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The reconstruction of Asian summermonsoon (ASM) changes during the last glacial period is of
great significance for better understandingmonsoondynamics. The phase relationship between
the Indian summer monsoon (ISM) and East Asian summer monsoon (EASM) subsystems on
different timescales is still unclear. The comparative analysis of speleothem records in the ISM
region, EASM region, and central China helps to clarify the relationship between the ISM and
EASM. Based on the well-dated isotope records of stalagmite DDH-B15 from the Didonghe
(DDH) Cave in Hanzhong, Shaanxi, we reconstructed ASM changes during the past 34–13
thousand years before the present (kyr BP). The small average error (61 years) of 18 uranium-
series ages enables a precise comparison of the stalagmite δ18O record with other well-dated
records from the orbital to the millennial timescales. The δ18O signal of the DDH-B15 stalagmite
is controlled by changes of the low latitude northern hemisphere summer insolation (NHSI) on
the orbital timescale. It records cold Heinrich Stadial (HS) and Dansgaard–Oeschger (DO) cycles
which are originated from the northern high latitude on the millennial time scale. The δ18O
changes of stalagmites from the three regions are similar on the millennial and centennial
timescales. But on the orbital-suborbital timescale, stalagmite δ18O changes during the last
glacial cycle have different characteristics. The stalagmite δ18O values in eastern China became
gradually negative, and the stalagmite δ18O values in the Indian monsoon domain showed a
increasing trend, but the stalagmite δ18O values in Central China adopted an intermediate state
between the EASMand ISM. Thenwe argued that the δ18O value of stalagmites inCentral China
is a mixed signal of the ISM and EASM, which indicates a change of the water vapor source as
an important influence on the Chinese stalagmite δ18O record.
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1 INTRODUCTION

The last glacial period is the most recent ice age of the
Quaternary. Its internal climate exhibits huge fluctuations on
orbital to millennial timescales (Johnsen et al., 1992; Rasmussen
et al., 2014). A series of abrupt climate variations are observed on
a millennial timescale, such as Heinrich Stadial (HS) and
Dansgaard–Oeschger (DO) cycles. These events are
characterized by rapid climate changes within decades and
subsequent stability for hundreds to thousands of years
(Heinrich, 1988; Alley et al., 1993; Dansgaard et al., 1993).
This pattern of abrupt climate change has significance for
future climate prediction (Corrick et al., 2020; Tierney et al.,
2020).

The ASM includes two subsystems, the ISM and the EASM.
The ASM brings abundant rainfall to the Asian continent during
summer, whereas during winter, drier and cold conditions result
from the Asian winter monsoon. This climate seasonality and its
inter-annual variability affect the well-being of mankind in Asia
which is a densely populated region (An, 2000;Wang et al., 2001a;
Wang and Ding, 2008; Cheng et al., 2012; Wang et al., 2014). It is
thus very important to figure out the rhythm of ASM changes.
However, short-term modern meteorological observations limit
our understanding of ASM dynamics, making it difficult to
accurately predict long-term changes in the system.
Reconstruction of the past evolutionary history of the ASM is
of great significance to future monsoon predictions in the context
of global warming. With the development of the
uranium–thorium dating method (Edwards et al., 1987; Cheng
et al., 2013), cave speleothems have become a favorable archive
for tracking ASM changes through time on different timescales
based on reconstructing oxygen isotope (δ18O) records (Wang
et al., 2001b; Yuan et al., 2004; Cheng et al., 2016).

For example, on the glacial–interglacial timescale, dramatical
sea level changes would have an important impact on the water
vapor transport distance, resulting in stalagmite δ18O in the ISM
region that follow glacial–interglacial cycles, while speleothem
δ18O records in eastern coastal areas show smaller differences
between glacial and interglacial periods, offsetting the ice volume
cycle (Cai et al., 2015; Xue et al., 2019). On the precessional and
millennial timescales, the signals of stalagmite δ18O in the ASM
region are more consistent (Zhang et al., 2021), which roughly
reflects well-integrated precipitation on the Asian continent
(Cheng et al., 2016; Cheng et al., 2021), or large-scale
monsoon circulation, and/or the meridional migration of
monsoon circulation (Hu et al., 2019). On the
centennial–decadal–interannual timescales, stalagmite δ18O is
likely to represent changes in monsoon circulation, affected by
the “circulation effect” (Tan, 2014), which is closely related to
ENSO (Lu et al., 2021) or the position of the subtropical high
(Zhao et al., 2019), and cannot be explained as changes in local
rainfall. However, some stalagmites δ18O can be used for
reconstruction of local rainfall on the decadal-centennial
timescales, with corrections using instrumental climate data
(Tan et al., 2009; Tan et al., 2018).

It is also worth noting that the paleoclimate significance of
speleothem (stalagmite) δ18O requires a distinction on timescales

and space scales. Stalagmite δ18O records from the Hulu Cave in
the EASM region reveal that the EASM experiences significant
fluctuations on a millennial timescale and is coupled with climate
changes in the northern high latitudes (Wang et al., 2001b). This
finding has been subsequently supported by a large number of
δ18O records of Asian speleothems (Cai et al., 2006; Chen et al.,
2016; Kathayat et al., 2016). Recent comparative studies on
stalagmites across the globe with ice core records from
Greenland also show abrupt climatic events in the ISM region,
EASM region, and the South American monsoon region that
responded synchronously or with lag times within the reported
dating errors to climate changes in northern latitudes (Corrick
et al., 2020). In addition, on the precessional timescale, the δ18O
value of stalagmites in the ISM and Central/eastern China
changes in phase, and 23 kyr (and 19 kyr) precessional cycles
are the main signals (Cai et al., 2015; Kathayat et al., 2016; Liu
et al., 2020). On the glacial–interglacial timescale, most stalagmite
δ18O records in China lack an obvious 100 kyr cycle (Wang et al.,
2008; Cheng et al., 2016), but monsoon proxies from the Chinese
Loess Plateau do possess that cycle (Ding et al., 1995; Guo et al.,
2000). Recent stalagmite δ18O studies in the ISM region show that
the ISM has a significant glacial–interglacial cycle besides the
precessional cycle (Cai et al., 2015; Liu et al., 2020). However, on
the orbital timescale, what drives the difference between the ISM
and the EASM is still controversial (Cai et al., 2015; Cheng et al.,
2021).

From a spatial perspective, although most records could
capture signals of precessional and millennial events, the
differences in the Chinese stalagmite δ18O records from
different regions are becoming apparent with the increasing
number of stalagmite records. Stalagmite δ18O changes in
southern and northern China are basically consistent on the
millennial timescale (Wang et al., 2001b; Duan et al., 2016; Dong
et al., 2018) and the precessional timescale (Cheng et al., 2016; Li
et al., 2020). However, stalagmite δ18O in southern China may
have 100 kyr cycles but not in northern China (Liu et al., 2022),
and as Zhang et al. (2022) argues, during the MIS 3, a distinct
precessional cycle is found in stalagmite δ18O of the Yangzi Cave
(Wu et al., 2020) and Yongxing Cave (Chen et al., 2016) but not
from the Hulu Cave (Wang et al., 2001b), whichmay be caused by
the increased contribution from spring rainfall to the stalagmite
δ18O in southeast China, and there are regional differences in
stalagmite δ18O on the centennial timescale (Tan et al., 2009).
During the Holocene, there are asynchronous changes of
stalagmite δ18O in different caves when the Holocene
Optimum terminated, early in the low latitude and late in the
higher latitude (Cai et al., 2010). Therefore, timescales and
regional differences should be considered when interpreting
stalagmite δ18O. To understand this aspect, it is important to
compare stalagmites δ18O recording different endmember signals
(the ISM region and EASM region), as well as samples from the
region affected by both monsoon regimes, and analyze how they
vary on different timescales.

We analyzed the δ18O signal in a U-Th dated speleothem from
the DDH Cave located in the Shaanxi province to understand the
variability of monsoon changes during the 34–13 kyr BP. The
DDH Cave is located in the region influenced by the two
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monsoon subsystems, recording valuable information of the
complexity of the full ASM system during part of the last
glacial cycle. We compared our results with other paleoclimate
records on the orbital-suborbital time scales and identified the
millennial timescale events in this period. We further analyzed
the structure of those millennial events and discussed the
variability of the monsoon during the LGM. Our study aimed
to explore the controls of the ASM variability on the orbital to the
millennial timescales and investigated the regional differences in
speleothem δ18O records.

2 CAVE LOCATION SETTINGS AND
SAMPLE

Didonghe (DDH) Cave (32°44′14″N, 106°24′26″E, 1,262 m),
located in Ningqiang County, Shaanxi province, China
(Figure 1), is a karst cave of the Chanjiayan Tiankeng
(sinkhole) system. The DDH Cave formed in the Permian
Wujiaping limestone formation. It was overlain by the
Permian Dalong shale and underlain by the Permian Wangpo
shale (Luo et al., 2019). The stalagmite sample DDH-B15 was
collected from the inner chamber of the cave, 2 km from the cave
entrance. The inner chamber is closed, with high humidity and a
stable sedimentation environment. Dripping water can be seen in
the cave, and a large number of stalagmites, stalactites, flow
stones, and other speleothems are developed there.

The study site is located in the southern Qinling Mountains, in
Central China, where both the southwest ISM and EASM affect
the climate (Figure 1). The climate is rainy and hot at the same
time. In summer, southerly winds bring warm monsoon
precipitation from low latitudes; in winter, northerly winds
provide cold and dry air mass. According to meteorological
monitoring records of the Ningqiang County Meteorological
Station from 1957 to 2007, the average annual temperature in

the Ningqiang area is 13°C, the average annual rainfall is
1,104 mm, and precipitation falls mainly during the summer
monsoon season from June to September (Hu et al., 2010).

The sample used in this study has been briefly described in the
works of Chen et al. (2020). The stalagmite was collected from the
Yulong chamber at the deepest part of Cave B in the DDH Cave
system. The speleothems were scattered on the ground during
collection, possibly due to human activity or earthquake/cave
collapse events. The DDH-B15 sample is 158 mm long, the
bottom diameter is 64 mm at the widest part, and the top is
about 30 mm in diameter. After cutting the stalagmite by using a
diamond wire saw, the center of the sample was observed to be
yellowish-brown, and the two sides were yellowish-white, with
some cracks. In this study, we mainly considered the yellowish-
brown central part to avoid the possible influence of pinch-out
rocks on both sides on the climatic information. The growth axis
of the stalagmite persists steadily, with only a few minor changes
(Figure 2A). The stalagmite begins to gradually shift to the right
about 40 mm from the top; the stalagmite grows vertically during
the 40–120 mm portion, indicating a stable drip position; from
120 to 150 mm, the stalagmite growth shifts to the right likely due
to a change in the karst seepage system.

3 METHODS

A dental burr was used to obtain 30–60 mg powder samples
along the growth axis of DDH-B15. A total of 18 powdered
subsamples were used to perform 230Th-234U-238U age tests
using a multi-cup inductively coupled plasma mass
spectrometer (MC-ICP-MS) at the Isotope Laboratory,
Xi’an Jiaotong University. We used a standard chemical
pretreatment protocol (Edwards et al., 1987; Shen et al.,
2002) before the test. A triple spike (229Th-233U-236U) with
known isotope concentrations was employed to determine the

FIGURE 1 | Locations of speleothem records during the Last Glacial in the Asian monsoon region. (DDH, this study; YZ, Yangzi Cave, Wu et al., 2020; FR, Furon
Cave, Li et al., 2021; SX, Sanxing Cave, Jiang et al., 2014; XBL, Xiaobailong Cave, Cai et al., 2015; NWS, Mawmluh Cave, Dutt et al., 2015; BT, Bitto Cave, Kathayat
et al., 2016; HL, Hulu Cave, Wang et al., 2001b). The blown arrows indicate the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the Asian
winter monsoon (AWM).
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U-Th isotope ratio in the samples. We referred to Cheng et al.
(2013) for a detailed description about the instrument,
standardization, and half-lives. The U-Th ages are
corrected according to 230Th/232Th = 4.4 ± 2.2 × 10−6

(atomic ratio) to deduct the influence of initial thorium,
and all the dating errors are given at the 2σ level. Among
them, the two top and bottom U-Th ages have been reported
in Chen et al. (2020). In this study, 16 new U-Th ages have
been tested and are listed as follows (Table 1).

Along the growth axis of DDH-B15, 322 sets of powder
subsamples for carbon and oxygen isotope (δ13C and δ18O)
analyses were drilled by a dental burr at an even interval of
0.5 mm. All δ13C and δ18O measurements were carried out at the
Institute of Earth Environment, Chinese Academy of Sciences,
and the test instrument was an Isoprime100 gas source stable
isotope ratio mass spectrometer equipped with a MultiPrep
system. Generally, a laboratory internal standard TB1 is placed
between every 15 samples to monitor the stability of the

FIGURE 2 |DDH-B15 stalagmite and agemodel. (A), the polished section of the DDH-B15 stalagmite and U-series ages (dark blue numbers) are presented beside
the drilling positions (red). (B), age model of DDH-B15 with linear interpolation (black) and the growth rate of the stalagmite (blue).
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TABLE 1 | 230Th dating results of DDH-B15. The error is 2s error.

Sample Depth 238U 232Th 230Th/232Th δ234U* 230Th/238U 230Th age (yr) 230Th age (yr) δ234UInitial**
230Th age (yr BP)***

Number (mm) (ppb) (ppt) (Atomic x10-6) (Measured) (Activity) (Uncorrected) (Corrected) (Corrected) (Corrected)

DDH-B15-B1 2 775.6 ±1.1 1,654 ±34 4,926 ±101 4,386.2 ±4.7 0.6370 ±0.0017 13504 ±40 13493 ±40 4,556 ±5 13424 ±40
DDH-B15-B2 6 757.4 ±1.2 450 ±10 18691 ±427 4,465.5 ±5.4 0.6738 ±0.0017 14103 ±40 14100 ±40 4,647 ±6 14031 ±40
DDH-B15-T 7 1,141.1 ±1.0 3917 ±79 3302 ±66 4,411.5 ±3.3 0.6875 ±0.0009 14557 ±22 14539 ±26 4,596 ±3 14472 ±26
DDH-B15-B3 12 1,056.0 ±1.7 101 ±6 122571 ±6896 4,290.5 ±5.3 0.7142 ±0.0019 15519 ±47 15519 ±47 4,483 ±6 15450 ±47
DDH-B15-B4 22.5 1,225.0 ±2.3 114 ±5 134915 ±5,997 4,411.0 ±5.9 0.7628 ±0.0021 16244 ±50 16244 ±50 4,618 ±6 16175 ±50
DDH-B15-1 38 1,131.6 ±1.7 421 ±10 36913 ±863 4,442.5 ±4.6 0.8337 ±0.0018 17742 ±45 17740 ±45 4,671 ±5 17673 ±45
DDH-B15-B5 47 876.6 ±1.6 68 ±4 187333 ±12408 4,503.1 ±5.9 0.8765 ±0.0023 18491 ±56 18491 ±56 4,744 ±6 18422 ±56
DDH-B15-B6 56 1,010.0 ±1.6 74 ±6 197300 ±15891 4,260.3 ±5.2 0.8822 ±0.0023 19545 ±58 19545 ±58 4,502 ±6 19476 ±58
DDH-B15-B7 63.5 803.8 ±1.3 135 ±6 90949 ±4,356 4,242.4 ±5.0 0.9268 ±0.0025 20681 ±63 20680 ±63 4,497 ±5 20611 ±63
DDH-B15-2 69 988.7 ±1.2 395 ±9 39039 ±884 4,184.8 ±3.9 0.9452 ±0.0020 21377 ±51 21374 ±51 4,445 ±4 21307 ±51
DDH-B15-B8 77 975.5 ±1.4 105 ±5 152777 ±6877 4,174.0 ±4.8 1.0016 ±0.0022 22809 ±58 22808 ±58 4,452 ±5 22739 ±58
DDH-B15-B9 86.5 1,008.5 ±1.7 247 ±6 77843 ±1886 4,385.5 ±5.7 1.1564 ±0.0027 25525 ±71 25524 ±71 4,713 ±6 25455 ±71
DDH-B15-3 96.5 1,004.3 ±1.5 289 ±7 69036 ±1,564 4,374.0 ±5.1 1.2035 ±0.0022 26729 ±61 26728 ±61 4,717 ±6 26661 ±61
DDH-B15-A1 104 1,245.8 ±2.5 113 ±8 224468 ±15623 4,265.0 ±6.9 1.2390 ±0.0034 28231 ±95 28230 ±95 4,619 ±8 28162 ±95
DDH-B15-A2 107.5 1,043.1 ±2.1 160 ±12 137152 ±9939 4,235.2 ±7.4 1.2765 ±0.0053 29363 ±142 29363 ±142 4,601 ±8 29295 ±142
DDH-B15-4 121 969.8 ±0.9 91 ±4 225550 ±8951 4,065.7 ±3.4 1.2866 ±0.0018 30732 ±54 30731 ±54 4,434 ±4 30664 ±54
DDH-B15-B10 136.5 976.1 ±1.4 84 ±3 258162 ±9245 4,115.7 ±5.1 1.3437 ±0.0029 31905 ±86 31904 ±86 4,503 ±6 31835 ±86
DDH-B15-B 155 1,151.3 ±1.1 838 ±17 31973 ±649 4,149.0 ±3.6 1.4121 ±0.0017 33483 ±53 33479 ±53 4,560 ±4 33412 ±53

U decay constants: λ238 = 1.55125 × 10−10 (Jaffey et al., 1971) and λ234 = 2.82206 × 10−6 (Cheng et al., 2013). Th decay constant: λ230 = 9.1705 × 10−6 (Cheng et al., 2013).*δ 234U = ([234U/238U]activity–1)×1,000. **δ234UInitial was calculated
based on 230Th age (T), i.e., δ234UInitial = d234Umeasured x e

λ234xT. Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4 ± 2.2 × 10−6. These are the values for amaterial at secular equilibrium, with the bulk earth 232Th/238U value
of 3.8. The errors are arbitrarily assumed to be 50%.***B.P. stands for “before present” where the “Present” is defined as the year 1950 A.D.
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instrument, and one sample out of every 10–20 samples is
randomly selected to verify its repeatability. The δ13C and
δ18O test results are given according to the VPDB standard.
The precision for δ18O and δ13C measurements of standard
materials is better than 0.15‰ and 0.12‰ (2σ).

4 RESULTS

4.1 U-Th Age Model
Including the top and bottom ages (14.5 kyr BP at 7 mm and
33.3 kyr BP at 155 mm) reported by Chen et al. (2020), 18 U-Th
high-precision ages were obtained (Table 1). The uranium
concentration of the DDH-B15 stalagmite ranges from 757.4
to 1,245.8 parts per billion (ppb), with an average of 1,007.8 ppb,
which is a relatively high uranium content for calcite stalagmites.
The content of Th depends mainly on the 232Th content. The
range of 232Th is 74-3917 parts per trillion (ppt), and the average
value is 514ppt. The range of 230Th/232Th is 3302-258162 (atomic
ratio), and its average value is 111828. Compared with the initial
230Th/232Th value of 4.4 ± 2.2 (atomic ratio), the correction error
caused by the initial thorium does not exceed 1‰, which can be
ignored. δ234UInitial varies between 4,434‰ and 4,744‰, with an
average value of 4,575‰. The obtained 18 U-Th ages are between
33.4 kyr BP and 13.4 kyr BP, with errors between 26 and
142 years, and the average error being 61 years (the average
relative error is 2.76‰). All ages are in stratigraphic order,
and linear interpolation was used to establish a chronological
model. The age model results show that the growth period of the
stalagmite is from 33.97 to 13.12 kyr BP (Figure 2B). The growth
rate of DDH-B15 is relatively stable (2.3–14.5 mm/kyr), and the
average growth rate is 7.89 mm/kyr. The stalagmite grew fast
during 34–29 kyr BP and 22–16 kyr BP but slowly in other
periods (Figure 2B).

4.2 DDH-B15 δ18O and δ13C Time Series
Using the chronological scale established earlier, a δ18O time
series was constructed for the DDH-B15 stalagmite (Figure 3).
The average temporal resolution of δ18O series is 64.8 years
during 33.97–13.12 kyr BP, which can be used to study climate
variability on centennial–millennial–suborbital timescales. DDH-
B15 δ18O values vary from −11‰ to −5.6‰, with an overall
increasing trend from 34 kyr BP to 16 kyr BP, and rapidly shift to
negative values after 15 kyr BP. The entire δ18O sequence is
interrupted by three significant positive events, roughly at 16 kyr
BP, 24 kyr BP, and 29.5 kyr BP. In addition, among several
significant positive events, the δ18O values of 34–30 kyr BP,
29–26 kyr BP, and 21–17 kyr BP were relatively negative.
Among them, the δ18O values during the 34–30 kyr BP period
is the most negative, which are ~5‰more negative than the most
positive value observed at 16 kyr BP. Furthermore, during
21–17 kyr BP, δ18O series values grasp an obvious negative
event, which is also reflected in records from other stalagmites
in the ASM region (Wang et al., 2001b; Cai et al., 2010; Jiang et al.,
2014).

DDH-B15 δ13C values fluctuate between −7.73‰ and
−1.16‰. While we observe a significant long-term increasing
trend of δ18O, the δ13C values show only a slight positive trend
(Figure 3) on the orbital timescale. On the millennial timescale,
δ13C and δ18O show similar characteristics at some excursions of
enriched isotope events but also with some differences. For
example, during 21–17 kyr BP, δ13C does not have a
significant depleted value as seen in δ18O; while during
17–15 kyr BP, δ13C exhibits large fluctuations and tends to be
negative but not positive. Subsequent to 15 kyr BP, the positive
trend of δ13C is gradually reestablished. However, during the
period of 34–31 kyr BP, δ18O only shows a modest (~1‰)
oscillation, while δ13C shifts up to 4.5‰. δ18O has a long-term
trend, with an overall variation range of about 5.5‰, while δ13C

FIGURE 3 | DDH-B15 δ18O (red) and δ13C (green) time series.
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FIGURE 4 | Comparison of DDH speleothem δ18O records (Central China) with other paleoclimate records (EASM and ISM regions). a, DDH Cave, this study; b,
Yangzi Cave (Wu et al., 2020); c, Furon Cave (Li et al., 2021); d, Hulu Cave (Wang et al., 2001b);e, Xiaobailong Cave (Cai et al., 2015); f, Mawmluh Cave (Dutt et al., 2015);
g, Bitto Cave (Kathayat et al., 2016);h, Sanxing Cave (Jiang et al., 2014); and k, Greenland ice core (Rasmussen et al., 2014). Shaded in pink are monsoon intensification
events during the LGM, and the yellow bars are three HS events.
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has no obvious trend on the suborbital timescale, and its
millennial signal varies by as much as 6.5‰. This suggests
that δ13C is more sensitive to climate change than δ18O on the
millennial timescale.

5 DISCUSSION

5.1 Interpretation of Stalagmite δ18O and
δ13C of the DDH Cave
Before interpreting the climatic significance of stalagmite δ18O of
the DDH Cave, it is necessary to judge whether the stalagmite
calcite was deposited under an isotopic equilibrium. Recently, the
most widely used equilibrium fractionation test is the replication
of δ18O records from different stalagmites in the same cave or
from different caves in the same climate region (Dorale et al.,
1998; Wang et al., 2001b; Dorale and Liu 2009; Li et al., 2019).
Comparing the δ18O records of the DDH stalagmite with other
contemporaneous stalagmite records in the ASM region, it is
observed that the DDH stalagmite δ18O record is consistent with
that of the Hulu Cave (Wang et al., 2001b) and Yangzi Cave (Wu
et al., 2020) and that major millennial timescale events are well
recorded, such as HS1 at 16 kyr BP, HS2 at 24 kyr BP, HS3 at
29.5 kyr BP, and seven DO events (Figure 4). The correlation
coefficient between the DDH stalagmite δ18O and Hulu
stalagmite δ18O is 0.76 (N = 349 and p < 0.001), and the
correlation coefficient of the Yangzi stalagmite δ18O is 0.83 (N
= 349 and p < 0.001). Therefore, we have reason to assume that
the DDH-B15 stalagmite was deposited under (near-)equilibrium
fractionation conditions, and the influence of kinetic
fractionation is negligible.

The stalagmite δ18O is mainly controlled by the cave
temperature and drip δ18O changes (Lachniet, 2009). The
DDH-B15 δ18O variation is 5.5‰. The δ18O fractionation
coefficient (−0.23‰/°C, O’Neil et al., 1969) caused by the
temperature is very small. The 34–13 kyr BP belongs to the
MIS3-2 stage, when the global average temperature did not
change in the region by more than 4°C (Peterse et al., 2014).
Indeed, an 8°C change between glacial and interglacial cycles in
the Loess Plateau (Peterse et al., 2014) only implies a maximum
temperature contribution around 1.8‰. Therefore, we can
interpret the DDH-B15 stalagmite δ18O values as indicators of
precipitation δ18O.

The climatic significance of the Chinese stalagmite δ18O is
controversial (Maher, 2008; Pausata et al., 2011; Liu et al., 2020).
In the ASM region, especially in eastern China, the stalagmite
δ18O values are variably affected by many factors. Early studies
had shown that the amount of rainfall was not significantly
negatively correlated with δ18O values (Wang et al., 2001b). At
the same time, Cai et al. (2001) had proposed that different
moisture sources may affect stalagmite δ18O values. Wang et al.
(2001a) used the ratio of summer/winter rainfall to explain the
δ18O of stalagmites and introduced the concept of “monsoon
intensity.” Cheng et al. (2009, 2016, 2021) followed and extended
the concept of “monsoon intensity” and believed that the lower
stalagmite δ18O mainly represented the higher spatially
integrated monsoon rainfall between the tropical monsoon

sources and reflected “wind” characteristics of the monsoon.
Yuan et al. (2004) believed that the stalagmite δ18O record
was dominated by Rayleigh distillation processes associated
with the water vapor transport, that is, the “rainout effect” or
“continental effect”. Subsequent work on paleoclimate records
and simulations also basically supported these two interpretations
(Hu et al., 2008; Pausata et al., 2011; Liu et al., 2014; Hu et al.,
2019). The contribution of the rainout effect and the proportion
of summer rainfall remain uncertain (Orland et al., 2009; Liang
et al., 2020). Chinese stalagmite δ18O records are very consistent
on precessional-millennial timescales (Wang et al., 2001b; Cheng
et al., 2009). At present, δ18O is still the most effective stalagmite
paleoclimate proxy. Most researchers approve that δ18O can be an
indicator of monsoon rainfall in northern China or the Asian
continent.

The DDH cave is located on the southern slope of the Qinling
Mountains, about 500 km away from the Sanbao Cave and
Linzhu Cave (Cheng et al., 2016). The DDH stalagmite δ18O
is very similar to the compositive stalagmite δ18O-based records
from the Sanbao–Dongge–Hulu–Linzhu Cave (Figure 4), and the
long-scale changes of the DDH stalagmite δ18O are consistent
with summer insolation changes in the northern hemisphere.
Recent EASM reconstruction by the loess microcodium δ18O
presented an opportunity to reconcile the paradox between
speleothems and loess, which showed that the dominated
signal of the EASM was precession but the ice volume
influenced the amplitude. The loess microcodium δ18O
consisted of speleothem δ18O on precessional and millennial
scales (Zhang et al., 2022). This also reveals that the
speleothem δ18O can be used as a monsoon tensity index. In
addition, the stalagmite δ18O in the Xianglong Cave, 20 km away
from the DDH Cave, was consistent with the local rainfall on the
decadal timescale (Tan et al., 2015, 2018). The DDH stalagmite
δ18O should show similar disciplinary. Considering the
aforementioned data, the “monsoon intensity” concept is
followed (Cheng et al., 2016); we argue that the δ18O of the
DDH stalagmite reflects monsoon intensity changes and
integrated rainfall changes on a large spatial scale. When the
stalagmite δ18O is negative, the ASM rain belt is pushed
northward, the rainfall in north China increases, and the
rainfall in the south may be different (Cheng et al., 2016,
2019). On a shorter timescale, it is affected by local hydrology
and climate. There may be some differences between the
stalagmite δ18O and rainfall index. δ13C may represent
changes of the local hydroclimate because when precipitation
increases, the proportion of C3 vegetation increases, vegetation
coverage becomes larger, and the water–rock interaction (WRI)
time becomes shorter, which will make δ13C more negative
(Dorale et al., 1992; Baker et al., 1997). The relationship
between δ13C and δ18O on different timescales may represent
the relationship between local precipitation and Asian monsoon
intensity. They are not identical on the orbital scale but have
certain similarities on the millennial scale (Figure 4). But
stalagmite δ13C is also affected by temperature, cave
ventilation, prior calcite precipitation (PCP) process,
atmospheric CO2, and other factors (Fairchild et al., 2006;
Genty et al., 2006). Therefore, it is necessary to further study
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the DDH stalagmite δ13C combined with other hydrological
proxies, but it is not discussed here. In the following sections,
we focused on the changes of our DDH stalagmite δ18O on
multiple timescales and regional differences.

5.2 Characteristics of Orbital-Suborbital
and Abrupt Events Recorded by the DDH
Stalagmite δ18O During the Last Glacial
On the orbital-suborbital timescales, the δ18O of the DDH
stalagmite is consistent with other caves and is mainly
controlled by summer insolation in the northern hemisphere
(Figure 4). The overall trend of the DDH stalagmite δ18O is
similar to the Yangzi Cave (Wu et al., 2020) and the Hulu Cave
(Wang et al., 2001b) stalagmite δ18O; however, during the
period of 34–30 kyr BP, the Chinese cave records also showed
some differences. The DDH δ18O changes from a negative value
to a positive value, while the Hulu Cave stalagmite δ18O is
relatively stable, with no significantly persistent positive trends
during 34–18 kyr BP. In addition, the Hulu cave δ18O values
during the 19–17 kyr BP period are nearly as negative as those
observed in the 34–30 kyr BP period (Figure 4). The stalagmite
δ18O values from the Xiaobailong Cave in Yunnan (Cai et al.,
2015) were relatively stable or even gradually negative during the
34–20 kyr BP period. Mawmluh Cave (Dutt et al., 2015) and Bitto
Cave (Kathayat et al., 2016) from the ISM region also share
similar characteristics, which may be influenced by the low time
resolution of the record, or be a characteristic in the ISM region.
Therefore, further research is needed for verification. The
significant negative δ18O values of the DDH Cave and the
Yangzi Cave during the 34–30 kyr BP period may be related
to a stronger summer insolation. However, the Hulu Cave
stalagmite δ18O values are not closely related to insolation
during this period.

On the millennial timescale, the DDH stalagmite δ18O record
shows seven warmDO cycles (Figure 4A). The DO1 event, which
is the Bolling event, occurred at 15–14 kyr BP, DO2 occurred at
23.5–23 kyr BP, DO3 occurred at 28–27.5 kyr BP, DO4 occurred
at 29.2–28.6 kyr BP, DO5.1 occurred at 31.5–30.5 kyr BP, DO5.2
occurred at 32.5–32 kyr BP, and DO6 occurred at 34–33.5 kyr BP.
The seven DO events in our records are temporally consistent
with the Greenland ice core, but there are some differences in the
structure. The onsets of these DO warm events are not very rapid,
which are similar to other stalagmites in the Asian monsoon
region, but not as rapid as the warming shift recorded by the
arctic ice core, which may be influenced by the climate of the
southern hemisphere (Cai et al., 2006; Rohling et al., 2009). In
addition, the DDH stalagmite δ18O and other stalagmites δ18O
records from the ASM region also record three significant HS
cold events on the millennial timescale (Figure 4). HS1 occurred
at 17–15 kyr BP, HS2 occurred at 24.5–23.5 kyr BP, and HS3
occurred at 30.5–29.2 kyr BP. As described by Li et al. (2019), two
phases of weak monsoon occurred in the Central China at the
onset of the HS1 cold event. The stalagmite records in the ISM
area also exhibit a two-phase structure (Figure 4). In addition, at
the end of HS1, the DDH record and the Hulu Cave, Xiaobailong
Cave, Sanxing Cave, and others also showed a two-stage process

of monsoon enhancement. In general, this two-stage
enhancement process can be regarded as a multi-cycle slow
enhancement process. Four internal turbulent events at the
onset of HS1 can be found in the Greenland ice core, Hulu
Cave, and DDH records. The onset and termination of HS2 and
HS3 events from high latitudes may also have multi-stage
structures, but the performance is not obvious in DDH and
other stalagmite records, which may be attributed to duration
or time resolution limitations (Figure 4).

Comparing the DDH stalagmite δ18O record with other
stalagmite δ18O records, it is found that the three HS events
do not have exactly the same structural characteristics. Generally
speaking, HS1 and HS3 events are characterized by slow entry
and rapid termination. This mode has similar characteristics to
the glacial–interglacial cycle, which may be related to the “binge-
purge” dynamic mechanism of ice sheet evolution (MacAyeal,
1993), while HS2 and Holocene millennial events (such as 4.2 and
8.2 kyr) mainly enter quickly and terminate slowly (Liu et al.,
2018). This implies that the HS1 and HS3 events of the glacial
period are different from the Bond events of the interglacial
period (Liu et al., 2018), and the structure of the HS2 event is
different from the other two HS events.

Considering the aforementioned characteristics together, we
found that precessional and millennial signals are the main
portrait of the ASM, and low latitude summer insolation is the
driving force of the ASM which is coupled with high-latitude
climate changes on the millennial scale. However, there are some
differences in the stalagmite δ18O of different caves on the
suborbital scale, and there are also some differences in the
structure of different HS events.

5.3 Periodic Characteristics of DDH
Stalagmite δ18O Changes
In order to assess the dominant period of the DDH stalagmite
δ18O, we first used REDFIT software (Schulz andMudelsee, 2002)
to analyze the δ18O signal. It is found that the DDH stalagmite
δ18O has significant periods of 555, 206, and 142 years (Figure 5),
consistent with the main periods observed in the Holocene
Dongge Cave δ18O record (Wang et al., 2005; Dykoski et al.,
2005). These periodicities are close to significant periods (512,
206, and 148 years) of the △14C record (Stuiver and Braziunas,
1993). Therefore, 555, 206, and 142 years are the main periods
associated with solar activity. It is observed that 206 years is the
Suess period of solar activity and 555 years may be the significant
500-year period of the ASM (Xu et al., 2019), Greenland
temperature (Stuiver et al., 1995), and ENSO variability (Zhu
et al., 2017). These periods support the idea that solar activities
are responsible for changes of glacial ASM intensity.

For distinguishing the variability of the DDH stalagmite δ18O
on different timescales, the EEMD method (Wu and Huang,
2009) is employed to decompose it. At the same time, we also
compared the variability of the stalagmite δ18O from the ISM
region and the EASM region on different timescales. The Hulu
Cave and XBL Cave with high resolution δ18O and an accurate
age model are selected as representatives of the EASM and ISM.
Interpolating the three records to a resolution of 30 years, we used

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8638299

Chen et al. Last Glacial Asian Summer Monsoon

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 5 | Spectrum analysis of DDH δ18O.

FIGURE 6 | a, Speleothem δ18O of the DDH Cave (red, Central China), Hulu Cave (blue, EASM), and Xiaobailong Cave (black, ISM); b, IMF 7-9 component of the
speleothem δ18O in the DDH Cave, Hulu Cave, and Xiaobailong Cave, which are mainly the cycles of suborbital-orbital periods; c, IMF C4-6 component of speleothem
δ18O in the DDH Cave, Hulu Cave, and Xiaobailong Cave, which are mainly millennial cycles; d, IMF C1-3 component of the speleothem δ18O in the DDH Cave, Hulu
Cave, and Xiaobailong Cave, which are mainly centennial cycles.
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the EEMD method to decompose the DDH stalagmite δ18O into
nine components, including the long trend. These nine
components extend the period from orbital to suborbital,
millennial, and centennial time scales (Figure 6). IMF C7-C9
(Figure 6B) are reconstructed to form a new component of the
orbital-suborbital timescale, which should be dominated by
precessional signals (Yuan et al., 2004; Wang et al., 2008);
IMF C4-6 (Figure 6C) are reconstructed to form a millennial
time scale component, including cycles of 5,000, 2000, and
1,000 years, which are consistent with the northern high
latitude temperature changes (Bond et al., 1999; Wang et al.,
2008); IMF C1-3 (Figure 6D) are reconstructed to obtain cycles
below the millennial time scale, which are mainly on the
centennial time scale, corresponding to 200- and 500-year
cycles of solar activity.

On the three different timescales, the stalagmite δ18O
records of the three regions have similarities and
differences. On the centennial (Figure 6D) and millennial
(Figure 6C) timescales, stalagmite δ18O changes in the three
regions are almost the same, and their amplitude and
frequency are similar. On the millennial scale, three HS
events can be clearly identified. All these show that the
climate of the ASM region (EASM, ISM, and Central
China) changes contemporaneously, within the age error
range on the centennial and the millennial timescale. In
addition, millennial and centennial variability both show
an increasing trend since 19 kyr BP. This may be associated
with the abnormally dry and cold HS1 event or deglaciation
on the millennial–centennial time scales, which could be
verified by long high-resolution records. On the suborbital
time scale (Figure 6B), stalagmite δ18O records in the three
regions show three trends during the 24–16 kyr BP period.
The Hulu Cave stalagmite δ18O values in eastern China
become gradually negative, consistent with the more positive
nature of HS2, as compared to HS1. The Xiaobailong Cave δ18O
values from the ISM region gradually become more positive,
while the DDH stalagmite δ18O in Central China adopts an
intermediate state between the EASM and ISM, further
supporting the idea that the precipitation in Central China
during the 24–19 kyr BP period was a mixture of water vapor
from the Indian Ocean and the Pacific Ocean. This is probably
caused by a decline in the sea level during the glacial period,
while the ISM region was mainly influenced by ice volume (Cai
et al., 2015; Xue et al., 2019). This difference on the orbital to
sub-orbital timescale indicates that ASM rainfall isotope data
also have regional differences, although precession is the main
driver.

6 CONCLUSION

The DDH stalagmite δ18O records from Shaanxi established
by high-precision uranium dating have been used to
reconstruct the Asian summer monsoon evolution history
of 34–13 kyr BP. It is found that DDH stalagmite δ18O records
and those from other ASM regions are broadly consistent on
orbital and millennial timescales. The DDH stalagmite δ18O is

controlled by low latitude summer insolation changes in the
northern hemisphere on orbital timescale and responds to
millennial climate changes from the northern high latitudes.
Several cold HS events and DO climate cycles have been
recorded. Spectrum analysis shows that the δ18O of the
DDH stalagmite has characteristic cycles of 500, 206, and
142 years, indicating that the ASM during the last glaical
period is regulated in part by solar activity. Multi-scale
EEMD decomposition shows that the stalagmite δ18O in
the three regions (ISM, EASM and Central China) changes
consistently on millennial and centenary timescales, but there
are also three characteristics for each region during the glacial
period on the suborbital timescale, which is likely to be caused
by changes in regional sea level differences. This underscores
the important influence of water vapor sources on the Chinese
stalagmite δ18O.
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