sr/86Sr curve shows a rapid drop at the depth of

5,796–5,711 m with values decreasing from 0.709500 to

0.708900.

Elements

The Sr contents are in a low level (~100 ppm) at the depth of

6,276–5,912 m and 5,866–5,726 m, and remain relatively higher

(400–500 ppm) at the depth of 5,906–5,876 m (Figure 2B). The

Mn/Sr values initially decrease from ~5 to ~2 at the depth of

6,276–6,206 m, and then remain stable at ~2 in the depth of

6,206–5,952 m (Figure 2C). Subsequently, there are large

fluctuations at the depth of 5,952–5,866 m, and the Mn/Sr

values range from ~0.5 to ~4. Finally, the Mn/Sr value

decreases from ~5 to ~1.5 at the depth of 5,866–5,726 m.

The CaO + MgO values share a similar trend of the Mn/Sr

values (Figure 2D). The redox sensitive trace elements (RSTEs),

including V, Cr, Co, and Ni, share a similar trend: initially

stable at low values and then increase at the depth of

5,932–5,866 m. Finally, there is a significant increase in the

trend of RSTEs at the depth of 5,800–5,700 m (Figures 3B–E).

The Al2O3 values are at a low level (<2%), and the fluctuation of

the Al2O3 curve is small on the whole (Figure 3F). At the depth

of 6,276–5,916 m and 5,866–5,834 m, the Al2O3 content is

almost invariable with the values of ~0.1%. By contrast, the

Al2O3 value is relatively higher at ~0.5% and at the depth of

5,906–5,876 m. The Al2O3 curve fluctuates relatively intensively

at the depth of 5,814–5,726 m, and shows higher values of

~0.5–2%. The TiO2 values are at a low level (~100 ppm), and the

trend of the curve is similar to that of the Al2O3 curve

(Figure 3G).

Discussion

Diagenesis

Diagenetic processes can change the primary geochemical

signatures of marine carbonates, further affecting the analysis of

the coeval seawater (Kaufman et al., 1991; Derry et al., 1994).

Elemental proxies have been widely used to evaluate the influence
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of later alteration, especially the diagenesis, on the geochemical

records of carbonates (Derry et al., 1994; Kaufman and Knoll,

1995). Although the traditional view is that critical values of

proxies can exclude the altered samples (Derry et al., 1994),

recent studies have shown that the comprehensive analysis of

stable isotopes and elements rather than on the use of a fixed

value is a more reasonable way to determine the diagenesis (Loyd

et al., 2012; Li et al., 2013a; Schiffbauer et al., 2017). In the present

study, the inner relationship and trend of multi-elemental

proxies were analyzed to evaluate the diagenesis.

FIGURE 2
Vertical profile of 87Sr/86Sr and elements which can determine the diagenesis. (A) 87Sr/86Sr; (B) Sr; (C) Mn/Sr; and (D) CaO + MgO.

FIGURE 3
Vertical profile of 87Sr/86Sr and elements which can reconstruct the paleoenvironment. (A) 87Sr/86Sr; (B) V; (C) Cr; (D) Co.; (E) Ni; (F) Al2O3; and
(G) TiO2.
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The loss of Sr and Na and the enrichment of Fe andMn occur

during deposition, especially under the influence of the

atmospheric water cycle (Derry et al., 1994; Kaufman and

Knoll, 1995; Azmy et al., 2011; Azmy et al., 2014). Therefore,

the Mn/Sr ratio can be used to determine whether geochemical

records of carbonates represent the original composition of

seawater (Derry et al., 1994). Generally, as diagenesis becomes

more severe, the Mn/Sr ratio increases and samples that have

maintained the original isotopic compositions of the seawater

usually have an Mn/Sr value <5 (Derry et al., 1994; Zhang et al.,
2020). In addition to the sample PT1-27 (5,842 m,Mn/Sr = 5.13),

Mn/Sr values of the remaining samples are less than 5, indicating

that these samples may maintain the primary geochemical

signatures (Figure 2C).

The Sr concentration of aragonite is <7,740 ppm in modern

seawater, that of high-magnesium (Mg) calcite is 400–5,000 ppm,

and that of protodolomite is 245–600 ppm (Baker and Burns,

1985). As shown in Figure 2B, based on the Sr content, samples

can be divided into two groups: group 1 (5,912–6,276 m and

5,726–5,872 m), having relatively low Sr contents (<200 ppm)

and group 2 (5,876–5,906 m), having relatively high Sr contents

(>350 ppm). Diagenesis can reduce the Sr content of carbonate

rocks to below 155 ppm (Javanbakht et al., 2018), so the Sr

concentration of 155 ppm may be a critical value for excluding

carbonates altered by diagenesis (Ren et al., 2019). Therefore,

group 1 seems to have undergone the diagenesis, and group

2 may maintain the primary geochemical signatures. However,

the Sr content of group 1 is extremely stable in intervals with

different dolomite contents, indicating that the diagenesis had no

prominent effect on the Sr content (Figure 2B). Actually, the Sr

content of the coeval carbonates in the Tarim Basin (Ediacaran

Chigebrak Formation) (~150 ppm) and the upper Yangtze

Xiaotan section (Ediacaran Dengying Formation Baiyanshao

Member) (<100 ppm) is also low (Li et al., 2013a; Zhang

et al., 2020), indicating that Sr content is not the result of the

diagenesis, but represents the original seawater composition,

which further proves that a fixed critical value is not effective

in some cases (Schiffbauer et al., 2017).

The samples with high purity (CaO + MgO concentrations)

represent the purist carbonates which contain original 87Sr/86Sr

signature (Li et al., 2013a). The (CaO + MgO) values of all

samples are more than 40%, and most of the samples are more

than 50%, indicating that the Dengying Formation carbonates of

Well PT1 were unaffected by the diagenesis (Figure 2D).

Additionally, the Rb/Sr ratio in cleaned carbonates has

generally lower values than altered carbonates. In the present

study, in addition to the sample PT1-27 (5,842 m, Rb/Sr = 0.16),

the Rb/Sr values of the remaining samples are in a low level

(Figure 4).

On the other hand, the relative relationship between these

proxies was also analyzed to further exclude the altered samples

(Burdett et al., 1990; Frank et al., 1997; Li et al., 2013a; Zhang

et al., 2020). The location of samples in cross-plots roughly

consisted with the division of samples which is based on the

Sr content (Groups 1 and 2) (Figure 2B; Figure 4). Although there

are good relationships between Mn/Sr and Sr (Figure 4B), CaO +

MgO and Sr (Figure 4C), Mn/Sr and CaO + MgO (Figure 4E),

and Rb/Sr and CaO + MgO (Figure 4F), which is presented by

high coefficient of determination (R2), the location of group 2 is

clearly far from the digenetic trend, indicating that these

carbonates were unaffected by the diagenesis. By contrast, one

sample (PT1–27, 5,842 m) deviates from the main cluster of

group 1 and has a diagenetic trend in relative to other samples,

indicating that it has been altered by the diagenesis (Figures

4B–E). The cross-plots of Rb/Sr vs Sr, CaO +MgO vs Sr, Rb/Sr vs

Mn/Sr, and Rb/Sr vs CaO + MgO indicates that the trend and

location of group 1 show no diagenetic processes (Figures

4A,C,D,F). However, the diagenetic trend of group 1 is shown

in the cross-plots of Mn/Sr vs Sr and Mn/Sr vs CaO + MgO. The

inconsistency can be attributed to the low Sr content (Li et al.,

2013a; Zhang et al., 2020). The low Sr content contributed to the

high Mn/Sr ratios, further showing a diagenetic trend. Due to the

low Sr content of seawater in the Sichuan Basin during the

Ediacaran (Li et al., 2013a; Zhang et al., 2020), the use of Mn/Sr

and Sr contents are obstructed. Therefore, it can be concluded

that Rb/Sr and CaO + MgO values are more applicative proxies

for determining the diagenesis in the present study.

Element constraints on the
paleoenvironment

Biological evolution may be related to the fluctuations of the

oxygen level in the ocean–atmosphere system, which shows the

significance of reconstructing the redox state of seawaters

(Hardisty et al., 2013; Liu et al., 2019; Wei et al., 2020; Dodd

et al., 2021). Although there are various proxies for

reconstructing redox condition, such as iodine (Hardisty et al.,

2017; Hardisty et al., 2020), molybdenum isotope (Siebert et al.,

2003), and chromium isotope (Gueguen et al., 2016), the redox-

sensitive trace elements (RSTEs) are the widely used and reliable

proxies (Tribovillard et al., 2006; Algeo and Tribovillard, 2009).

However, the use of bimetal RSTEs, especially U/Th, V/Cr, Ni/

Co, and V/(V + Ni), remains controversial (Algeo and Li, 2020;

Algeo and Liu, 2020). For example, V may precipitate in the form

of a stable sulfide if hydrogen sulfide is present, and Ni is related

to not only the redox but also the paleoproductivity (Tribovillard

et al., 2006), which may mask the true seawater environment. On

the other hand, the ratio of the two elements will eliminate the

true enrichment degree of the RSTEs. Therefore, in the present

study, the contents of RSTEs were applied in the reconstruction

of redox conditions instead of bimetal RSTEs. RSTEs tend to be

more soluble in water column under a more oxic environment

and enter into sediments under a more anoxic environment

(Tribovillard et al., 2006; Algeo and Tribovillard, 2009;

Tribovillard et al., 2012).
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Although the low contents of RSTEs shows that the marine

environment was oxic as a whole during the latest Ediacaran

(Figures 3B–E), two significant fluctuations of RSTEs indicate

that there were two anoxic events. The dynamic redox

condition is also supported by the δ238U data (Wood et al.,

2015; Zhang et al., 2018). The Fe speciation data from

Newfoundland in Canada, Ce anomaly data from the Nama

Group in Namibia, and Fe-S-C data from south China suggest

an anoxic environment in deep water settings during the late

Ediacaran (Darroch et al., 2015; Wood et al., 2015; Tostevin

et al., 2016). Thus, the redox condition inferred by the contents

of RSTEs indicates that the minimum oxygen zone existed in

the Sichuan Basin during the Ediacaran, and there were two

expansions of anoxic seawater (Figures 3B–E). Furthermore,

the previous study has shown that there was an extensive

marine anoxia during the terminal Ediacaran, which resulted

in the decline in the Ediacaran biota from ~550 Ma (Zhang

et al., 2018). Thus, fluctuations of the oxygen content may be

closely related to the decline and eventual disappearance of the

Ediacaran biota (Shen et al., 2008; Laflamme et al., 2013; Zhang

et al., 2018).

The immobile elements, such as aluminum, zirconium,

and thorium, are unaffected by weathering and diagenetic

processes, and, thus, are regarded as effective proxies for the

terrigenous debris input (Taylor and McLennan, 1985; Zhang

et al., 2000; Tribovillard et al., 2006). Al and Ti are principally

derived from aluminosilicate clay minerals, which are carried

to oceans by terrigenous influx (Hayashi et al., 1997;

Tribovillard et al., 2006). However, Al should not be used

in cases where marine carbonates are characterized by a low

detrital fraction, because excess Al may have been scavenged

as hydroxides coating biogenic particles (Kryc et al., 2003). In

the present study, the consistent trend of Al2O3 and TiO2

suggests that it is feasible to use Al2O3 to represent the

terrigenous detrital input (Figures 3F,G). According to the

vertical trend of Al2O3 and TiO2 values, the terrigenous

detrital input was generally stable (Figures 2B,C). However,

there were two episodes of high terrigenous detrital input,

which can roughly correspond to two relatively anoxic

intervals (Figure 3), indicating that there is a close

relationship between the terrigenous detrital flux and redox

condition. The terrigenous detrital flux is one of the sources of

marine nutrients which can supply the organisms (Chang

et al., 2019). In addition, the oxygen rise can stimulate

biological diversification (Knoll and Carroll, 1999; Chen

et al., 2015), and bioturbation and bioirrigation can affect

the oxygen exchange between the surface water and the water

column (Boyle et al., 2014). Therefore, during intervals of low

terrigenous detrital flux, the low input of nutrients (Figure 3),

such as phosphorus, indicate that less organisms demanded

FIGURE 4
Cross-plots of (A) Rb/Sr vs Sr, (B)Mn/Sr vs Sr, (C) CaO + MgO vs Sr, (D) Rb/Sr vs Mn/Sr, (E)Mn/Sr vs CaO + MgO, and (F) Rb/Sr vs CaO + MgO.
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less oxygen, leading to the depletion of the RSTEs due to the

oxic environment (Figure 3). By contrast, increased nutrients

supply stimulated marine productivity during intervals of

high terrigenous detrital flux (Figure 3), which led to high

oxygen demand on a short time scale (104 years), and this

process would have tend to increase the ocean oxygenation on

a long time scale (106 years) (Fike et al., 2006; Lenton et al.,

2014; Cui et al., 2016; Zhang et al., 2018), resulting in the

enrichment of RSTEs due to the anoxic environment.

On the other hand, there is a significant increase in the Sr

content at the depth of 5,906–5,876 m, which corresponds to

the interval of the first episode of high terrigenous detrital flux

and anoxic environment (Figures 2B, 3). In addition, the Sr

content of this interval resemble that of normal seawater,

while that of 6,276–5,912 m and 5,866–5,726 m is significantly

lower than that of normal seawater. However, the effect of

diagenesis on the Sr content has been excluded, and thus the

interval of low Sr content may indicate a local process. The

position of Well PT1 was located in the shallow carbonate

platform (Figure 1B), which includes lagoonal facies,

restricted platform, and tidal flat, which also suggest that

low Sr content may be the result of local processes. Thus,

the first episode of high terrigenous detrital flux and anoxic

expansion may be a local event, while the second episode may

be a global event.

87Sr/86Sr constraints on the
paleoenvironment

Strontium in oceans has two main sources (Palmer and

Edmond, 1989): 1) high-value strontium isotope from

continental weathered rocks (global mean value of 87Sr/86Sr is

0.7119) (Peucker-Ehrenbrink and Miller, 2006) and 2) low-value

strontium isotope supplied by hydrothermal exchange of mid-

oceanic ridge and hydrothermal alteration of seafloor basalt

(global mean value of 87Sr/86Sr is 0.7035) (Hofmann, 1997).

Additionally, the diagenesis can result in elevated 87Sr/86Sr

values, which can obscure the real 87Sr/86Sr signature (Derry

et al., 1994). For example, the global strontium isotope

composition of oceans during the Cambrian–Toyonian is

0.708,853–0.709,667 (Zhang et al., 2022), while the 87Sr/86Sr

value of coeval altered carbonates exceed 0.710,300 (Fu et al.,

2020). Due to the lack of high-precision 87Sr/86Sr records, the

strontium isotope composition of the Ediacaran seawater has not

been well-limited (Halverson et al., 2007; Sawaki et al., 2010a;

Guacaneme et al., 2021). Therefore, the identification of the

diagenesis and global comparison of 87Sr/86Sr values during the

interval presented by the Ediacaran Dengying Formation are

necessary.

Although altered samples have been excluded, the influence

of the diagenesis on the strontium isotope composition is still

FIGURE 5
Cross-plots of (A) 87Sr/86Sr vs Sr, (B) 87Sr/86Sr vs CaO + MgO, (C) 87Sr/86Sr vs Rb/Sr, and (D) 87Sr/86Sr vs Mn/Sr.
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evaluated in order to avoid possible interferences. As shown in

the cross-plots of 87Sr/86Sr vs Sr, 87Sr/86Sr vs Rb/Sr, and 87Sr/86Sr

vs CaO + MgO, there is no obvious correlation between these

proxies and 87Sr/86Sr (Figures 5–D), which is presented by the low

values of the coefficient of determination (R2), indicating that the

diagenesis unaffected the strontium isotope composition. The
87Sr/86Sr values and Mn/Sr ratios show a positive relationship,

which can be attributed to the low Sr content of the Ediacaran

seawater as previously mentioned (Li et al., 2013a; Zhang et al.,

2020). Thus, our high 87Sr/86Sr values can be used to restrict the

sedimentary environment of the Sichuan Basin during the

interval presented by the Deng–2 Formation.

The strontium isotope values of the latest Ediacaran

(551–542 Ma) in the present study (Figure 2A) are high in

both long and short scales (Figures 6A,B) (Derry et al., 1994;

Veizer et al., 1999; Halverson et al., 2007; Cui et al., 2020).

Moreover, the global correlation of the late Ediacaran 87Sr/86Sr

records show that in addition to the extremely high 87Sr/86Sr

values of the Xiaotan section in south China

(0.710,007–0.712,326) which has been attributed to the

diagenesis (Li et al., 2013a), the 87Sr/86Sr values of Well

PT1 are significantly higher than that of other coeval records

(Figure 2A), such as the low 87Sr/86Sr values of the Tsagaan

Oloom Formation in southwest Mongolia (0.70772–0.70869)

(Brasier et al., 1996), the Sete Lagoas Formation in the

Bambuí foreland Basin (0.707493–0.708663) (Guacaneme

et al., 2021), and Bambuí Group in southern São Francisco

(0.707332–0.708878) (Paula-Santos et al., 2015), and moderate
87Sr/86Sr values of the Chigebrak Formation in the Tarim Basin

(0.708464–0.708994) (Zhang et al., 2020), unit-4 layer in central

Iberia (0.70845–0.70875) (Valladares et al., 2006) and the

Dengying Formation in Gorges area, South China

(0.70835–0.70875) (Sawaki et al., 2010b; Wei et al., 2019)

(Figure 6C). These low 87Sr/86Sr values (<0.7085) have been

interpretated as the result of the local process rather than the

global signature, while moderate 87Sr/86Sr values (0.7085–0.7090)

have been regarded as the global signature (Paula-Santos et al.,

2015; Guacaneme et al., 2021). During the Ediacaran, the

Gondwana assembly and related marginal orogenesis caused

paleogeographic changes, which led to marine isolation and

unique geochemical characteristics (Li et al., 2008; Li et al.,

2013c; Wei et al., 2019). A modern case also indicates the

importance of tectonic activities on the geochemical

characteristics: the uplifts of the Himalaya and Tibetan

FIGURE 6
(A) Record ofmarine 87Sr/86Sr over the past 1,000 Ma (modified after Derry et al. (1994), Veizer et al. (1999) andHalverson et al. (2007); (B) record
of marine 87Sr/86Sr during the Ediacaran [the red line is from Sawaki et al. (2010b), and the yellow line is from Cui et al. (2020)]; (C) range of 87Sr/86Sr
values of the Dengying Formation and coeval other formations (the data of south China is from Li et al. (2013a) and Wei et al. (2019); the data of the
Tarim Basin is from Zhang et al. (2020); the data of central Iberia is from Valladares et al. (2006); the data of southwest Mongolia is from Braiser
et al. (1996); the data of the Bambuí foreland basin is from Guacaneme et al. (2021); the data of the southern São Francisco craton is from Paula-
Santos et al. (2015).
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Plateau increased the continental weathering rates, leading to

more input of radiogenic Sr isotope to oceans (Richter et al.,

1992). Furthermore, the seawaters of near-shore basins were

commonly flooded with continental freshwater with little chance

to exchange with global seawaters (Frimmel, 2009).

In the case of excluding the effect of the diagenesis, the

evidently high 87Sr/86Sr values of this study may be also the result

of local processes (Figure 2A), which is consistent with the

analyses of elements. Combined with the paleogeographic

information (Figure 1), it can be concluded that the

sedimentary environment of the Sichuan Basin may be

restricted during the latest Ediacaran, such as lagoonal facies

and restricted platform (Figure 1B). The high 87Sr/86Sr values also

suggest the relatively high terrigenous detrital input from

continental weathering (Peucker-Ehrenbrink and Miller, 2006;

Zhao et al., 2009), and reduced contribution of oceanic

hydrothermal sources to 87Sr/86Sr values (Hofmann, 1997).

During the late Ediacaran, the assembly of Gondwana was

still in process, indicating a period of intense tectonic

activities. Thus, the widespread continental collision caused

high topographic landscape, indicating intense continental

weathering (Richter et al., 1992; Li et al., 2008; Li et al.,

2013c). In addition, when the sea level falls, a large

continental area is exposed for weathering, resulting in the

increased supply of terrigenous material to the ocean (Palmer

and Edmond, 1989; Hofmann, 1997). Therefore, the intense

continental weathering and low sea level resulted in the

increased supply of terrigenous strontium to the Sichuan

Basin during the Ediacaran, further leading to high 87Sr/86Sr

values (Figure 2A).

FIGURE 7
Evolution of the geochemical records and paleoenvironment during the latest Ediacaran in the Sichuan Basin. (A) Stage 1; (B) stage 2; (C) stage 3;
and (D) stage 4.
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On the other hand, the Three Gorges area was also located in

the upper Yangtze Platform (Sawaki et al., 2010b; Zhang et al.,

2018; Wei et al., 2019), so carbonates of Well PT1 and the Three

Gorges area should share similar 87Sr/86Sr values due to the

homogeneity of strontium isotope composition (Jacobsen and

Kaufman, 1999; Paula-Santos et al., 2015). However, the

strontium isotope composition of the Three Gorges area

(0.70835–0.70875) is similar with the extensive oceans, while

that of well PT1 is higher than that of the extensive oceans. The

paleogeographic position of PT1 and Three Gorges area shows

that the position of Three Gorges area was closer to extensive

oceans than that of Well PT1 (Figure 1A) (Zhang et al., 2018).

Therefore, we inferred that there was a high submarine in the

Sichuan Basin, restricting the exchange of water between the

seawater of Sichuan Basin and the extensive oceans, which

resembles the case of the late Miocene Mediterranean marine

basin (Schildgen et al., 2014). In this case, due to the existence of

the high submarine, the input of the terrigenous debris into the

location of Well PT1 was more than that of Three Gorges area,

which led to more radiogenic Sr in the seawater of the location of

Well PT1. Thus, the 87Sr/86Sr record of the Three Gorges area of

south China can represent the global strontium isotope

composition (Valladares et al., 2006; Sawaki et al., 2010b; Wei

et al., 2019), while that in the Sichuan Basin was a local process.

The vertical fluctuations of the 87Sr/86Sr values may be

fundamentally controlled by the Gondwana assembly (Li et al.,

2008; Li et al., 2013c). The Gondwana assembly controlled the

continental exposure area and continental weathering intensity,

further affecting the terrigenous detrital input and driving the

restriction degree of the Sichuan Basin by controlling tectonic

uplifts. According to the vertical trends of elements and 87Sr/86Sr

values (Figure 2A), the sedimentary environment of the Sichuan

Basin during the latest Ediacaran can be divided into four stages.

During stage 1, the terrigenous detrital input was stable, which

presented stable TiO2, Al2O3, and Sr contents. Low Sr contents and

high 87Sr/86Sr values indicate the restricted exchange with extensive

oceans, and thus the Sichuan Basin is a restricted platform

(Figure 7A). The long-term oxic environment and nutrients

supply during stage 1 provided the prerequisite for the

emergence of aerobic organisms in stage 2. During stage 2, the

Gondwana assembly resulted in intense tectonic activity and low

sea level (more exposed area), further leading to the increased

terrigenous detrital input, which is presented by high 87Sr/86Sr

values (0.7093–0.7095) (Figure 7B). The increased terrigenous

detrital input stimulated the emergence of aerobic organisms,

which consumed the previously stored oxygen, leading to the

first episode of anoxic environment. During stage 3, the Gondwana

assembly was still in process (Li et al., 2008; Li et al., 2013c),

causing the continuous increase of the terrigenous detrital input.

However, the 87Sr/86Sr and Sr values decreased, which may have

resulted from global transgression. The rising sea level led to the

mixture of the seawater of the Sichuan Basin and extensive oceans,

further resulting in the decline of the 87Sr/86Sr values (Figure 7C).

The high sea level provided upwellings which carried enough

nutrients, stimulating the paleoproductivity. Thus, the increased

paleoproductivity consumed oxygen and nutrients, furthering

resulting in the second episode of anoxic environment in stage

4 (Figure 7D).

Conclusion

The determination of the effect of the diagenesis on

carbonates should depend on the relationships between

multiproxies, such as Mn/Sr, Rb/Sr, and Sr values, rather than

critical values of these proxies.

The records of element and strontium isotopes show the

tectonically induced strontium isotope and elemental changes in

the Ediacaran seawater. During the latest Ediacaran, the

Gondwana assembly was in process, which controlled the

continental exposure by regulating the sea level, further

affecting the terrigenous detrital input. Simultaneously, the

degree of the basin restriction was driven by the Gondwana

assembly by controlling tectonic uplifts and the sea level. The

terrigenous detrital input and the degree of the basin restriction

further affected oceanic organisms and redox conditions.

The paleoenvironment of the Sichuan Basin during the latest

Ediacaran can be divided in to four stages. During stage 1, the

stable terrigenous detrital input and oxic environment provided

the prerequisite for the emergence of aerobic organisms.With the

intense tectonic uplifts and the decreasing sea level caused by the

Gondwana assembly, the Sichuan Basin was more restricted

during stage 2. The increased terrigenous detrital input

stimulated the emergence of aerobic organisms, which

consumed the previous stored oxygen, leading to the first

episode of anoxic environment. During stage 3, a

transgression led to the mixture of the seawater of the

Sichuan Basin and extensive oceans. As a result, the Sichuan

Basin changed from a restricted platform to an open one. The

high sea level provided enough nutrients, which led to increased

paleoproductivity. Thus, the high paleoproductivity consumed

oxygen and nutrients, resulting in the second episode of anoxic

environment.
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