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Slope-stability assessment involves the location of the critical slip surface and the
corresponding factor of safety (FOS). Considering force-vector characteristics, the
vector sum method was further studied based on the strength reduction definition of
the FOS and stress field of slope, and the FOS can be calculated directly by the force limit
equilibrium equation on the global sliding direction of the slope. For the sliding direction, it is
rigidly proved to be determined only by the sliding shear stress along the slip surface based
on the principle of minimum potential energy. Then, two examples with fixed slip surfaces
were analyzed and the results were compared with the rigorous Morgenstern–Price
method. Finally, two examples from the literature are investigated for searching the
critical slip surface using the proposed method and a real-coded genetic algorithm.
The calculated results revealed the rationality of the proposed method for both fixed slip
surfaces and critical slip surfaces from the literatures in slope stability assessment. This
proposed method provides a new path to assess the slope stability, which is worth to be
further studied in practical engineering.
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1 INTRODUCTION

The slope problem generally involves how to define the factor of safety for a specific slip surface and
locate the critical slip surface associated with the minimum factor of safety (FOS). Presently, there are
mainly two types of definitions of FOS for a specific slip surface. One is the strength reduction
definition based on the concept of limit equilibrium, in which the FOS is the factor by which the shear
strength of soil would have to be divided to bring the slope to the state of limit equilibrium (Duncan,
1996; Zheng et al., 2006; Cheng et al., 2007), and the other is the overloading definition, in which the
FOS is calculated based on the normal and shear stresses along the slip surface (Zou et al., 1995; Kim
and Lee, 1997). Several methods based on both the aforementioned definitions are widely used in
practical engineering such as the limit equilibrium method (LEM) (Huang and Tsai, 2000; Chen,
2003; Hamdhan and Schweiger, 2013), the finite element method (FEM) (Shen and Karakus, 2014),
and limit analysis method (LAM). Compared with the overloading definition of FOS, the strength
reduction definition of FOS is more popular in slope stability assessment, such as the strength
reduction technique by the finite element method and limit equilibrium method.

Based on the inherent vector characteristics, the vector summethod was first put forward in 2008 (Ge,
2008) and the FOS was defined as the ratio of the total resisting force to total driving force in the global
sliding direction. In the past few years, thismethod has been developed from the stress field of the slope, the
determination of the global sliding direction, and the definition of FOS. For the stress field to assess the
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slope stability with the vector summethod, the finite elementmethod,
the independent cover-based manifold method (Liu et al., 2017), the
discontinuous deformation analysis (Fu et al., 2017), and the
numerical manifold method were used. For the global sliding
direction, the resisting shear stress along the slip surface was
utilized based on the knowledge of the sliding failure mechanism
in practical engineering (Ge, 2008), and recently, it was theoretically
deduced based on the principle of minimum potential energy (Guo
et al., 2019).

In this study, the vector sum method was further studied
based on the strength reduction definition of FOS in slope
stability assessment. For the global sliding direction, it is
theoretically proved to be determined only by the sliding
shear stress along the slip surface based on the principle of
minimum potential energy. For the slope stability assessment
with the proposed method, this study emphasizes the critical
slip surface using the proposed method, and two examples
studied in previous works were further analyzed by searching
the critical slip surfaces. The calculating results demonstrate
the rationality of the proposed method in slope stability
assessment.

2 VECTOR SUM METHOD

Compared with the finite element strength reduction technique and
the limit equilibrium method, the vector characteristics of force were
considered in the proposed method, which is the highlight of the
vector sum method. Because of the vector characteristics of force,
there are two key issues in the vector sum method, the global sliding
direction, and the expression of the safety factor. Therefore, how to
rationally define the global sliding direction and the expression of the
FOS determined the rationality and scientificity of the vector sum
method.

Right now, the global sliding direction can be rigorously
determined by the total sliding shear stress along the slip surface
using the principle of minimum potential energy. On the basis of the
strength reduction definition of the safety factor widely used in

practical engineering, the vector sum method was further studied
as explained in the following sections.

2.1 Global Sliding Direction
The moment the potential energy of a slope changes to a relative
minimum, it will have a stationary value, which offers the
mathematical method to obtain the global sliding direction of the
slope. Therefore, the global sliding direction of the slope can be
theoretically determined by the principle of minimum potential
energy.

For a 2D simple slope (Figure 1), the force balance equation can
be expressed asEq. 1, here, b is just the unit weight of the simple slope
and σM is the plane stress at the point M on the slip surface.

∫
V
bdv � ∫

L
σMdL (1)

When the slope is about to slide, it can only slide along the
potential slip surface because of the restriction of bedrock.
Assuming the global sliding direction is d, the displacement of
the slope can be expressed as Eq. 2.

ds � d − dn � d − dnn (2)
Therefore, when the displacement of the slope is ds, the change

of potential energy can be given by:

Π � Π0 + ∫
S
σM · dsdS (3)

Then, the first-order variation can be written as

zΠ

zd
� 0 (4)

Eq. 4 can also be considered as:

z

zθ
∫

S
σM · dsdS � 0 (5)

where θ is the sliding angle defined anticlockwise from the axis X
to the global sliding direction.

Finally, the global sliding angle θ can be deduced and
simplified as Eq. 6 (Guo et al., 2019).

tan θ � ∫
l
nxnyσMx + (n2y − 1)σMydl

∫
l
nxnyσMy + (n2x − 1)σMxdl

(6)

where σMx and σMy are the components of σM on the axes X and
Y, respectively. nx and ny are the components of the unit
direction n on the axes X and Y, respectively. From Eq. 1, it
can be concluded that the global sliding direction can be
theoretically determined by the stress state and the shape of
the slope.

2.2 The Safety Factor Based on Strength
Reduction Technique
Because of the strength decrease of the soil, the potential sliding body
can gradually fail from the normal stress state, as shown in Figure 2.

FIGURE 1 | Sketch of a simple slope.
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At the critical stress state, the total resisting and driving forces should
be equal along the global sliding direction, and the force equilibrium
equation can be established by Eq. 7.

∫
l
(σ ′

τc + σ ′nc)•(−d)dl � ∫
l
(στc + σnc)•(d)dl (7)

where σnc and στc are the driving normal and shear stresses,
respectively, at the critical state at any point on the slip surface,
and correspondingly, σ′nc and σ′τc are the resisting normal and
shear stresses, respectively.

For the resisting stress on the slip surface, the Mohr–Coulomb
yield criterion was utilized to determine the shear strength of the
soil, which can be expressed as Eq. 8

����σ ′τc
���� � τmax

F
� c + ����σ ′nc

���� tanφ
F

(8)

where c and φ are the cohesion and the friction angle of slope
material, respectively, and F is the safety factor.

Furthermore, the loads applied on the slope remain
unchanged during the evolution process from the normal to
the critical state, then, the assumption was made that the normal
stress remains constant during the evolution process from the
normal to the critical state of the slope.

Hence, the resisting forces along the slip surface along the
sliding direction can be simplified as Eq. 9.

∫
l
(σ ′τc + σ ′nc)•(−d)dl � ∫

l
(τmaxa

F
− σnc)•(−d)dl (9)

where a stands for the unit direction of resisting shear stress at
point M along a slip surface.

At the normal state of the slope, the macroscopic forces
applied on the sliding body and micro forces along the slip
surface should be equal to Eq. 10.

∫
AB
(στ + σn)dl� PH + PV (10)

where PH and PV are the horizontal force and vertical force,
respectively, applied on the potential sliding body belonging to
macroscopic forces. σn and στ are the normal and shear stresses,

respectively, at any point on the potential slip surface belonging to
micro forces.

Because of being considered invariable during the
evolution process from the normal state to the critical state
of the slope for macroscopic forces, the driving force remains
constant for the potential sliding body, which can be
expressed as Eq. 11.

∫
AB
(στ + σn)•(d)dl � ∫

AB
(στc + σnc)•(d)dl (11)

Connecting Eqs 7–11, the force equilibrium equation can be
simplified as

∫
AB
(τmaxa

F
− σn)•(−d)dl � ∫

AB
(στ + σn)•(d)dl (12)

That is,

∫
AB
(τmaxa

F
)•(−d)dl + ∫

AB

(σn•d)dl

� ∫
AB
(στ•(d))dl + ∫

AB
(σn•(d))dl (13)

Further simplification can be made as Eq. 14:

∫
AB
(τmaxa

F
)•(−d)dl � ∫

AB
(στ•(d))dl (14)

As an invariable along the slip surface, the safety factor can be
finally expressed as:

Ff � ∫
l
(τmaxa)•(−d)dl

∫
l
(στ•d)dl

(15)

Eq. 15 demonstrates that the resisting and driving shear
stresses have an effect on the FS when the force equilibrium of
a slope is considered along the sliding direction. Moreover,
the safety factor (Eq. 15) can be directly obtained by
integrals along the slip surface rather than iterative
calculation, which is required in the LEM and SRM in
computing the FS.

FIGURE 2 | Sketch of the stress state from normal to critical state.
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3 A REAL-CODED GENETIC ALGORITHM

3.1 Structure of the Real-Coded Genetic
Algorithm
At first, the initial population should be generated based on the
geometrically feasible requirements of the individual, then, the
corresponding fitness of each individual is also computed. After
crossover, mutation, and selection operation to this population
based on modifications to previous studies on the genetic
algorithm, the next generation can be obtained as follows:

1) The parents are selected to be crossed to generate the offspring
as the candidate of the next generation.

2) Meanwhile, the mutation is also operated on the same parents
and the generated offspring can still be considered as the
candidate for the next generation.

3) The offspring generated previously by the crossover and
mutation operation are combined with the parents as the
total candidates of the next generation.

4) Using the selection operation, the total candidates are selected to
constitute the next generation including a specified number of
individuals.

The aforementioned routine process is repeated until the
requirement of convergence or a given number of generations
is met. A real-coded GA for specific slope stability problems is
explained in the following sections in detail.

3.2 Geometrically Feasible Individuals of
Slip Surface
According to previous studies on encoding the slip surface using
polygons with N nodes denoted as Vi (i = 1 . . . . . . N), the
kinematically feasible, upward-concave, trail slip surface is also
taken into account, which can be completely defined by the

coordinates of its nodes from the bottom to top. First, the
extreme nodes (i = 1 or i = N) are randomly generated lying
within specific intervals on the slope boundary. Then, similarly,
the interior nodes must lie within an allowable search domain
restricted by specific requirements of the feasible and upward-
concave slip surface.

Figure 3 shows a feasible slip surface with N = 6 nodes from
bottom to top, and the top to bottom generation has a similar
process with obvious changes of nodes, which is not presented in
detail in this study. As shown in Figure 3, the feasible slip surface
with six nodes can be generated by fulfilling the following
geometrical and kinematical compatibility constraints.

1) The extreme nodes V1 and V6 randomly located within their
allowable intervals using a uniform probability distribution on
the slope boundary have to be constrained by their
corresponding lower and upper intervals, (V1a V1b) and
(V6a V6b) (Figure 3).

2) For the interior nodes, the parallel and equidistant auxiliary
lines perpendicular to V1VN (Li in Figure 3) are used to
produce feasible intervals for these interior nodes. Take the
node V3 for example, a feasible interval can be defined by the
lower (V3a) from the intersection of L3 with the V1V6 segment
and upper extreme (V3b) from the intersection of L3 and the
line V1V2. In terms of V4 and V5, the aforementioned
procedure can be repeated to produce their feasible
intervals on the corresponding lines L4 and L5. For the
interior node V2, the soil mechanics can be used to
estimate the slope toe angle to determine the upper
extreme V2b except the lower extreme V2a from the
intersection of L2 with the V1V6 segment (Rafael and
Rafael, 2015).

3) Once the feasible intervals are defined, the nodes can be
randomly located within the intervals using a uniform
probability distribution.

FIGURE 3 | Generating process of a feasible slip surface of the initial population.
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A feasible slip surface within the slope can be generated
through the procedure mentioned previously, then, the initial
population with certain individuals can be produced by repeating
this procedure.

3.3 Selection Schemes
For the fitness of an individual of the population, the factor of
safety (FS) can be naturally defined as the fitness of this
individual. The critical slip surface of the slope we are trying
to search corresponds to the global minimum FS within the
slope, that is to say, the lower the FS of a slip surface is, the better
it will be as the search target. The FS can be computed by the
vector sum method in Section 3, therefore, the fitness of each
individual can be determined as the basis of the selection
schemes.

According to the fitness ranking (i.e., the individual can be
ranked with a fitness from low to high), the selecting probability
of an individual is computed by Eq. 16

Pk � cq(1 − q)k−1 (16)
where Pk means the selecting probability of the individual with
the kth fitness ranking, c is a parameter meeting all Pk must add
up to one, and q is a user-defined parameter between zero
and one.

3.4 Crossover Operators
Based on previous studies on GA operators to work with the slip
surface, the heuristic and arithmetic crossover operators are used
in this study.

Before this crossover operator is performed, two parents must
be selected with a specified probability (rcrs). Given two feasible
slip surfaces, Si and Sj, with factors of safety FS (Si) ≤ FS (Sj), a
new polygonal slip surface can be produced as the offspring using
the heuristic crossover operator (Figure 4), which is denoted as S’
computed on the basis of Eq. 17.

S′ � Si + ξ(Si − Sj) (17)
where ξ is a random number between 0 and 1. The new
offspring S′ has to be tested whether it is valid or not.
Under some conditions, the new offspring cannot meet the
requirement of geometrical constraints described in Section

3.2. If it is valid, the slip surface S′ can be considered as the
candidate of the next generation, or else, it will be rejected and
a new trial offspring is generated till a user-defined number of
trials come to the end.

Figure 5 shows the description of the arithmetic crossover
operator, and two auxiliary polygonals, S′ and S″, can be
produced by the given two parents, Si and Sj, as the offspring
(Eqs 18, 19).

S′ � ξSi + (1 − ξ)Sj (18)
S′′ � ξSi + (1 − ξ)Sj (19)

Similarly, the offsprings S′ and S″ also need to be individually
tested through geometrical constraints described in Section 4.2,
and if they are valid, they will be taken as the candidateS of the
next generation. If no valid offspring is produced after a user-
defined number of trails, the arithmetic operation of the parents,
S′ and S″, returns no offspring.

3.5 Mutation Operators
Based on the custom mutation operators, four types are mainly
used in this study, that is, uniform mutation, non-uniform
mutation of single nodes, total non-uniform mutation, and
extreme vertices mutation.

FIGURE 4 | Sketch of the heuristic crossover operator. FIGURE 5 | Sketch of the arithmetic crossover operator.

FIGURE 6 | Sketch of uniform and non-uniform mutations of
interior nodes.
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3.5.1 Uniform and Non-Uniform Mutation of a Single
Node
For uniform and non-uniform mutations of a single node,
there is a little difference between the interior node and
extreme node. Figure 6 shows the mutation procedure on
an interior node Vi randomly selected from all interior nodes
of the slip surface. For the interior node, the feasible interval
[P0, P1, or P2] can be computed based on geometrical
constraints. As the minimum value, P0 can be determined
by the intersection between Li and the Vi+1Vi-1 segment.
P1 can be obtained by the extension of the Vi+1Vi+2

segment if i < N-1, similarly, P2 can also be obtained by
the extension of the Vi-2Vi-1 segment if i >2, then, for P1 and
P2, the closer one to Vi can be considered as the maximum
value of the feasible interval. If i = 2 or i = N-1, only the P1 or
P2 can be obtained, respectively. In addition, P0, P1, or P2
should be tested whether it is inside the slope, or else, it
could be substituted by the intersection of Li with its
boundary.

For the extreme node, the feasible interval can be similarly
obtained with a slight difference for interior nodes. Take
the Vn for example, the feasible interval [PN0 or PN1] can be
obtained as follows (Figure 7): PN0 is computed at the
intersection between the slope boundary and a line traced
from Vn-1 with a user-defined angle considering Rankine’s
limit state (Li et al., 2010; Rafael and Rafael, 2015),
whereas PN1 results as the intersection between the
extension of the Vn-1Vn-2 segment and the slope boundary.
If PN0 or PN1 lies outside the allowable extreme interval, it
should be moved to the nearest interval extreme. The other
extreme node V1 has a similar procedure and will not be
discussed here.

Using the feasible interval for all the nodes, the mutation can
be operated. For uniform mutation of a single node, the mutated
node Vi can be computed as V′

i � Vi + (Pj − Vi)ξ, where j
indicates the direction of mutation (j = 0 or 1) and for non-
uniform mutation, Vi will be computed as
V′

i � Vi + (Pj − Vi)f(g), where f(g) � ξ(1 − g/Ngen)δ , with
1≤g≤Ngen being the generation number, and δ is a
predefined parameter determining the degree of non-
uniformity of the mutation.

3.5.2 Total Non-Uniform Mutation and Extreme
Vertices Mutation
The non-uniform mutation operator (Section 3.5.1) is applied to
all nodes of a slip surface randomly selected from the population.

For extreme vertices mutation, the extreme nodes are
mutated and the procedure is as follows: first, a valid
individual (slip surface) is selected from the population, and
the extreme nodes are mutated based on the procedure
mentioned previously (Section 3.5.1). Then, the interior
nodes will be newly generated using the new positions of
both extreme nodes and the generation procedure in Section
3.2. Finally, a new slip surface will be produced as the candidate
for the offspring.

FIGURE 7 | Sketch of uniform and non-uniform mutations of
extreme nodes.

FIGURE 8 | Search process of the critical slip surface using the real-
code GA.

TABLE 1 | Parameters of the material.

c/kPa ϕ/(°) γ/kN·m−3 E/kPa μ

3.0 19.6 20.0 1.0e4 0.25
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In addition, a user-defined number of trails for each mutation
operator is defined, and just like the crossover operation, if no
valid offspring is produced after a user-defined number of trails, it
will return no offspring.

3.6 Search Process
According to the description in Section 3, the search process of
the real-coded GA to locate the critical slip surface is shown in
Figure 8.

4 APPLICATION

To verify the reliability of the proposed approach, two
examples are investigated from the literature and the results
are compared with those in the literature. According to the
theory of the vector sum method in Section 2, the finite
element technique is used to obtain the stress field of the
slope composed of elasto-plastic materials. The ideal elasto-
plastic constitutive model, Mohr–Coulomb yield criterion, and
non-associated flow rule are used in the elasto-plastic finite
element analysis. As we know, the Gaussian integration points
are used to integrate the stiffness matrix in the finite element
analysis, and the discontinuous stresses with low accuracy at
the boundary of elements are computed by the direct
calculation of the stress integral. This study adopts the
global stress smoothing technique to overcome the low
accuracy deficiency. The stress at any position within an
element can be calculated by

σ � ∑
n

i�1
Niσi (20)

where n is the number of nodes of the element, Ni is the shape
function about a nodal point i, and σi is the corresponding nodal
stress.

For the real-coded GA, many parameters, that is, the number
of vertices Nvts defining the slip surface, the number of slip
surfaces Mslip, probability of the crossover operator rcrs,
probability of the mutation operator rmut, minimum number
of generations Mterm before termination of search is allowed, and
specified relative difference εterm for the terminating search
approach need to be previously defined before searching the
critical slip surface. Based on the studies reported in the literature,
these parameters are determined as follows: Nvts = 6, Mslip = 50,
rcrs = 0.85, rmut = 0.15, Mterm = 150, and εterm = 0.00005. In
addition, for the purpose of efficient reproduction and killing by
selection (Eq. 16), q = 0.01 is used for the first 2/3 out of theMterm

generations, and q = 0.1 for the remaining.

FIGURE 9 | Geometry of the slope.

FIGURE 10 | Calculating model of the finite element analysis.

FIGURE 11 | Evolution of Fs with the number of generations for
example 1.
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4.1 Example 1
This example analyzes a homogenous benchmark slope organized
by ACADS (Chen, 2003), and the standard FS of the slope is 1.0,
that is, the slope is a critical slope.

These material properties of the homogenous slope are shown
in Table 1. For computing conditions, the elastic model is
adopted because this example is a critical slope, for which the
standard FS is 1.00. For boundary conditions, the bottom is fixed
and the lateral boundaries are normally restricted. The size of the
slope is shown in Figure 9 and the calculating model of the finite
element analysis is shown in Figure 10, and the total element
number is 636.

The critical slip surface of this example can be searched using
the real-code GA in Section 3 and the vector sum method in
Section 2. Figure 11 shows the evolution with the number of

FIGURE 12 | Locations of critical slip surfaces and corresponding Fs for example 1.

FIGURE 13 | Profile of the slope for example 2.

TABLE 2 | Parameters of the material for example.2.

Material c/kPa ϕ/° γ/kN·m−3 E/kPa μ

Soil 1 28.5 20.0 18.84 6.04 0.25
Soil 2 0.0 10.0 18.84 2.03 0.25

FIGURE 14 | Locations of critical slip surfaces and corresponding Fs for
example 2.
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generations using the real-code GA, of the minimum Fs with the
vector summethod, which demonstrates the search process of the
GA. Figure 12 shows the geometry and locations of the critical
slip surfaces using the proposed approach and rigorous
Morgenstern–Price method for comparison. From Figure 11
and Figure 12, it can be seen that either the location of the
critical slip surface or corresponding minimum FS is in good
agreement with the results obtained with the rigorous
Morgenstern–Price method by the commercial software Geo-
slope. Moreover, for this example, the minimum Fs by the
proposed method or M–P method is almost equal to 1.0,
which revealed that the vector sum method can reliably assess
this example using this real-code GA.

4.2 Example 2
This example is also initially organized by ACADS [Chen, 2003;
Giam and Donald, 1989;], and used to test the ability of the
proposed procedure for a non-circle slip surface. This slope
includes a weak layer located between two strong layers, which is
shown is Figure 13. Table 2 presents the properties of two types
of soil layers. The factor of safety published by ACADS was
equal to 1.26 for the specified slip surface, and for the critical slip
surface, the FOS was organized to be 1.24. For boundary
conditions, it is similar to that in example 1, that is, the
bottom is fixed and the lateral boundaries are normally
restricted.

Moreover, this case was also studied with different
optimization algorithms (Gandomi et al., 2017). Figure 14
shows the locations of critical slip surfaces and the
corresponding FS by different optimization approaches, in
which BBO means biogeography-based optimization and DE
stands for differential evolution algorithm. From this figure,
the exits of the critical slip surfaces with different approachs
are almost located near the slope toe, and the entrances are
located in a little different place on the top boundary of the
slope. For the minimum FS, FS = 1.275, 1.214, 1.221, and
1.339, is obtained by GA with the vector sum method, DE
with the M–P method, BBO with the M–P method, and GA
with the M–P method, respectively. Except for FS = 1.339, the
rest are consistent with the standard answer 1.24 organized by
ACADS for this example. Figure 15 demonstrates the

evolution process with the generations of the minimum FS,
in which the global minimum FS can be obtained
through almost 60 generations in the proposed GA
(Figure 15).

5 DISCUSSIONS

1) Just like the conclusions of high efficiency to locate the
critical slip surface for the real-coded GA reported in the
literature (Sun et al., 2008; Sabhahit and Rao, 2011; Richard
and Sitar, 2012; Rafael and Rafael, 2015), the real-coded GA
presented in this study actually exhibits an excellent ability to
find the critical slip surface for these complex slopes. From
comparing the results of two examples with those reported in
the literature, the vector sum method proposed in this study
is verified to be reliable to assess slope-stability problems.
Over traditional methods, that is, the limit equilibrium
method and strength reduction technique, the vector sum
method emphasizes the direction of the force and the global
sliding direction of the slope, which brings new insights into
the way we assess the slope problem. More importantly, this
proposed method can not only provide the global sliding
direction of the slope determined by rigorous theory but also
directly compute the safety factor by force equilibrium of the
sliding body on the basis of the stress state of the slope, which
is also helpful to evaluate the slope stability under dynamic
loads or some other complex loads. At present, the vector
sum method still has a long distance to go for approval by
researchers and engineers, but it explores a new approach to
treat slope problems from other perspectives over traditional
approaches.

2) Merely from the viewpoint of the formula to calculate the
safety factor, the computing formula by force equilibrium
(Eq. 15) of the proposed method is just the vector expression
of the formula recognized as an important supplement for
the theory of slope-stability analysis over the traditional LEM
and SRM. The slope-stability problem is essentially a
nondeterministic polynomial-time complete problem, and
one approach cannot completely replace the other because of
the approximation feature of all approaches to slope-stability
problems (Tang et al., 2015). To be honest, for 2D slope-
stability problems, it is not difficult to accurately evaluate the
stability of the slope using either commercial software Geo-
slope with the LEM or other with the SRM. However, in 3D
complex problems, it is not easy to reasonably assess the
slope problem, especial for dynamic slope problems. The
proposed approach in this study also has high efficiency for
3D slope-stability problems with complex conditions as long
as the stress state of the slope can be rationally obtained by
numerical simulation.

6 CONCLUSION

1) Based on the popular strength reduction definition in the
slope stability analysis, the vector sum method was further

FIGURE 15 | Evolution of Fs with the number of generations for
example 2.
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studied and the safety factor was deduced on the basis of the
force equilibrium equation along the global sliding direction.

2) The proposed approach was proved to be reliable in assessing
the slope stability by comparing the locations of critical slip
surfaces and corresponding FS of examples with those
obtained using the M–P method and other optimization
algorithms in the literature.

3) For the real-coded GA, though only six vertices are considered
in this study for finding the critical slip surface, it still exhibits
high efficiency on locating the critical slip surface for two
examples.
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