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Using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS),
the soluble organic matter was analyzed for the first time in twenty-two sediment samples
from the eastern slopes of the Gongga Mountain, China, at high altitudes between 4,600
and 6,700m. The C11-C33 n-alkanes and C9-C33 n-alkan-2-ones were identified in these
samples. Both compounds were dominated by odd carbon numbers in the long-chain
molecules and contained amaximum of n-C27 or n-C29, indicating that the sediments were
predominantly of higher plant origin. However, the short-chain n-alkan-2-ones, with a
maximum content of n-C17 or i-C18 (phytone, 6, 10, 14-trimethylpentadecan-2-one), did
not show a predominance of odd and even numbers, suggesting that they were
predominantly derived from bacteria and algae. Therefore, we suggest that the organic
matter in Gongga Mountain comes from three sources, i.e. bacteria, algae, and higher
plants. Stable carbon isotope (δ13C) values ranged from −24.6‰ to −27.3‰, indicating
that C3 plants were the dominant organic input to the sediments and suggesting a relatively
colder and drier depositional environment. However, C4 plants increase sharply at high
altitudes of 6,300–6,600m, suggesting that the paleoclimate of Gongga Mountain
became drier and wetter with the increase of altitude.
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INTRODUCTION

N-alkanes and n-alkan-2-ones are abundant in almost all plants and can account for more than 60%
of the epidermal lipids. Both of these organic compounds are relatively resistant to degradation after
plant decay (Poynter and Eglinton, 1991). These components can show signals of their presence in
the sediments (Jansen et al., 2008). Thus, the n-alkanes and n-alkan-2-ones can be particularly useful
as biomarkers for understanding the source of organic matter, and for tracking ecosystem changes
and reconstructing palaeo-vegetation (Nichols and Huang., 2007; Andreou and Rapsomanikis 2009;
Badewien et al., 2015; Li G. et al., 2018). For example, some indexes of long-chain n-alkanes reflect
the relative proportion of lower organisms such as bacteria, algae, and higher plants (Crausbay et al.,
2014; Wang et al., 2014; Bush and McInerney 2015; Howard et al., 2018). These indexes include the
n-alkane average chain length (ACL), the ratios of trees to grasses (n-C29/n-C31), the ratios of
∑n-C21-/∑n-C21+ in n-alkanes and a carbon preference index (CPI). In addition, the organic carbon
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isotope values (δ13C) can be used to estimate the relative
contributions of C3 and C4 plants, infer paleoclimate changes,
and to examine past primary productivity (France-Lanord and
Derry 1994). Consequently, we analyzed the biomarkers and the
organic carbon isotope values (δ13C) of surface sedimens along an
elevation transect on the eastern slope of Gongga Mountain,
ranging in elevation from 4,600 m to 6,700 m.

Some soil biomarkers may be useful tools for palaeo-
vegetation reconstruction (Didyk et al., 1978; Bai et al., 2020).
And while some relevant biomarker studies have previously been
done on low elevation soil samples from the Gongga Mountains
(Jia et al., 2008; Bezabih et al., 2011; Bai et al., 2011; 2020), the
studies on high elevation sediment samples are currently lacking.
The reason for this may be due to the fact that sampling becomes
much more difficult as the altitude increases. Our study aimed to
identify and understand the geochemical characteristics of high-
altitude ecosystems in the Gongga Mountain and to reconstruct
the local palaeo-vegetatio and track ecosystem changes by
measuring the carbon isotope composition and lipid
biomarkers in the sediments. Furthermore, in this study, we
used lipid biomarkers and δ13C analyses to determine how the
lipid biomarkers and carbon isotopes can be used to delineate the
source of organic matter and related processes.

SAMPLING AREA, SAMPLES AND
METHODS

Sampling Area and Samples
Gongga Mountain, is the highest peak (7,556 m a.s.l) in the
Hengduan Mountains. It is located approximately 30°N and
102°E in the middle and southern section of the Big Snow
Mountain Range and on the southeastern edge of the Tibetan
Plateau in Sichuan Province, southwest China. It is a unique
mountain in western China because it contains both modern
low-latitude glacial features and an integrated vertical vegetation
distribution ranging from subtropical forests to tundra. Compared
with other mountain ranges in China, before the Gongga Mountain,
the Gongga Mountain range still has an extensive area of primary
coniferous and deciduous forests to an elevation of 4,000 m. With a
vertical range of more than 6,300m along only 11 km of horizontal
distance, the eastward slope drops towards the Sichuan Basin in
southwestern China. The mean annual temperature is 4°C. The
annual rainfall is approximately 1938mm, and 85% of the rainfall
falls during May to October, according to the meteorological station
located 3,000 m above sea level (a.s.l) (Alpine Ecosystem
Observation and Experiment Station of Gongga Mountain,
Chinese Academic of Sciences). The regional climate is
characterized by typical monsoon patterns of temperature,
precipitation, and evaporation. This region is influenced by both
the Pacific and the Indian Ocean meteorological systems, which
bring southeasterly and southwesterly monsoons, respectively.
There are many special characteristics of the mountain ecosystem
and environment in the Gongga Mountain Region, including
tropical and subtropical cold-loving plant species (Luo et al.,
2015). The hottest months occur well within the rainy season,
from May to September, while evaporation peaks during the

sunny, pre-monsoon months (Thomas 1997, 1999). The eastern
slope of GonggaMountain, which is the transitional zone of the first
and second step in China, has disparate plant ecosystems at different
elevations (Thomas 1999; Zhong et al., 1999). Gongga Mountain is
therefore an area with very high biodiversity: approximately 2,500
plant species belonging to 869 genera and 185 families have been
identified in this region (Thomas 1999). However, the plant species
at high elevations (above the snowline) have not been reported. As a
result, selected study area is 4,600–6,700 m above sea level in a
typical ecosystem of Gongga Mountain east of the Tibetan Plateau
(Figure 1). In June 2012, 22 surface sediment samples (5–10 cm
above ground level) were collected from the eastern slope of the
GonggaMountain by removing the layers of snow, ice and litter. The
samples were collected over a period of 2 weeks. The altitude of each
sampling site was determined by using a GPS unit with an error of
±10m. Samples at each location were taken from three sub-samples
that were evenly mixed and bagged. These three sampling locations
were collected randomly within an approximate 10m radius using
an electric drill and metal shovel. All samples were wet, and each of
them was tightly sealed on site in polyethylene zipper bags. The first
bag was sealed in a second, “outer,” zipper bag to insure against
possible damage and leakage. Bagged samples were frozen
immediately after transit to the laboratory.

Analytical Methods
All sediment samples were dried at room temperature and crushed
to 100mesh. Powders were kept frozen at about −18°C until analysis.
An aliquot (~250 g) of each sample was Soxhlet-extracted with a
mixture of dichloromethane-methanol (93:7, v/v) for 72 h, and then
the extracts were separated into saturate, aromatic and polar
fractions by a glass chromatographic column packed with
activated silica gel and eluted by solvents of increasing polarity.
The details of the extraction and separation have been published
elsewhere (Wu et al., 2016). The fractions obtained were analyzed
using the full scan and the selected ion monitoring (SIM) modes.

FIGURE 1 | The vertical vegetation zonation and climatic conditions on
the eastern slope of Gongga Mountain, according to Zhong et al. (1999),
Thomas (1997) and Jia et al. (2008).
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A GC-MS/MS analysis was performed using a Hewlett-
Packard 7890 gas chromatograph (GC) coupled to a Hewlett-
Packard 7000B mass selective detector (MSD). The GC was fitted
with a HP-5 capillary column (30 m × 0.25 mm×0.25 μm,
Agilent, United States), based on a previous study (Wu et al.,
2016). The oven temperature was initially 80°C (1 min) and was
then increased to 290°C at a rate of 4°C/min and finally held at this
temperature for 30 min. Helium was used as the carrier gas at a
linear velocity of 28 cm/s, with a GC inlet temperature of 300°C
and the injector operating at a flow rate of 0.9 ml/min. The MSD
was operated with an ionization energy of 70 eV and a source
temperature of 230°C. Data were collected in full-scan mode and
scanned from 10 to 550 amu.

Organic carbon isotope analyses are carried out at Oil and Gas
Research Center, Northwest Institute of Eco-Environment and
Resources (Chinese Academy of Sciences). Firstly, dilute
hydrochloric acid was added to sediment sample to remove
inorganic carbon, and then the decarbonated and dried
sediment sample was analyzed using a Thermo Fisher MAT
253-Flash2000 mass spectrometer. Calibration measurements
were performed using a standard reference IAEA-600 (δ13C =
−27.77‰), with calculated standard deviations of less than 0.2‰
per 6 measurements resulting in δ13Corg (Coplen et al., 2006).

RESULTS

Total Organic Carbon Content and Its
Isotopes
The TOC contents of the samples range from 1.34 to 5.21% with
an average value of 2.99% (Table 1). In addition, the TOC content
showed a systematic variation with elevation, peaking in

sediments from an elevation of 5,100 m (Table 1). The δ13C
values range from −24.4‰ to −27.3‰ (Table 1), indicating that
C3 plants were dominant along the eastern slope of Gongga
Mountain (Wei et al., 2015).

Distribution of Aliphatic Hydrocarbons and
Alkanones
The distributions of n-alkanes and n-alkan-2-ones were
measured by mass chromatography of the fragment ions m/z
85 (Figure 2) and m/z 58 (Figure 3). These compounds were
identified by comparison of measured mass spectral data and
retention indices to published data (George and Jardine 1994;Wu
et al., 2012). The aliphatic hydrocarbon fraction consists mainly
of n-alkanes and isoprenoid alkanes (pristane (Pr) and phytane
(Ph)). Straight-chain alkanes are the most abundant
hydrocarbons in the extracts (Figure 2). The n-alkanes are in
the C11 to C33 range, with peaks of n-C27 or n-C29, and the
sediment samples studied show a uni-modal characteristic
distribution. The odd over even carbon number predominance
(OEP27) is significantly greater than 1.0 for all samples, ranging
from 3.29 to 6.27. The carbon preference index (CPI25–31) ranges
from 3.33 to 6.49, and the average chain length (ACL) ranges
from 27.37 to 28.33. In samples from elevations of 4,700 m,
5,400 m, 5,800 m, 5,900 m, 6,600 m, and 6,700 m, the Pr
content is higher than the Ph content, and the Pr/Ph ratios
range from 1.09 to 1.51. However, in other samples, the Ph
content is slightly higher than the Pr content, and the Pr/Ph ratios
range from 0.66 to 0.94 (Table 2 and Figure 4).

The n-alkan-2-ones range from C9 to C33 and are
characterized by bi-modal distributions with a higher relative
abundance of the higher-molecular-weight (HMW) homologues,
dominated by C27 or C29, and lower amount of short chain
n-Alkan-2-ones, dominated by n-C17 or i-C18 (phytone, 6,10,14-
trimethylpentadecan-2-one). The short chain components show
no strong odd/even carbon number preference; however, the long
chain components range from n-C23 to n-C33, with a strong odd/
even preference.

DISCUSSIONS

Vegetation Composition of the Study Area
and Depositional Conditions
The δ13C values of TOC in soils and sediments reflect the changes
of C4/C3 plant input ratios (France-Lanord and Derry 1994; Cayet
and Lichtfouse, 2001; Badewien et al., 2015). Typically, C3 plants
have δ13C values ranging from −20% to −32%, whereas C4 plants
have δ13C values from −9% to −17% (Denies, 1980; Farquhar
et al., 1989; Sukumar et al., 1993; Lim et al., 2010; Sun et al., 2012).
Yang, (2012) suggested that lower temperature and reduced
summer precipitation favoured C3 over C4 plant, i.e. C3 plants
dominated in cooler and drier conditions, whereas C4 plants
favoured warmer and wetter climates. To investigate the
paleoclimates and paleoenvironments on the east side of the
Tibetan Plateau, Southwest China, the δ13C values of the organic
matter in sediments were determined for the sediments along the

TABLE 1 | Results of TOC/δ13C(‰) analysis and calculated parameters of
samples at Gongga Mountain.

Sample# Altitude (m) TOC (%) δ13C(‰) (Das)

GGS-1 6,700 2.57 −25.2
GGS-2 6,600 2.13 −24.6
GGS-3 6,500 2.30 −24.4
GGS-4 6,400 2.08 −24.7
GGS-5 6,300 3.05 −24.7
GGS-6 6,200 3.11 −25.1
GGS-7 6,100 1.34 −25.4
GGS-8 6,000 2.57 −25.0
GGS-9 5,900 2.06 −25.2
GGS-10 5,800 1.46 −24.8
GGS-11 5,700 2.65 −25.4
GGS-12 5,600 3.23 −25.8
GGS-13 5,500 3.35 −26.2
GGS-14 5,400 3.85 −25.5
GGS-15 5,300 4.59 −26.1
GGS-16 5,200 3.91 −26.4
GGS-17 5,100 5.21 −26.0
GGS-18 5,000 2.68 −25.8
GGS-19 4,900 2.87 −25.9
GGS-20 4,800 3.59 −25.1
GGS-21 4,700 3.30 −27.3
GGS-22 4,600 3.77 −26.1

TOC, total organic carbon.
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eastern slope of Gongga Mountain. As shown in Table 1 and
Figure 4, these values range from −24.6‰ to −27.4‰; the lower-
altitude sediments had lower δ13C values, while sediments from
6,300–6,600 m had higher δ13C values of −24.7‰, −24.7‰,
−24.4‰ and −24.6‰, respectively. These results indicate that
C3 plants were likely important contributors to organic
compounds in the sediments. Therefore, in general, the
climate was probably cold and dry along the eastern slope of
Gongga Mountain. The results also showed that the lower-
altitude sediments had lower δ13C values, suggesting that the
more terrigenous C3 plants dominated at lower altitudes. In
addition, the δ13C values of organic matter in sediments
tended to be positive with increasing altitude. From this
phenomenon, we speculated whether some amount of C4

plants could have been present. If C4 plants are present, then
a temporary warming and wetting of the palaeoclimate at
6,300–6,600 m may have occurred. (Sukumar et al., 1993; Liu
et al., 2005; Xue et al., 2014). However, its cause needs to be
further investigated.

The n-alkanes were dominated by n-C27 or n-C29 with a single
peak distribution (Figure 2). OEP27 was significantly greater than
1.0 for all samples (ranging between 3.29 and 6.27). Furthermore,
at 4,600, 4,800, 5,200, and 5,500 m, the distribution of n-alkanes
in the sediments showed a clear odd-numbered dominance,
suggesting a dominant contribution from higher plants, but
also a small input of algae (Lichtfous et al., 1994). In addition,
no significant correlation was found between the Pr/Ph ratio and

altitude. In samples from elevations of 4,700, 5,400, 5,800, 5,900,
6,600 and 6,700 m, the Pr/Ph ratios range from 1.09 to 1.51,
indicating weakly oxic depositional conditions. However, in other
samples, the Ph content is slightly higher than the Pr content, and
the Pr/Ph ratios range from 0.66 to 0.94 (Table 2 and Figure 4).
These results are indicative of a suboxic reductive environment
(Hughes, Holba, and Dzou. 1995; Rontani et al., 2013).

Relationship Between δ13C Values and
Altitude, Temperature and Humidity
The change in δ13C value of TOC varied between −24.6‰ and
−27.3‰from 4,700 m to 6,700 m above sea level on the eastern
slope of Gongga Mountain (Table 1). Linear regression analysis
showed that δ13C values of sediments were positively correlated
with altitude (Figure 5). The changes in δ13C value and altitude
were characterized by an abrupt fall from 4,600 to 4,700 m,
followed by an abrupt increase at 4,800 m. Then, the values
were rather stable between 4,900 m and 6,200 m, followed by
an moderate increase from 6,300 m to 6,600 m (Figure 4, 5).

The stable carbon isotope values (δ13C) of sediments in
Gongga Mountain ranged from −24.6‰ to −27.3‰, indicating
that C3 plants were the main organic inputs to the sediments
(Vogts et al., 2009). The increase in C3 plants from low altitude to
high altitude in Gongga Mountain was suggested to reflect the
influence of decreasing temperature. Thus, the general trend
showed a relatively drier and colder sedimentary environment

FIGURE 2 | Distributions of n-alkane in the sediment samples from Gongga Mountain.
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with the increase of altitude. However, there was a sharp increase
of C4 plants from 4,700 m to 4,800 m, and a mild increase of C4

plants from 6,300 m to 6,600 m. This phenomenon reflected that
there may be a temporary warming trend in the altitude range of
4,700 m to 4,800 m and 6,300 m to 6,600 m. The cause of this
phenomenon need to be considered in future studies.

Molecular Abundance, Distribution, Origin
and Potential Significance of n-Alkanes
n-Alkanes are widely present in plants and other organisms. The
source of organic matter can be traced through the distribution
characteristics of n-alkanes because different biological sources of
n-alkanes possess different distribution characteristics. Previous
studies showed that n-alkanes from lower organisms range from
n-C15 to n-C20, often with n-C17 or n-C19 as the dominant
compounds and without an obvious odd-over-even preference
(Eglinton and Hamilton 1967). In contrast, long-chain n-alkanes
are mostly derived from epicuticular waxes of leaves from
vascular higher plants (Meyers 1997; Fang et al., 2014; Cortina
et al., 2016). In addition, woody plants display n-alkane
distributions dominated by C27 or C29 n-alkanes, whereas
grasses produce distributions dominated by the C31 n-alkane
(Li et al., 2016). Hence, n-alkane distribution patterns can be used
to estimate changes in vegetation types (Al-Aklabi et al., 2016).
Modern organic geochemistry of molecules shows that the ratio

∑n-C21
-/∑n-C21

+ reflects the proportion of lower organisms,
such as bacteria and algae relative to higher plants (Li G.
et al., 2018). In this study, the n-alkane carbon numbers range
from C11 to C33 with maxima at n-C23 to n-C31 (Figure 2) and
exhibit a unimodal distribution. The main peaks of unimodal
distribution are at n-C27 or n-C29, and the long-chain n-alkanes
had odd-carbon-number predominance, indicating that they
were mainly derived from terrestrial higher plants. As shown
in Table 2, the ratio ∑n-C21

-/∑n-C21
+ ranged from 0.07 to 0.29

(average 0.64), also suggesting that higher plants were the main
source of organic matter to sediments at elevations from 4,600 m
to 6,400 m.

The n-alkane CPI in sediment is also an indicator of the
sources of organic matter (Collister et al., 1994; Routh et al.,
2014). Hydrocarbons composed of a mixture of compounds
originating from land plant material show a predominance of
odd-numbered carbon chains with CPI = 5–10 (Eglinton and
Hamilton 1967; Collister et al., 1994; Bi et al., 2005; Duan and Xu
2012), whereas anthropogenic and reworked materials have low
CPIs of approximately 1.0 (Bray and Evans 1961; Mille et al.,
2007). CPI values close to 1.0 are also thought to indicate a greater
input from marine microorganisms and/or recycled organic
matter (Bi et al., 2005). High-molecular-weight n-alkanes in
these sediment samples range from n-C23 to n-C33, with the
most abundant being n-C27 and n-C29. A clear predominance of
odd-carbon-number compounds is exhibited, as indicated by the

FIGURE 3 | Distributions of n-alkane-2-ones in the sediment samples from Gongga Mountain.
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carbon preference index (CPI25-31: 3.33–6.49, average: 5.32;
OEP27: 3.80–6.25, average: 5.22) (Table 2), typical of a
terrestrial leaf wax and higher plant source. This strong odd-
over-even predominance indicates that the source of the
n-alkanes in the sediments was terrestrial higher plants. On
the other hand, the CPI values seem to be related to elevation.
For instance, with the exception of sample GGS-7 (6,100 m), the
CPI values from low elevation samples were higher than those
samples from a high elevation. These results showed that the
whole slope of GonggaMountain was dominated by higher plants
and withmicrobial footprints (Howard et al., 2018). Furthermore,
as seen in Table 2, CPI values for samples from lower altitudes
below 6,000 m ranged from 4.23 to 6.49 with an average of 5.56,
indicating that n-alkanes are more often synthesized by
higher plants, while CPI values for samples from higher
altitudes above 6,000 m ranged from 3.33 to 5.99 with an
average of 4.95, indicating that bacterial fingerprints increase
with altitude.

Molecular organic geochemistry has also demonstrated that
the n-C29/n-C31 ratio of n-alkanes is indicative of the relative
proportion of woody plants to grassy plants (Meyers 1997; Ficken
et al., 2000; Li G. et al., 2018). The C29 n-alkanes dominate the
sediments and have little variability, indicating that trees
dominated Gongga Mountain and that the climate was
relatively stable. The ratio of the C29 n-alkane to C31 n-alkanes
for all samples varied between 4.94 and 1.76, with a relatively wide
range and smaller values at lower altitudes (Table 2), indicating a
relatively warm and humid climate at lower altitudes. This is due
to the fact that as the ratio of C29/C31 becomes smaller, C31, which
represents grassy plants, gradually increases, indicating that
grassy plants multiply vigorously as they prefer a relatively
warm and humid climate to grow in. In addition, a high ratio
of these alkanes indicates a change from a humid to an arid
climate. As shown in Table 2, the average ratio of n-C29/n-C31

tends to be high (3.6 > 1) for all samples, indicating that the
deposition of the top section between approximately 4,600 m to

TABLE 2 | Altitude and biomarker parameters of the sediment samples along eastern slope of Gongga Mountain.

Sample Altitude
(m)

n-Alkane Isoperiod n-alkan-one

CPIa25–31 OEPb
27 C21-/

C21+

C29/
C31

ACLc Pr/
Ph

Pr/
nC17

Ph/
nC18

CPIa25–31 OEPb
27 C21-/

C21+

C29/
C31

GGS-1 6,700 4.87 4.67 0.13 4.34 27.69 1.51 0.55 0.34 2.86 3.35 0.12 1.47
GGS-2 6,600 5.07 4.93 0.18 4.04 27.76 1.17 0.48 0.51 3.04 3.63 0.13 1.51
GGS-3 6,500 4.86 4.80 0.16 3.55 27.73 0.67 0.48 0.63 2.89 3.43 0.16 1.42
GGS-4 6,400 5.44 5.03 0.21 3.93 27.86 0.92 0.47 0.45 3.10 3.91 0.20 1.42
GGS-5 6,300 5.34 5.32 0.15 4.17 27.67 0.96 0.42 0.45 2.78 3.40 0.15 1.53
GGS-6 6,200 5.99 5.51 0.10 3.80 27.83 0.84 0.40 0.44 3.07 3.80 0.10 1.49
GGS-7 6,100 3.33 3.29 0.16 4.16 27.37 0.92 0.43 0.51 2.99 3.74 0.25 1.88
GGS-8 6,000 5.37 5.19 0.07 5.52 27.75 0.82 0.49 0.56 3.31 4.15 0.13 1.52
GGS-9 5,900 5.60 5.60 0.06 4.94 27.69 1.55 0.75 0.56 3.15 3.76 0.08 1.51
GGS-
10

5,800 4.79 4.45 0.12 4.35 27.61 1.09 0.54 0.46 3.13 3.83 0.08 1.77

GGS-
11

5,700 4.23 3.80 0.29 3.16 27.64 0.96 0.44 0.50 3.18 4.26 0.22 1.70

GGS-
12

5,600 5.48 5.65 0.16 4.31 27.59 0.86 0.47 0.52 3.80 5.13 0.15 1.97

GGS-
13

5,500 6.23 6.27 0.10 3.26 27.87 0.85 0.65 0.59 3.34 4.11 0.10 1.63

GGS-
14

5,400 4.54 4.41 0.15 3.60 27.56 1.17 0.46 0.47 3.06 3.71 0.12 1.82

GGS-
15

5,300 6.45 6.05 0.16 2.85 28.05 0.68 0.39 0.51 3.68 4.27 0.13 1.61

GGS-
16

5,200 6.36 6.25 0.12 2.96 27.92 0.77 0.43 0.56 3.43 4.43 0.16 1.54

GGS-
17

5,100 5.52 5.28 0.15 2.65 27.80 0.94 0.42 0.48 3.48 4.39 0.12 1.88

GGS-
18

5,000 5.24 5.59 0.08 2.03 27.75 0.69 0.46 0.48 3.43 4.09 0.12 1.38

GGS-
19

4,900 5.45 5.58 0.13 4.30 27.59 0.66 0.45 0.67 3.35 4.13 0.14 1.40

GGS-
20

4,800 6.25 6.02 0.14 1.76 28.08 0.82 0.42 0.55 3.50 4.04 0.28 1.42

GGS-
21

4,700 5.46 4.96 0.10 2.27 28.14 1.15 0.50 0.65 3.47 4.00 0.28 1.42

GGS-
22

4,600 6.49 6.21 0.15 1.92 28.33 0.61 0.45 0.55 3.50 4.02 0.28 1.41

aCPI25–31 = 0.5×[(C25 + C27 + C29 + C31)/(C24 + C26 + C28 + C30)+(C25 + C27 + C29 + C31)/(C26 + C28 + C30 + C32)].
bOEP27=(C27+6C29 + C31)/4(C28 + C30).
cACL = [25(C25)+27(C27)+29(C29)+31(C31)+33(C33)]/(C25 + C27 + C29 + C31 + C33).
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6,700 m occurred under relatively continuous humid climate
conditions.

Another useful parameter from the n-alkane distribution is the
average chain length (ACL), which has been suggested to change
with plant types. Woody plants display n-alkane distributions
dominated by the C27 or C29 n-alkanes, whereas grasses have
distributions dominated by the C31 n-alkane (Gamarra and
Kahmen 2015; Li et al., 2016). The average ACL is 29.5 for
grass, 28.4 for reeds and 27.9 for tree leaves (Duan and Xu 2012).
Therefore, grasses usually have high ACL values relatively to
those of trees. In our results, samples from elevations of 4,600,
4,700, 4,800, and 5,300 m had ACL values of 28.33, 28.14, 28.08
and 28.05, respectively, while samples from 4,900 m to 6,700 m
had ACL values from 27.37 to 27.87 (Table 2 and Figure 6),
which are in the range of tree leaves (Duan and Xu, 2012),

indicating that woody plants were the main vegetation. In
addition, a plot of ACL27-31 vs. altitude (Figure 6) showed
that a quadratic relationship exists between these two
variables, with lower ACL27-31 values occurring at mid
altitudes and higher values occurring at low and high
altitudes. The n-alkane ACL27-31 values reach a minimum in
samples from 6,100 m, and the intermittent decrease in ACL in
samples from 6,100 m may indicate a temporal increase in
merged C4 plants. These results also suggest that the region
underwent a relatively cold and wet climate because plants in
colder/wetter areas have lower ACL27-31 values than those in
warmer/drier areas (Zhou et al., 2005; Bush andMclnerney 2013).
Furthermore, the n-alkane mean chain length ACL27-31 ratio
gradually decreased and the n-alkane (C29/C31) ratio gradually
increased as altitude increased from 4,600 m to 6,100 m (ACL27-

FIGURE 4 | Variation of CPI25-31, OEP27, C21-/C21+, C29/C31, Pr/Ph, Pr/nC17, Ph/nC18, and δ13C of n-alkane and n-alkan-2-one in the studied samples.

FIGURE 5 | Plot of δ13C versus altitude for the analyzed sediment
samples from Gongga Mountain in the Sichuan Basin.

FIGURE 6 | Altitudinal variations of ACL27–31. ACL27–31 is calculated
from weighted-mean chain length of C25, C27, C29, C31 and C33 n-alkanes.
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33: 27.37–28.33, average: 27.79 and C29/C31: 1.76–5.52, average:
3.54) (Table 2 and Figure 6), indicating an increase in woody
plants, which produce a large proportion of the C27 and C29

n-alkanes. This pattern can be best explained in terms of
vegetation; that is, woody plants dominate the paleosols, and
grasses have less influences, especially near 6,000 m. The increase
in the C29/C31 ratio from 4.94 to 5.52 with some oscillations in
samples from 5,900 to 6,000 m is possibly caused by a decrease in
grasses, which produce large proportions of the C29 n-alkane
(Zhou et al., 2005). In contrast, the C29 n-alkanes dominate the
sediments from 5,900 to 6,000 m and biomarkers vary with
relatively greater amplitudes and at a higher frequency,
indicating that woody plants were dominant and that
relatively wetter conditions prevailed during these altitudes.
This results in a slightly different conclusion than those drawn
from other parameters: i.e., the climate became wetter and colder
at 6,100 m. The explanation for this discrepancy needs to be
further explored.

Distribution Characteristics and Possible
Source of n-Alkan-2-ones
n-Alkan-2-ones are commonly observed lipid components of
sediments from Gongga Mountain. In all samples, the n-alkan-2-
ones range fromC9 toC33 and have a bimodal distribution (Figure 3).
Lower-molecular-weight (LMW) n-alkan-2-ones (C9-C21), which
reach maximum values at n-C17 or i-C18, dominant samples from
4,600m to 6,700m, while higher-molecular-weight (HMW) n-alkan-
2-ones (C23-C33), with a mode at C27 or C29, dominate in all samples.
Their ∑n-C21-/∑n-C21+ ratios and the carbon preference indices of
the HMW (C23-C33) n-alkan-2-ones (CPI) sensitively reflect the
variations in the sediment ecosystem response, also indicating that
the organic matter in this sediment was derived from terrestrial
herbaceous plants, but was probably reworked by bacteria.

In some studies, n-alkan-2-ones that have a close resemblance
to the terrigenous n-alkane distributions have led several authors
to propose that microbial oxidation of n-alkanes is the source of
n-alkan-2-ones, with β-oxidation of fatty acids followed by
decarboxylation as an alternate pathway (Volkman et al., 1981;
Albaiges, Algaba, and Grimalt 1984; Lehtonen and Ketola 1990;
Nichls and Huang 2007). In GonggaMountain sediment samples,
the n-alkan-2-one distribution appears to result from the mixing
of two populations of compounds: the long chain components
(C23-C33), which have a strong OEP, and the short chain
components (C9-C22), which have no OEP (Table 2 and
Figure 3). The distribution of n-alkanes in all samples is
analogous to that of the n-alkan-2-ones (Figure 2 and
Figure 3), with a long-chain alkane OEP and a short-chain
alkane with no OEP, indicating that n-alkan-2-ones originated
from microbiological subterminal oxidation of n-alkanes
(Cranwell, Eglinton, and Robinson 1987; Lehtonen and Ketola
1990). The dominance of the C29 homologue in both the HMW
n-alkanes and the n-alkan-2-ones throughout the sediments
suggests that the oxidation of n-alkanes is the favorable
pathway (Chen et al., 2019).

Furthermore, the C29/C31 and C21-/C21+ ratio curves of
n-alkanes and n-alkan-2-ones essentially parallel each other,

with higher values present in samples from 5,700 m to
6,100 m, suggesting the n-alkan-2-ones may be formed from
the microbial oxidation of the corresponding n-alkanes, as
previously proposed (Albaiges, Algaba, and Grimalt 1984;
Nichls and Huang. 2007; Wu et al., 2012).

In addition, Figure 7 shows a ternary diagram for the same
three n-alkanes and n-alkan-2-ones (C27, C29 and C31) from the
eastern slope of Gongga Mountain; there are two recognizable
clusters in these samples. The n-alkanes cluster plots are close to
the region that characterizes wood plants. However, the n-alkan-
2-ones cluster plot near the position characterized by grasslands.
This difference can best be explained in terms of vegetation; that
is, trees dominate the components of the sediment samples, with
some increase in the contribution of grasses during the warm
stages.

CONCLUSION

The n-alkanes and n-alkan-2-ones were analyzed in sediment
samples from Gongga Mountain, Sichuan Basin, on the
southeastern edge of the Tibetan Plateau, southwest China.
The n-alkanes and n-alkan-2-ones were from a mixed source
of bacteria, algae and terrestrial higher plants, and were mainly
derived from terrestrial higher plants.

The C9-C21/C23-C33 ratios and the carbon preference indices
of the HMW (C23-C33) n-alkan-2-ones (CPI) of the samples
sensitively reflect the variation in the sediment ecosystem’s
response to climate. The CPI and ACL values of n-alkanes in
sediments from low latitudes were higher than those from high
latitudes. The CPI and ACL values for different climate zones can
also indicate the variation in the sediment ecosystem’s response
to climate.

FIGURE 7 | Ternary diagram for C27, C29 and C31 n-alkane and n-alkan-
2-one in the studied samples.
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The stable carbon (δ13C) analyses of the sediments showed
that the biomes in the study area were dominated by C3 plants
through paleosol cycles and cold and dry climatic conditions
existed in the past.
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